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We have detected changes in the rotation of the sun near the base of its convective envelope,

including a prominent variation with a period of 1.3 y at low latitudes. Such helioseismic

probing of the deep solar interior has been enabled by nearly continuous observation of

its oscillation modes with two complementary experiments. Inversion of the global-mode

frequency splittings reveals that the largest temporal changes in the angular velocity 
 are of

order 6 nHz, and occur above and below the tachocline that separates the sun's di�erentially{

rotating convection zone (outer 30% by radius) from the nearly uniformly{rotating deeper

radiative interior beneath. Such changes are most pronounced near the equator and at high

latitudes, and are a substantial fraction of the average 30 nHz di�erence in 
 with radius

across the tachocline at the equator. The results indicate variations of rotation close to

the presumed site of the solar dynamo which may generate the 22-year cycles of magnetic

activity.

The di�erential rotation of the sun and its ability to generate large-scale magnetic

�elds through cyclic dynamo action appear to be intimately linked. It is thought that the

global dynamo behavior (1) responsible for the emergence of large active regions (sunspot
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groups) is derived from strong organized toroidal magnetic �elds generated by rotational

shear in a thin region, called the tachocline, at the base of the convection zone. The

evolving magnetic �eld could well have a feedback e�ect on the 
uid motion in that region.

We are thus motivated to use helioseismology to look for changes in rotation pro�les near

the tachocline as the sun's magnetic cycle progresses. Here we present evidence that the

rotation rate in the interior changes with time, with unexpected periods of about 1.3 y near

the equator and possibly 1.0 y at high latitudes.

Helioseismology provides the means to probe the interior structure and dynamics

of the sun, using precise observations of the modes of oscillation (2). In particular, the

splitting of the global oscillation frequencies by large-scale 
ows has successfully been used

to investigate how the sun's rotation varies with radius and latitude throughout much of

the solar interior (3). It was thus found that the angular velocity observed near the solar

surface, where the rotation is faster at the equator than near the poles, extends through

much of the convection zone (occupying the outer 30% by radius, namely 200 Mm) with

little radial dependence. The tachocline (4, 5) is a region of strong shear at the base of

the convection zone where the angular velocity adjusts to apparent solid-body rotation in

the deeper radiative interior (Fig. 1). There is also a thin shear boundary layer near the

surface (about 5% by radius or 35 Mm in depth) in which rotation increases with depth at

intermediate and low latitudes.

Study of the evolution of such dynamical structures deep within the sun has now

become feasible using the nearly continuous full-disk Doppler observations of the sun pro-

vided by two independent but complementary helioseismic studies (6), namely the Global

Oscillation Network Group (GONG) project involving six ground-based observatories and

the Michelson Doppler Imager (MDI) instrument aboard the SOHO spacecraft. The basic

data for the analyses are frequency splittings resulting from solar rotation for a broad range

of f- and p-mode oscillations (2) derived over a 4.5 y time span (from May 1995 to November

1999). These are represented in terms of polynomial expansions in the azimuthal order of

the modes; the coe�cients in these expansions (the so-called a coe�cients) depend on the

radial order and degree of the modes. The data from the GONG network were obtained
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as 41 overlapping 108-day sets with starting points separated by 36 days, whereas the MDI

data consisted of 16 non-overlapping 72-day sets (7). There is considerable temporal over-

lap, although the GONG observations began earlier, and MDI had a data gap while control

of SOHO was temporarily lost. The odd a coe�cients were inverted by two di�erent tech-

niques (8), subtractive optimally localized averaging (OLA) and regularized least squares

�tting (RLS), to infer the angular velocity 
 as a function of distance r from the solar

center and latitude �. For each experiment (i.e. a given choice of dataset { either GONG

or MDI { and inversion method) we calculated an average rotation pro�le over all the time

periods, and subtracted this temporal average (Fig. 1) from the individual pro�les. The

resulting residuals �
(r; �; t) (t representing the epoch of the observations) form the basis

for the subsequent investigation.

Variations Near The Tachocline Temporal variations of the residuals �
 are evident

(Fig. 2) at selected (r; �) points using the two independent datasets and the two di�erent

inversion methods. The two selected radii 0.72R and 0.63R (where R is the photospheric

radius) lie just above and below the tachocline [which is centered at 0.69R, as in (5)]; the

former is near the base of the convection zone and the latter is in the radiative interior. The

residuals close to the equator show distinct oscillations with a period of around 1.3 y at both

radii. The clearest signal of an oscillatory 
ow is in the equatorial plane at the radius 0.72R

(Fig. 2A), having a peak-to-peak variation of about 6 nHz, and in the companion deeper

site at 0.63R (Fig. 2D) where the phase of the signal is reversed. A smaller-amplitude signal

is seen at these depths at 30� latitude (Fig. 2B, 2E). Variations are also visible at the higher

latitude of 60�, where the overall variation has increased to about 12 nHz (Fig. 2C), but the

signal is more complex. The two sets of observations track well together, and there is good

agreement between the two inversion techniques (9). This lends credence to the physical

reality of the variations.

Although the variations in �
 are not strictly periodic, we can estimate the mean

period at a given location by sinewave �tting (Fig. 3, 4). The variation of power with

frequency (Fig. 3B) at 0.72R at the equator peaks at 0.8 y�1, corresponding to a period

of 1.3 y; the signal reconstructed from only that frequency is superposed on the data in
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Fig. 3A. This single period appears to capture much of the variation in �
, although the

data interval encompasses only about three cycles. Furthermore, analysis of power at that

frequency with latitude (Fig. 3C) and with radius (Fig. 3D) reveals that the response is

con�ned to low latitudes and peaks at radii 0:72R and 0:63R. At 0.63R the equatorial �


signal at that frequency is nearly anti-correlated with the signal at 0.72R. These results are

supported by the other experiments (10). A corresponding sinewave �t of �
 for latitude 60�

and radius 0.72R (Fig. 2C) is illustrated in Fig. 4. The variations there are more complex,

showing multiple peaks in power (Fig. 4B), with the largest at frequency 1.0 y�1 (a period

of 1.0 y). We place less signi�cance (10) on this identi�cation because of the noisier and

more complicated signal, but clearly there is a strong signal (Fig. 4A) that is con�ned to the

higher latitudes (Fig. 4C) and to the base of the convection zone (Fig. 4D). Unlike at lower

latitudes, it is more di�cult to characterize these variations in terms of a single frequency.

However, the correspondence between GONG and MDI in the large excursions, particularly

from early 1998 onward, is striking. The signi�cance of the �t in Fig. 3B is substantially

reduced at a period 1.0 y compared with 1.3 y (the power is lower at period 1.0 y by a

factor of four) so it is improbable that the variations detected at the equator are a product

of systematic annual changes in observing conditions or of the orbit of SOHO. Furthermore,

although the variations illustrated in Fig. 4 do have a dominant period of 1.0 y, the signal at

this period is apparent only near 0.72R and 60� (Figs. 4C, 4D), which again argues against

the variations being caused by annual systematic observational errors.

We need to assess whether our inferences of changes in �
 at di�ering depths and

latitudes are genuinely independent measurements, or whether they might be artifacts of

the inversion procedure. Two issues are of concern: (i) the �nite resolution of the inversions,

and (ii) the correlation between the errors in the solutions at di�erent locations. If these

were signi�cant, then a signal (either genuine or a result of data errors) at 0:72R at the

equator could bleed into the inferred solution at other locations. The �nite resolution of the

inversions causes a genuine signal at one location to be perceived also at other locations. A

quantitative measure of this e�ect is provided by the averaging kernels: the inferred solution

at a given location is, apart from errors, an average of the true solution weighted by the
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averaging kernel. An example of such an averaging kernel, showing how the solution at radius

0:72R on the equator is a weighted average of the rotation over a range of radii and latitudes,

is shown in Fig. 5A. Averaging kernels at nearby radii and latitudes are similar. Since the

resolution kernels in the region of interest are localized, with weights that are generally

positive, resolution issues cannot account for the anti-correlation between the oscillations at

0.72R and 0.63R on the equator. Error correlation between di�erent points is a more serious

concern: the inversions at di�erent locations are based on the same observational data, so

the e�ects of data noise on the inferences at di�erent locations are correlated. Examination

of the error correlation functions (Fig. 5B, 5D) shows that the error correlation between

0.72R and 0.63R at the equator is indeed negative but its magnitude is only about 0.2 for

OLA inversion of MDI data, and around 0.4 for the other combinations. Thus we infer

that it is unlikely that error correlation accounts for the anti-correlated temporal variations

apparent at these locations.

Inversions of global modes are sensitive only to that component of rotation which is

symmetrical around the equator (3). Thus the signals illustrated at 30� and 60� latitude

are in fact the symmetrized components of the true variations in the sun. If the latter have

a substantial antisymmetrical component, which is possible, then the actual 
uctuations

might be larger than those inferred here.

Physical Implications The detection of substantial variations in rotation rate

in the vicinity of the tachocline is of particular interest because this region of strong radial

shear is thought to play a crucial role in the cyclic generation of magnetic �elds. The overall

variations of 6 to 12 nHz in �
 found at low and high latitudes represent signi�cant signals

when compared to the change of 30 to 55 nHz (Fig. 1) in 
 across the tachocline (which

varies with latitude in magnitude and in the sign of the rotation gradient).

The oppositely signed tachocline shear at low and high latitudes has a pivotal in
u-

ence on the mean-�eld interface dynamos (1) currently being considered. These dynamo

models seek to provide explanations for the orderly aspects of cyclic variation of the large-

scale magnetic activity, involving sunspot eruptions with well-de�ned rules for �eld parity
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and emergence latitudes. Such highly parameterized models of magnetized turbulent 
ow

within the tachocline have not yet provided detailed predictions of changes in 
 that may

be associated with �eld production as the cycle advances. On the other hand, the latest

three-dimensional simulations of turbulent convection in rotating spherical shells (11) have

made progress in explaining aspects of the di�erential rotation within the convection zone.

However, such global modelling has not yet been able to deal e�ectively with the intense

shear and the highly stable strati�cation of the tachocline, and therefore is unable to pro-

vide reliable estimates of dynamical variations in 
 expected within a zone of rotationally

in
uenced penetrative convection.

The dynamical implications of our detection of �
 variations are therefore di�cult

to assess, for the necessary theoretical framework for understanding the tachocline is still

at an early stage. However, several dominant properties stand out from our helioseismic

inferences. For one, the detected time-varying 
ows appear to extend at least to 0.63R, well

inside the radiatively stable region. This suggests a strong dynamical coupling between the

convection zone and the upper part of the radiative region (5). Further, the anti-correlation

of �
 between radii 0.72R and 0.63R at low latitudes suggests that angular momentum

may be exchanged across the tachocline. The fact that the variation is quasi-periodic is

suggestive of a back-and-forth exchange of momentum. The poloidal component of the

magnetic �eld presumed to be present near the base of the convection zone may be the

agent responsible for this, as it tends to oppose gradients in angular velocity along �eld

lines. The Alfv�en time scale for transport of angular momentum may thus set the periods

observed in the variations, though there is considerable uncertainty in the intensity and

geometry of the magnetic �eld close to the tachocline. Another dominant feature of the

helioseismic inferences is that variations in �
 are also clearly present at high latitudes, but

these are more erratic in character. There may also be some latitudinal angular-momentum

exchange, although this is may be weaker in view of the di�erence in the dominant periods

of oscillation. In any case, the larger variations in �
 at higher latitudes may re
ect the

lesser moment of inertia.

Our detection of temporal variations �
 near the base of the convection zone calls

for a continuation of helioseismic data as the solar cycle progresses. Our identi�cation of a
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probable period of 1.3 y at low latitudes is tentative, for the data now available extend over

less than four such cycles. We need to determine whether these are real periods or aperiodic

wobbles, and if are they present in the rising and waning phases of solar activity. We also

need to know what relation these variations deep in the sun have to the weak bands of zonal


ow detected within the outer 8% of the sun (12), which like the bands of magnetic activity,

appear at high latitudes and migrate towards the equator as the cycle proceeds.

The relatively strong �
 variations at a radius of 0.63R at the equator indicates that

the radiative interior is more dynamic than might otherwise have been expected. Although

the details of the motion in this region, apart from the oscillatory signal found here, are

as yet unclear, they may involve weak vertical transport. Such transport would a�ect the

chemical composition of the region beneath the convection zone. Interestingly, helioseismic

inversion for solar structure has revealed a sound-speed di�erence in this region which can

plausibly be interpreted as a result of partial mixing which partly counteracts the tendency

for helium to settle beneath the convection zone (13). Additional evidence for mixing comes

from the depletion of the photospheric lithium abundance by a factor of around 100, relative

to the meteoritic abundance (14): nuclear destruction of lithium requires temperatures about

20% higher than the temperature at the convection-zone base in models of the present sun.

Taking into account details of the mixing and the change with solar evolution in the depth of

the convection zone, mixing in the present sun must extend to a radius of about 0.64R (15).

Although the depth to which the time-varying 
ows found here extend into the radiative

interior is subject to some uncertainty due to the �nite resolution of the inversions, the

near coincidence of the two locations is remarkable. The detected variation of rotation

close to the presumed site of the solar dynamo may thus also have bearing on the chemical

composition realized within the convection zone.
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Fig. 1. Time averaged rotation rates 
=2� obtained from RLS inversion of GONG

frequency splittings, plotted against radius at di�erent latitudes. The tachocline is evident

near the base of the convection zone, which is determined to be at a radius of 0.713R (5).

Dashed lines represent 1-� error bounds for a single inversion.
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Fig. 2. Variation with time of the residuals �
=2� in rotation rate at radius 0.72R, for

the three latitudes of (A) 0� (equator), (B) 30�, (C) 60�, and similarly for radius 0.63R,

(D) 0�, (E) 30�, (F) 60�. The symbols denote the data-inversion pairings: GONG{RLS

(�lled circles, black), GONG{OLA (open circles, black), MDI{RLS (�lled triangles, red)

and MDI{OLA (open triangles, red).
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Fig. 3. Sinewave �tting in time of residuals �
=2� in rotation rate at the equator

determined from RLS inversion of GONG data. For each frequency �, a single sinewave of

variable phase [y = a1 cos(2��t) + a2 sin(2��t)] was �tted to the time series. (A) Variation

at equator of �
=2� at radius 0.72R, showing the best-�t sinusoid (0.78y�1) as a solid curve.

(B) Power spectrum [a2
1
+a

2

2
] of sinewave �ts; dashed lines show 1-� error bounds. (C) Power

at 0.78 y�1 frequency as a function of latitude at 0.72R. (D) Power at same frequency as a

function of radius at the equator.
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Fig. 4. Sinewave �tting results at latitude of 60� for RLS inversion of GONG data. The

notation is the same as in Fig. 3; the dominant frequency is 1.00 y�1.
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Fig. 5. (A) Contours of the averaging kernels K and (B) the normalized error-correlation

functions C, for OLA inversions of MDI data with target position at radius 0.72R at both

latitudes 0� (blue) and 60� (red). The equator is the horizontal axis and the pole the

vertical axis. (C) Equatorial cuts through averaging kernels K for solutions targeted at the

equator and 0.72R for di�erent pairings of dataset (MDI or GONG) and inversion method

(OLA or RLS): shown are MDI{RLS (solid red), MDI{OLA (green dashed), GONG{RLS

(solid black), and GONG{OLA (blue dashed). (D) Equatorial cuts through the normalized

error-correlation functions C for the same solution; the line styles are as in (C).
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