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Abstract

A partial reorthogonalization procedure (BPRO) for maintaining semi-orthogonality
among the left and right Lanczos vectors in the Lanczos bidiagonalization (LBD) is pre-
sented. The resulting algorithm is mathematically equivalent to the symmetric Lanczos
algorithm with partial reorthogonalization (PRO) developed by Simon, but works directly
on the Lanczos bidiagonalization of A. For computing the singular values and vectors of
a large sparse matrix with high accuracy, the BPRO algorithm uses only half the amount
of storage and a factor of 3—4 less work compared to methods based on PRO applied
to an equivalent symmetric system. Like PRO, the algorithm presented here is based
on simple recurrences, which enable it to monitor the loss of orthogonality among the
Lanczos vectors directly without forming inner products. These recurrences are used to
develop a Lanczos bidiagonalization algorithm with partial reorthogonalization, which has
been implemented in a MATLAB package for sparse SVD and eigenvalue problems called
PROPACK. Numerical experiments with the routines from PROPACK are conducted us-
ing a test problem from inverse helioseismology to illustrate the properties of the method.
In addition, a number of test matrices from the Harwell-Boeing collection are used to
compare the accuracy and efficiency of the MATLAB implementations of BPRO and
PRO with the svds routine in MATLAB 5.1, which uses an implicitly restarted Lanczos
algorithm.
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1 Introduction

“Iterative algorithms are delicate flowers.”
— V. A. Barker

Sah ein Knab’ ein Roslein stehn,
7 Rislein auf der Heiden.

War so jung und morgenschon,

Lief er schnell, es nah zu sehn,

Sah’s mit vielen Freuden.

Roslein, Roslein, Raslein rot,

Rislein auf der Heiden.

— Johann Wolfgang von Goethe

The Lanczos bidiagonalization, which is due to Golub and Kahan [26], and its block extension
has been used as the computational kernel in a number of methods, and has proved to be
an efficient tool for computing the singular value decomposition (SVD) of large and sparse
or structured matrices [4, 27, 16]. It is also widely used for solving large sparse linear least
squares problems, and it has been shown (cf. [7]) that methods based on the LBD, such as the
LSQR algorithm by Paige and Saunders [49], belong to the most stable iterative algorithms
for problems where the coefficient matrix is ill-conditioned. Moreover, LBD is used in a
number of regularization algorithms for the solution of discrete ill-posed problems, see e.g.
[5, 8, 11, 31, 42, 46]. Finally, the LBD is very useful for solving least squares problems with
multiple right-hand sides, see [41, 46].

Like the symmetric Lanczos process (e.g. [15, 51]), the Lanczos bidiagonalization is plagued
by the influence of rounding errors. When it is carried out in finite precision arithmetic this
leads to the loss of orthogonality among the Lanczos vectors and the appearance of spurious
singular values. The algorithm presented in this paper solves this problem by implementing
a compact variant of the partial reorthogonalization (PRO) scheme, developed by Simon [63]
for the symmetric Lanczos algorithm. It differs from Simon’s method by taking advantage of
the particular form of the recurrences in the Lanczos bidiagonalization and works directly on
the m x n matrix A without forming an equivalent symmetric system. This leads to a more
efficient algorithm, as discussed below.

It was demonstrated by Berry [4], that sparse SVD calculations based on the symmetric
Lanczos algorithm with PRO are among the most efficient methods for computing the largest
singular values and corresponding singular vectors of large sparse matrices. In SVDPACK,
the subroutine lanso routine from the LANSO! package developed by Parlett and co-workers,
is used to compute explicitly the eigenvalues of one of the symmetric matrices AT A, or

0 A
C= ( AT O) ’
from which the singular values of A can be found. However, working with AT A can lead to
poor accuracy of the computed singular values when A is ill-conditioned. This problem is

avoided by computing the eigenvalues of C, but unfortunately this significantly increases the
amount of storage and work required by the reorthogonalization, because Lanczos vectors of

'LANSO should not be confused with the LASO package also available from Netlib, which implements the
Selective reorthogonalization algorithm by Parlett and Scott [55].
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length m+n must be used. Also, the number iterations required to compute a given number of
singular values is doubled. More recently, methods based on the implicitly restarted Lanczos
algorithm have appeared (cf. [12, 65]). Various studies, see e.g. [23], indicate that these are
robust and efficient tools for computing a few of the largest singular values and vectors. Since
these methods are also developed with eigenvalue problems in mind, they too compute the
SVD by working explicitly with A7 A or C and consequently share the problems described
above with algorithms based on the symmetric Lanczos process.

The BPRO algorithm presented here is designed specifically with large sparse SVD calcu-
lations in mind, and by taking advantage of the special form of the recurrences in the LBD,
it is possible to combine good accuracy with the speed obtained by methods working with
AT A as will be demonstrated by the experiments reported in Section 7.

Parallel implementations of both the lanso subroutine (cf. [67]) and the ARPACK package
(cf. [43]), which implements the implicitly restarted Lanczos algorithms, are now available.
The routines in SVDPACK (cf. [4]), which build on an older sequential version of lanso are
available from Netlib. This software is freely available, and in Table 1 we have listed the
relevant Web addresses from where it may be downloaded.

Table 1: Awailable software for large sparse SVD computations.

PARPACK : http://www.caam.rice.edu/software/ARPACK
PLANSO : http://www.nersc.gov/research/SIMON/planso.html
SVDPACK : http://www.netlig.org/svdpack

The algorithms discussed in this paper, have been implemented in a MATLAB package
called PROPACK. The package is described in appendix B and is available from the author
upon request.

This paper is organized as follows: In Section 2 we describe the LBD algorithm, and
review how it may be used for SVD calculations and for solving linear least squares problems
in Sections 3 and 4. In Section 5 we discuss the behavior of LBD in finite precision arithmetic.
Following this, in Section 6 we show how a set of simple recurrences can be used for monitoring
the loss of orthogonality among the Lanczos vectors. A partial reorthogonalization algorithm
for the LBD process based on estimates of the level of orthogonality computed using these
recurrences is described. In Section 7 we illustrate the properties of the resulting algorithm,
by applying a MATLAB implementation of the algorithm to a number of test problems
from the Harwell-Boeing collection, in addition to a discrete ill-posed problem from inverse
helioseismology (see [62] for a general introduction), which was also used as a test problem in
[14, 36, 42]. We compare the accuracy of the computed results and the number of operations
with

e symmetric Lanczos and LBD with full reorthogonalization (FRO and BFRO),
e symmetric Lanczos with partial reorthogonalization (PRO),
e the eigs routine in MATLAB 5.1, which uses an implicitly restarted Lanczos algorithm,

e and the standard QR algorithm from the LINPACK routine -SVDC used by the svd
routine in MATLAB.
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1.1 Notation

In the following we will use uppercase Roman letters A, B, C, ... to denote matrices, lowercase
Roman letters z,v, z, ... will denote (column) vectors, and lowercase Greek letters «, 3,7, ...
are used for scalars. We use e; to denote the ¢th column of the identity matrix. The symbol
R™*™ will denote the set of matrices with m rows and n columns, and diag(o1,09,...,0,)
will denote the n x n diagonal matrix D = (d;j), di = o0;. For vectors we use ||z||, to denote
the p-norm ||z||, = (E(xi)p)l/p and for matrices || A||, will denote the induced matrix p-norm

A
41l = ma 1220
LT

In particular ||z||2 is the usual euclidian norm, and ||Al|s = o1(A) is the largest singular
value of A. We use Ay > Ao > --- > ), to denote the eigenvalues and o1 > g9 > --- >
opn the singular values of the matrix A. The following shorthand notation will be used to

denote the set of eigenvalues or singular values a matrix: A(A) = {A1,A2,..., A}, 0(4) =
{o1,09,...,0,}. Furthermore
T
/(z,y) = arccos Y
ll2llyl2

will denote the acute angle between non-zero vectors x and y, and

L(z,V) = uegﬁl(v) L(z,v)
the acute angle between the vector z and the subspace spanned by the columns of V. Finally
At = (AT A)~' AT will denote the More-Penrose pseudo-inverse of A.

When discussing effects of finite precision arithmetic fi(z) will denote machine number
closest to . Furthermore we use the symbol u to denote the unit of machine round-off, which
in IEEE double precision is 2% ~ 1.11-107'6, and the symbol ,, = nu/(1 — nu) introduced
by Higham in [37]. When discussing different variants of the Lanczos process with different
kinds of reorthogonalization we shall use the following abbreviations

LBD :  Lanczos bidiagonalization

FRO :  Symmetric Lanczos with full reorthogonalization

BFRO : Lanczos bidiagonalization with full reorthogonalization
PRO :  Symmetric Lanczos with Partial reorthogonalization
BPRO : Lanczos bidiagonalization with partial reorthogonalization,

where by “Symmetric Lanczos” we mean the original Lanczos algorithm from [40] for reducing
a symmetric matrix to tridiagonal form. The Lanczos bidiagonalization algorithm is defined
in the following section.

2 Lanczos bidiagonalization

We begin this section by stating the fundamental recurrences that define the Lanczos bidiag-
onalization. In the paragraphs below we describe in further detail how this iterative process
may be used in SVD calculations and for solving least squares problems. We use consistently
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throughout the paper the variant described by Paige and Saunders [49], which is the appro-
priate version for solving least squares problems (cf. [7]). For this reason, our formulas in
the section on SVD calculations differ slightly from the presentation in e.g. [29], however in
that context there are no differences in computational efficiency or accuracy between the two
forms.

For a rectangular m x n matrix A the Lanczos bidiagonalization computes a sequence of
Lanczos vectors u; € R™ and v; € R"™ and scalars a;; and §; for j = 1,2,...,k as follows:

1. Choose a starting vector pg € R™, and let
Br = |lpoll2, w1 =po/B1 and vo =0
2. for 5=1,2,...,k do
rj = ATuj — Bjvj
aj = [Irjll2
’Uj = rj/aj
pj = A’Uj — Qj Uy
Bj+1 = lIpjll2
uj+1 = pj/Bj+1
end

In the following we will refer to one passage through the for loop at 2. as a Lanczos step (or
an iteration). After k steps, we have generated the lower bidiagonal matrix

o
B2 s

(0773
Br+1

In exact arithmetic the Lanczos vectors are orthonormal such that
U1 = (u1,up, .. upyr) € RGN U Uy = Ty (2.2)

and
Vi = (’01,1)2,...,1%) G]RnXk . VkTVk =1, (2.3)

where Ij is the k x k identity matrix. By construction the columns of Uy, and Vj satisfy
the recurrences

T
Qv = A U; — ﬂj’Uj—l (2.4)
Bi+1uj+1 = Avj — aju; (2.5
and we can write this in a compact matrix form as

AV, = Ug41Bg (2.6)
ATUk_H = VkBkT—i-akHkaefH, (2.7)

which is illustrated in Figure 1.
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A Vi=|U|B

Figure 1: Lanczos bidiagonalization of A.

Since (2.6) can also be written UkTHAVk = By, we will refer to the columns of Uy, as
left Lanczos vectors and the columns of Vi as right Lanczos vectors. Moreover,

Upy1 € Kiy1(AAT uy) = {ul,AATul, o (AAT)kul}, (2.8)
vp € Ki(ATA,01) = {or, AT Avy,..., (AT Aoy} (2.9)
and therefore uj,us, ..., up+1 and v, v, ..., vx form an orthogonal basis for these two Krylov

subspaces.
In the following we discuss how the bidiagonalization can be used to calculate approxima-
tions to the singular values of A and to solve linear least squares problems.

3 The Lanczos algorithm and sparse SVD calculations

The Lanczos bidiagonalization of A is closely related to the original Lanczos process applied to
an equivalent symmetric matrix and below it is reviewed how this leads to an SVD algorithm
based on the recurrences described in the previous section. A similar presentation for the block
Lanczos bidiagonalization is given in [27]. Before we proceed, let us review some fundamental
results for the symmetric eigenvalue problem and the symmetric Lanczos process, which we
must apply to understand the properties of the Lanczos bidiagonalization.

3.1 Equivalent symmetric problems

The singular value decomposition of A is closely related to the Schur decomposition of the
symmetric matrices ATA € R™", AAT ¢ R™™ and

C= ( o g‘) € ROmtm)x(min) (3.1)

and these relations form the basis of any SVD algorithm:

Theorem 1 Let A be an m X n matriz and assume without loss of generality that m > n.
Let further the singular value decomposition of A be

UT AV = diag(oy,...,0n) - (3.2)

Then
VI(ATA)V = diag(o?,...,02) , (3.3)

rYn
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UT(AAT)U = diag(o?,...,02,0,...,0) . (3.4)

Moreover, if U is partitioned as

U= [ U, Uy |

n m-—-"n

then the orthonormal columns of the (m +n) x (m + n) matriz

1
v L (U1 Uy \/§U2> (3.5)
V2 \V =V 0
form an eigenvector basis for the matriz C defined in (3.1), and
YIcy = diag(oy,...,0n,—01,...,—0n,0,...,0) . (3.6)
—

m—n

Proof. The theorem follows immediately by substituting the SVD of A in (3.3), (3.4) and
(3.6) followed by application of (3.5) and the orthogonality of U and V. O

The theorem tells us, that we can obtain the singular values and vectors of A by computing
the eigenvalues and corresponding eigenvectors of one of the equivalent symmetric matrices.
This forms the basis of any SVD algorithm. As an example, the standard algorithm, which
in its original form is due to Golub and Kahan [26] and used in e.g. LAPACK, computes the
SVD by implicitly applying the QR algorithm for the symmetric eigenvalue problem to A” A.

3.2 Fundamental error analysis for SVD calculations

The fact that AT A is formed only implicitly is crucial to the numerical stability of the al-
gorithm. This is true for any SVD algorithm: Unless A has a very small condition number,
the rounding errors that occur when AT A is formed perturb the matrix such that we cannot
expect to determine the smallest singular values of the original matrix A from the small-
est eigenvalues of AT A with any accuracy. To state this more quantitatively, we regard the
forward error bound for matrix multiplication (see [37, Section 3.5]):

AATA) = ATA+ B, |Bl2 < 7 |AT[I2 |All2 < Yom - 0F (3.7)

where o is the largest singular value of A and ~,,, = mu/(1—mu) < 1.0lmu when mu < 0.01
(for IEEE double precision this holds as long as A has fewer than 4.5 - 10!? rows). Now,
perturbation theory for the symmetric eigenvalue problem (see e.g. [29, Sections 8.1, 8.3]) can
tell us how much the eigenvalues of fI(A” A) differ from those of AT A. The result, expressed
in terms of the singular values of A, is

67 —ofl <m-u-of (3.8)
where &;, i = 1,...,n are the eigenvalues of fI(AT A). This shows that no matter how accurate

the algorithm we subsequently use to calculate &;, we cannot hope to recover the smallest
singular values with high relative accuracy. Any information about the small singular values
has drowned in the rounding errors. The bound in (3.8) is rather difficult to interpret, since
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3
— 1=
= 2[1-x]
25r - = |1-x] b
1=
2K A
N s
N v
N s
N /
N s
1.5 \ , i
N s
N /
N ’
N s
N /
1< \\ // 7]
> N s PR
h ~ N s -
~ \ , ~
~ N s Phe
S \ / ~
0.5 ~ N / -~ i
~ N 2 -
~ X Z -
RGN / -
~ \ -
0 I I I | B I I I
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Figure 2: Illustration of the bounds on the relative error in &;. The value on the abscissa
represents © = &;/o0; in the expressions for the relative error bounds, so x =1 means that the

absolute error is zero.

it gives an expression for the error in 61-2 rather than ;. We can obtain a more useful bound
noting that both 6; and o; are both positive numbers, from which it follows that

s o L2 2 2
|0Z U’L' S |U’L 20Z | S m-u- % . (39)

The inequality is illustrated in Figure 2, where the expression on the left side of (3.9) is shown
as the dot-dashed, and the original bound given by the middle expression is shown as the
solid line. By the following argument:

(M)Q = ‘1_ﬂ S‘l—@ 1+ﬁ
lof Ior; lor of)

- 62 (2 -2

op; 0 0
|67 — of

= = ,
we get a different bound

Mgmlﬂ.\/ﬁ.ﬁ ’ (3.10)

g; g;

but this is even weaker than (3.9) except when the relative error is larger than 2, as shown
by the dotted line in Figure 2. The figure can however inspire us to find a slightly tighter
bound. The dashed line indicates that when &; > o; we can reduce the bound by a factor of

2: )
< 5
g; - 20'1-2

|6 — ail — o}

<05-m-u- (3.11)

EYEN
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Relative error IBI - G‘l / S,

I I I I I I I I I
0 10 20 30 40 50 60 70 80 90 100 i

Figure 3: Left panel: Singular values of the testmatrix HELIO212b. Right panel: Illustra-
tion of the error bounds. Diamonds show the relative error in singular values of test matriz
HELIO212b (see Section 7.8) computed as the eigenvalues of AT A using the eig routine in
MATLAB, and crosses the singular values computed directly from A using the svd routine in
MATLAB. The dotted, dashed and dot-dashed lines show the value predicted by error bounds
in (3.10), (3.13) and (3.9) and with m = 1, and the solid line shows the bound in (3.14) with
p(m,n) = 1.

To get a bound for 6; < o; we simply swap o; and &; in the inequality above (which corresponds
to replacing x by 1/z in the figure) to get

5: — 0y 52 _ g2 2
|O'ZA UZ' < |O'Z A2o'z‘ <0.5-m ‘u-% s for ¢;<o0;. (312)
G; 20; 0;
Now we can write the new bound in the compact form
6 — i &1
< 05-m-u- (3.13)

min(6;, 0;) min(6;,0;)?
The last inequality is not in the usual form of a forward error bound, since we bound the
error relative to the size of the computed quantity rather than the true value, but that is the
price we pay for the tighter bound. As can be seen in Figure 2, this is in fact the best linear
bound we can hope for.

This should be compared with the error bound for a backward stable method, which nearly
computes the exact SVD of a matrix A + E where ||E||2/||A|l2 < p(m,n)u, and p(m,n) is
some slowly growing function of m and n. In this situation we have that

|67 — il o1

- <p(m,n)-u- o (3.14)
see e.g. [2, Section 4.7, 4.9]. It follows from the error analysis of Paige [48] that the symmetric
Lanczos algorithm applied to C (and therefore also the LBD, as we shall see below) satisfy
bounds on this form.

The bounds and actual errors in the computed singular values of one the test-matrices
from Section 7.3 are illustrated in Figure 3.
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3.3 The Lanczos algorithm

For a large and sparse matrix the Golub-Kahan algorithm is impractical. The algorithm starts
out by applying a series of similarity transformations directly to A to reduce it to bidiagonal
form. Therefore it requires the matrix to be stored explicitly, which may be impossible simply
due to its size. Moreover, it may be difficult to take advantage of any structure or sparsity
in A, since this is quickly destroyed by the transformations that are applied to the matrix.

3.3.1 Approximate SVD using Lanczos on matrix C

When A is large and sparse or structured a more efficient method for computing the SVD
is to use the symmetric Lanczos process (see e.g. [15, 51]) applied to one of the equivalent
symmetric systems, since then the matrix is only accesses via matrix-vector products with
A and AT. If for example we apply the symmetric Lanczos process with starting vector

q1 = (u¥',0)T then after 2k steps we have reduced C to the special tridiagonal matrix

0 a7
ar 0 B
. . a
(877 0
The corresponding Lanczos vectors ¢; € R™*™, i = 1,...,2k computed in the process alter-

nate between two forms:
q2j—1 = (Uf,O)T y  Qoj = (O,UJT)T , j=1,...,k,

where u; € R™, v; € R", and in exact arithmetic «;, 3;, u; and v; are identical to the
corresponding quantities computed by the Lanczos bidiagonalization with starting vector u;.
Now the Lanczos tridiagonalization of C' can be written in terms of the matrices Qox4+1 =

(g1,92,- - -,qox) and Ty as the following relation
CQu = QopTop + Br+1q2k+1€5; (3.16)
u
= QoxTor + Brs1 ( k0+1) €3 ; (3.17)

which is illustrated in Figure 4.

As the number of iterations is increased, the eigenvalues 60;, ¢ = 1,...,2k of Ty, which
are the Ritz values of C with respect to the Krylov subspace span(Qag), will be increasingly
accurate approximations to the eigenvalues of C', and according to Theorem 1 the k£ non-
negative ones will be approximations to the largest singular values of A. The Ritz values are
found by computing the Schur decomposition of Ty:

Sg;CTQkSQk = diag(&l, - ,Hgk) s (318)

This can be done by using, e.g., the symmetric QR algorithm (see [29, 2], LAPACK routine
_STEQR), or bisection based on Sturm sequences followed by inverse iteration (see [3, 2],
LAPACK routines STEBZ and _STEIN). While the QR algorithm is usually the fastest for
computing all eigenvalues of a tridiagonal matrix, the latter approach has the advantage that
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Q2 | T | Q2k Tor,  + 0

AT 0

Figure 4: Lanczos tridiagonalization of C. The shaded vector on the right-hand side is
Br-+192k+1-

each eigenpair is computed independently, and therefore it is only necessary to compute the
part of the spectrum that is actually needed — in this case the positive eigenvalues. This saves
half the work and half the storage needed for the eigenvectors of T5.1, and also makes the
eigenvalue calculations easy to parallelize (see e.g. [18]).

The accuracy of the computed Ritz values may be estimated using the following result,
which is originally due to Paige [48]:

Theorem 2 Suppose 2k steps of the symmetric Lanczos process on C have been performed
and that the Schur decomposition of the tridiagonal matriz Ty is given by (3.18). Let the
matriz of Ritz vectors be

Yor = (U1, -, Yok) = QoxSoy € R(mMHn)x2k

then for i =1,...,2k we have

ICyi — Oiyill2 = |Brv1l |52k,il = Ewi (3.19)
where Sap = (spq)-

Proof. Postmultiply (3.17) by Sax to obtain

CYyy, = Yo diag(by,. .., 02%) + Br+1 (uk0+1) e Sk -

Postmultiplying once more by e; we obtain

u
Cyi — Oiyi = Br+1 ( k0+1> €3 Saxei -
The theorem follows by taking norms and noting that ||ugi1||2 = 1. O

Theorem 2 gives the following error bounds for the eigenvalue approximations

i — 0| < & 3.20
Mgl(ré)lu i| < ki (3.20)

(see, e.g. [29, Chapter 8)]).
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The Ritz vectors y;, © = 1,...,2k are approximations to the eigenvectors of C. Let
1; € R™ and 9; € R" be defined such that

(%Z):\/Eyza i=1,...,k,
Vs

then according to Theorem 1 4; and ¥; are the Ritz vectors of A with respect to the subspaces
K;j(AAT juq) and K;(AT A,v1), and thus provides us with approximations to the singular
vectors of A. For completeness, we list the perturbation result corresponding to Theorem 2
for the Ritz vectors:

Theorem 3 Let y; be a Ritz vector with corresponding Ritz value 0; as defined in Theorem 2
and let X be the eigenvalue of C closest to 0;, and let © be its normalized eigenvector. Define
the gap

v = min |A — 6] (3.21)
A£X
then o 0
sin / (g, 0) < UCY —Otillz _ & (3.22)
Yi Yi
Proof. See [51, Chapter 11]. O

The theorem shows that the convergence of a given Ritz vector is essentially like that of
the corresponding Ritz value, except when the latter is an approximation to an eigenvalue
which is in a cluster (this has nothing to do with the Lanczos algorithm being used, but
simply reflects a well-known result about the conditioning of eigenvectors in the symmetric
eigenvalue problem). We also mention that the gap-structure can be used to sharpen the
error estimates in Theorem 2 to )
min (Q’ Ekl) 3
Vi

see, e.g., [51, Section 13.2] and [53]. In our implementation of the BPRO algorithm described
below, we use these improved error estimates to reduce the necessary number of steps in
the Lanczos bidiagonalization. In the following, however, we shall not go further into these
technicalities, since they are essentially irrelevant to the issues discussed in this paper.

An important consequence of the discussion in the preceding paragraphs is that error
bounds can be computed cheaply by using Equation (3.20): The constant fx,1 can be found
by taking one extra step in the Lanczos process and soi; is the last row in So, which can be
found without generating the whole of So;. Thus one can simply save the Lanczos vectors
along the way and only when the convergence criterion has been fulfilled, does the entire Sy
need to be computed in order to calculate the Ritz vectors. This fact is mentioned in several
texts [5, 55, 51, 53] and involves a small computational trick, which is crucial to get an efficient
implementation: If the QR algorithm is used for computing 6;, then Sy, a product of the series
of orthogonal transformations G1, Ga, ... (plane rotations, or Householder reflectors) used to
diagonalize To:

Gl G5 G] Ty G1Gy - Gy = diag(61,...,02) ,  Sop = G1Ga-+-Gp .

In the process, Sox+1 is normally accumulated by starting with Is; and postmultiplying by G,
G etc. as they are generated. If instead we start with egk, we end up with egk G1Gy---G, =
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engQk = (S2k1,---, 82k 2k) Which is exactly the last row of So;. In the LANSO package, for
example, a modified version of subroutine TQL1 from EISPACK is used for this purpose. If
bisection is used to compute the Ritz values then the last row of Sy, may be computed after
the desired Ritz values have been found either by inverse iteration, or by using the following
formula from Paige [48]

Sori = X2b—1(0:) /X5 (6i)

where yor () is the characteristic polynomial of T5;, (Beware: The latter approach is unstable
if x and X’ are evaluated using the simple three-term recurrences; a stable implementation is
described by Parlett and Nour-Omid in [53, p. 206]). If the Lanczos bidiagonalization is used,
error estimates may be generated as a byproduct when calculating the singular values of By
(see below), e.g. using the bidiagonal SVD routine BDSQR from LAPACK. In any case, the
error bounds can be computed in O(k?) operations, which means that the convergence of the
Ritz values can be monitored during the iteration without too much overhead. For further
discussions see [53, 15].

We have not yet discussed how the Ritz values converge. This is a rather complicated
matter, which depends on the properties of the spectrum of A. Kaniel [39] and Paige [48] were
the first to give bounds on the rate of convergence of the Ritz values. These bounds, which
have later been improved by Saad [58], show that while we can expect rapid convergence of
the Ritz values approximating the extreme (the algebraically smallest and largest) eigenvalues
of C, the interior eigenvalues will in general converge more slowly. In [58, Theorem 2] Saad
proves the following result:

Theorem 4 Let B be a symmetric n X n matriz with eigenvalues Ay > Ao --- > A, and cor-
responding orthonormal eigenvectors z1,29,...,2n. If 81 > 02 > --- > 0y are the eigenvalues
of Ty, obtained after k steps of the Lanczos iteration with starting vector g1, then

0<XN—6; <(Ni— M) (ﬂ tan /(z; q1)>2 (3.23)
- - Pe—i(i) ’ ’
and the angle between z; and the Krylov subspace Ky, = (q1, Bqu, ..., B¥"1q1) satisfies
tan /(z;, Kg) < ﬂtan /(2 q1) (3.24)
T T Pei(n) T

where Py,_; is the (k — i)th Chebyshev polynomial and

K® = ﬁeﬂ_)‘" if i #1
N ’
j=1"J
K" = 1,
2(Ai — Aig1)
= 14+ —-—""7
L W

The Chebyshev polynomial P;, which satisfies the recurrence P;(y) = 2yPj_1(y) — Pj—2(7), is
bounded by unity on the interval [—1, 1], but grows exponentially in j outside. Thus provided
that |y;| > 1 the largest eigenvalues (where k — i is large) will converge rapidly. The rate
with which |)\; — ;| decays to zeros is also determined by the value of +;, which in turn
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depends on relative gap structure of the spectrum of B; if A; and A;y; are well separated, i.e.
if (A — Air1)/(Nix1 — Ap) is not too small, then we can expect 6; to converge rapidly, while
close eigenvalues will converge more slowly. By applying the theorem to —B we see that
the algebraically smallest eigenvalues will also converge rapidly, while we cannot obtain any
good bound on the eigenvalues in the interior part of the spectrum of B. For our matrix C
from (3.1), this means that the Ritz values approximating the large singular values of A will
converge rapidly, while the small singular values will converge more slowly, since they are in
the middle of the spectrum of C. For further details including the corresponding convergence
results for the Ritz vectors see, e.g., [58], [27] and [6, Section 7.6.4].

3.3.2 Connection to Lanczos bidiagonalization

After having reviewed the theoretical background for the symmetric Lanczos process and
its application in SVD calculations, let us return to discuss its connection with the Lanczos
bidiagonalization. If we perform an odd-even permutation of the rows and columns of

0 a1
a; 0 B
0 .
Top41 = & o )
. a
a0 Bry
Br+1 0
generated after 2k + 1 Lanczos steps on C, we obtain the matrix
0 By
BF o0 )"

Permuting the columns of @9k 11 accordingly, equation (3.17) can be written in the form

(0 A)(U,c+1 O)_(Uk+1 0)(0 Bk)+< 0 0) (3.25)
AT 0 0 W) Lo W/\BF o Qpi1Vkti€ryy 0) '

By equating the off-diagonal blocks on either side of the equation we arrive at (2.6) and (2.7),
which describe the LBD process. In other words, the LBD is simply a compact form of the
symmetric Lanczos process applied to C. Remembering the result from Theorem 1, this also
tells us that the eigenvalues of Th, 1 are simply +o(By) U {0}. The Ritz values and vectors
can be found cheaply by computing the SVD of the bidiagonal matrix By:

PTB,Q = diag(61,0o,...,6) ,
(3.26)
u; = Up; , 0; = Viq; -

The theorems describing error bounds and rates of convergence apply with minor modifica-
tions to the LBD, and in particular the error bounds in (3.20) become

min |u — 60;] < |agt1]|Gr+1il (3.27)
u€a(A)

where @i 1; are the elements in the last row of Q.
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AT A Vil= |Vl T + 0

Figure 5: Lanczos tridiagonalization of A7 A. The shaded vector on the right-hand side is
W41 P41 Vk41-

The LBD is also closely related to the symmetric Lanczos process applied to A7 A with
starting vector g1 = AT uq, since this leads to a Lanczos tridiagonalization on the form

(AT AV, = ViTk + i1 Bes1vepiel
which is illustrated in Figure 5. In exact arithmetic we have that
T = By By,
and if the Schur decomposition of Ty, is

gngSk = diag(él, e ,ék) ,

A

then (8;)Y/2, i = 1,...,k will be approximations to the k largest singular values of A and
the Ritz vectors Vi §;, 1 = 1,...,k will be approximations to the corresponding right singular
vectors v; of A. If this approach is used, the left singular vectors u; can subsequently be
computed from the identity

Av; = oju; .

It should be obvious from the discussion above that a sparse SVD program, which applies
the symmetric Lanczos algorithm as a “black box” procedure to find the eigenvalues of C'
wastes a lot of resources manipulating the extra zeroes in the Lanczos vectors, while the LBD
takes advantage of the special structure of C' and the Lanczos vectors ¢, i.e. i) avoids to store
the zero-parts of g;, and i) exploits that even- and odd-numbered Lanczos vectors are exactly
orthogonal. This is especially important when using full or partial reorthogonalization, be-
cause here all the saved Lanczos vectors have to be manipulated in each step. In Table 2 we
have listed the amount of storage used for the Lanczos vectors and the number of operations
required by the reorthogonalization when computing approximations to the k largest singu-
lar values by means of either LBD with full reorthogonalization (BFRO) or the symmetric
Lanczos algorithm with full reorthogonalization (FRO) on an equivalent symmetric matrix
(we return to discuss reorthogonalization in Section 5.2). From the table one would expect

Table 2: Words of storage and number of floating point operations used by different Lanczos
algorithms with full reorthogonalization.

Storage ~ Work in reorth.
FRO(AT A) kn 2k*n
FRO(C) 2k(m +n) 8k?(m + n)
BFRO(4)  k(m+n) 2k?(m +n).

FRO(AT A) to be twice as fast as BFRO(A) which would in turn be four times as fast as
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FRO(C) when m = n. As we shall see in Section 7.2, this picture is changed when partial
reorthogonalization is used, since in that case BPRO(A) and PRO(AT A) do approximately
the same amount of work when m = n and both algorithms are about 3-4 times faster than
PRO(C). This phenomenon, which is confirmed by our experiments with testmatrices from
the Harwell-Boeing collection, is a result of the squaring of the singular values that occur
when forming A” A, which makes it necessary to reorthogonalize more frequently.

4 Sparse least squares

The cloud-capp’d towers, the gorgeous palaces,
The solemn temples, the great globe itself,

Ye all which it inherit, shall dissolve

And, like this insubstantial pageant faded,
Leave not a rack behind. We are such stuff
As dreams are made on, and our little life

Is rounded with a sleep.

— W. Shakespeare, from “The Tempest”

The Lanczos bidiagonalization described in Section 2 can also be applied to solving sparse
linear least squares problems

min|[Az —blla, A€R™", zeR', beR™, (4.1)

where m > n. Below we review the fundamental relations used to implement some frequently
used methods, including the LSQR algorithm by Paige and Saunders [49, 50] and the hy-
brid algorithm based on Lanczos bidiagonalization which was discovered independently by
Bjorck [5] and O’Leary and Simmons [46]. The latter is especially used in connection with
regularization of ill-posed systems and for solving systems with many right-hand sides. The
LSQR algorithm is usually carried out without reorthogonalization, but the convergence can
be slowed down significantly by the loss of orthogonality. In the hybrid algorithm it is neces-
sary to reorthogonalize to maintain stability when solving systems with many right-hand sides
or when generalized cross-validation [25] is used for choosing the amount of regularization in
connection with the solution of ill-posed problems. Both the simple GCV formula used in,
e.g., [5], and the more advanced scheme based on implicit restarts proposed in [8] require that
Vi and Uy, are kept orthogonal. However, the algorithm from a more recent paper by Golub
and von Matt [30], computes an approximation to the minimizer of the GCV function using
LBD with no reorthogonalization. Golub and von Matt’s algorithm uses the fact that the
GCYV function can be written as a matrix-moment and applies the theory of matrix-moments
and Gauss-quadrature to compute upper and lower bounds on the GCV function. The algo-
rithm terminates whenever the minimizer of the upper and lower bounds coincide within a
preselected tolerance. However, as for LSQR, the convergence could be speeded up by the
use of (partial) reorthogonalization.

Returning to the case when reorthogonalization is needed, the question arises how to
implement it efficiently. In order to use, e.g., the symmetric Lanczos algorithm with partial
reorthogonalization (PRO), one would have to work in terms of an equivalent symmetric
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system. This can be done by solving the augmented system

(ar 0) ()= (2)

which unfortunately requires unnecessary work and storage since Lanczos vectors of length
m~+n should be stored and orthogonalized. The alternative is to resort to solving the normal
equations

ATAz=A"p
but that would greatly reduce the accuracy in the solution when the system is ill-posed
as demonstrated in [49, 7]. In contrast, the BPRO algorithm described in Section 6 can be
incorporated directly into the algorithms mentioned above while preserving the compact form

of the LBD recurrences and without having to sacrifice numerical stability by resorting to the
normal equations.

4.1 Least squares solvers based on LBD

We will now describe how the linear least squares problem in Equation (4.1) may be solved
using LBD (our presentation is based on section 7.6.2 in [6]). If we take the starting vector
po equal to b then the recurrence relations (2.6) and (2.7) can be written

Uk+1(Bre1) =,
(4.2)
AVi = Ugy1 By, AT Up1 = Vi Bl + appy1vp1€f 4 -

We seek the vector zj in K (AT A, AT b) = span(V},) that minimizes |4 x — b||2. The solution
can be written in the form
zr=Viyk, yk€RF,

and substituting this into (4.1) and applying (4.2) we obtain

= min ||[Ug1(Bry — Bren) |2 (4.3)
yeER

Using the orthogonality of Uy, it follows that ||Azy — b||2 is minimized in K by choosing
yr, to be the solution to the least squares problem

min || By y — Bredlfz -

yeR
The LSQR algorithm by Paige and Saunders [49] is based on the relations described above,
and is constructed in such a way that xj, is updated recursively from x;_; without ever forming
yr- Most importantly, this makes the storage requirements of the algorithm small since it is
no longer necessary to save the LAnczos vectors in Vi and Uj. In finite precision arithmetic
the relations in (4.2) continue to hold with good accuracy, and the problem of minimizing
|Az — b||2 over span(V}) is still almost equivalent to minimizing || By yx — B1e1]/2. However,
the rate of convergence can be slowed down quite significantly due to the unavoidable loss of
orthogonality, see [36, Section 6.4] for a detailed explanation. The stability of LSQR hinges
on the special choice of starting vector py = b that ensures the relation U1 61e1 = b to hold.
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If a different starting vector is used we are forced to compute the solution as =y = Vj yg,
where y;, is found by solving the least squares problem

min || Bry — Ujl1 bll2 -

yER

The solution computed this way will no longer posses the minimizing property in Equation
(4.3) and will furthermore be contaminated by round-off errors. This problem is solved by
using reorthogonalization, which also speeds up convergence since no iterations are wasted on
deflating components corresponding to extra copies of the Ritz values from the residual (see
the discussion of “doppelgdnger” singular values in Section 5).

4.2 Algorithms for problems with multiple right-hand sides

In a number of applications one cannot live with the loss of orthogonality, and some form of
reorthogonalization must be applied. One example is when LBD is used to solve sparse linear
least squares problems with multiple right-hand sides

min ||[Az® — @y, i=1,...,N, (4.4)

which arise, e.g., when implementing the so-called SOLA mollifier method used in helioseismic
inversion (see [56, 42]). A straightforward solution would be to apply the LSQR algorithm to
each system independently, but often the following procedure (which was analyzed by Saad
[59] in the context of (square) linear systems) is more efficient:

1. Solve the first system by computing k steps of the LBD with starting vector AON

2. Project the remaining systems onto the generated Krylov subspaces to form the approx-
imate solutions . _
2 =V i=2,.. N (4.5)

where y,(ci) solves the least squares problem

min || Bry — Ui 5o - (4.6)
yER

After the approximate solutions have been computed, one can select the residual of one of
the unconverged systems as a new starting vector for the LBD and repeat steps 1. and 2.,
and repeat this process until all systems have converged. Another possibility is to terminate
this process after a few repetitions and use the approximate solutions as starting guesses to
an ordinary iterative least squares solver such as LSQR, which is then applied independently
(and possibly in parallel) to each of the unconverged systems. Notice that once the LBD
has been computed, the approximate solutions can be found in step 2. without accessing the
original matrix A.

(4)

When reorthogonalization is used z;’ minimizes the residual of the ith system over the

generated Krylov subspace Ky (AT A, AT b)), so a:,(cl) is almost identical to the solution ob-
tained after k steps of the LSQR algorithm in exact arithmetic. The accuracy of the approxi-
mate solutions a:g) , 1 =,2,...,N computed via (4.5) and (4.6) depends on the distance from
b to span(Ug1). If we decompose b(®) into orthogonal components

bl = Upp Uk, b € span(Ugy1) and bt = (b9 —bll) L span(Upyq) ,
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then it follows that . . .
1Az — @13 = |4z —bll|Z + |13 (4.7)

since we know from (4.2) and (4.5) that Aa:g) = Uk+1Bky,(:) € span(Ug41). Now the speed of
convergence depends on the size of the two term. Let us follow Saad [59] and first consider
the two extreme cases. If b(*) is in span(Uy, 1) then the second term on the right-hand side
in (4.7) vanishes, and the method provides an accurate approximation. Typically, the size of
the first term is “small”, i.e. of the same order as the residual norm obtained after k steps of
LSQR with starting vector b). In the other extreme when b is orthogonal to span(U.1)
(and therefore orthogonal to b(1)) then it follows from (4.7) that () = 0, i.e. the projection
did not improve the solution of system 3. )

In practice ||b||o will be small compared to ||A azgcZ —bll||5 as long as the remaining right-

(4)

hand sides b are not too different from b1 and consequently z,” will converge almost
as rapidly as xg). This will for instance often be the case for discrete ill-posed problems
when the right-hand sides satisfy the discrete Picard criterion (see [35]). In this case the
vectors b® will be dominated by components lying in a subspace spanned by the singular
vectors corresponding to the largest singular values. In many applications the dimensions
of the dominant subspace (often called the signal subspace) is usually small compared to the
dimension of the problem. In this case, the Lanczos bidiagonalization with starting vector b(!)
will generate Krylov subspaces that are also close to optimal for the systems corresponding to
the remaining right-hand sides. Hence, even ||b*||2 is not negligible it will often be dominated
by noise components which should be removed by the regularization anyway.

When the right-hand sides are not too different, the approach just described is much
cheaper in terms of matrix-vector multiplications than naively applying LSQR to the p sys-
tems one at a time. However, as already mentioned, it requires that Vi and Uy, are kept
orthogonal if the solutions computed using (4.5) and (4.6) are to have the minimizing property.
The relative cost of reorthogonalization and matrix-vector multiplication determines which
approach is the more efficient in practice. A more quantitative description of the convergence
properties including bounds on the residual norms ||Aw,(;) —bD|y, i=1,...,N after k steps
can be derived from the results in [59].

There are a number of alternative ways to implement the bidiagonalization-projection
process outlined above. In a future paper we intend to investigate the possibility of gen-
eralizing a number of the algorithms developed for solving symmetric systems of equations
with multiple right-hand sides to the least squares case. These methods include the modified
Lanczos process discovered by Parlett in [52] and analyzed by Saad in [59].

One such algorithm, which we have started investigating, is a generalization of the Lanczos-
Galerkin projection method described in [13, 66]. This algorithm, which we will refer to as
MCG (Multi-CG) in the following, applies the conjugate gradient algorithm to construct a
sequence of Krylov subspaces. The same idea can be applied to the CGLS algorithm (e.g. [6,
Section 7.4]) to obtain a stable Lanczos-Galerkin projection method for solving least squares
problems with multiple right-hand sides. The resulting algorithm, which we call MCGLS
(or Multi-CGLS) has the advantage that it does not require any reorthogonalization. The
algorithm generates a pair of Krylov subspaces from the set of (search) direction vectors
obtained by solving the system corresponding to b(!), called the seed system, using the CGLS
algorithm. Then it projects the residuals @ =p) — Ag(®) =2 ... N of the other systems
orthogonally onto the generated Krylov subspaces to get the approximate solutions. The
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projections can be computed cheaply and involve only a single inner product and two vector
updates per right-hand-side per iteration. The operations on each of the remaining right-hand
sides can furthermore be executed completely in parallel.

The MCGLS algorithm takes the following form:

for k=1,2,...,N do
r(()k) = pk) — A:cgk)

end

for k=1,2,...,N
Select the kth system as seed:
po = so = ATr{"

% = [Isoll3

for 1 =0,1,2,... while v; > tol do
Take a CGLS step:

9 = Ap;

o = i/ Ilg;'II%

i
Tigp =T~ — Qg

Sitl = ATTZ(—IT—)I

Vi1 = [|siv1l13

Bi = Yit1/i

Pi+1 = Sit1 + Bipi

Perform Galerkin projection:

for j=k+1,k+2,...,N do (each remaining unsolved RHS)

nj = ai/% (o)
a:((f) = -T(()J) + njpi
7"(()j) = TOJ — N4
end
end
end

Notice, that as in the CGLS steps executed for the seed system, the true residuals for
the non-seed systems are also recurred directly, and hence no serious loss of information (see
the discussion in [7]) occurs in the projection phase. Since this is the key to the stability
of CGLS we suspect the algorithm to be able to be solve all the systems just as accurately
as by applying CGLS to each system independently. This will also be the topic of future
investigations.

The MCGLS algorithm also has a block (multi-seed) generalization, based on the block
conjugate gradient algorithm by O’Leary [45] applied to the normal equations. Chan and Wan
discuss a similar block-MCG algorithm, and show that it can be superior to the single-seed
version in terms of convergence rate when solving linear systems with multiple right-hand
sides. However, as the original block-CG algorithm it is liable to so-called breakdowns (see,
e.g., [10]), and convergence cannot be guaranteed even when the matrix is well-conditioned
(something which we have also observed on a few occasions for block-MCGLS).

With respect to solving ill-posed problems, it is interesting (but not surprising) that by
applying Lemma 3.2 from the paper by Chan and Wan [13] to the normal equations, it can
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Filter factors for seed system Filter factors for non-seed system

Filter factors
Filter factors

I I I I I I I I I I I I I
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Component number i Component number i

Figure 6: Filter factors in the MCGLS algorithm. Left panel shows the filter factors for the
seed system with (crosses) and without (circles) reorthogonalization. The right panel shows
the filter factors for a non-seed system.

be shown that the approximate solutions to the non-seed systems are essentially spanned by
the singular vectors corresponding to the largest singular values. Hence the method has an
intrinsic regularizing effect, which is also confirmed by our preliminary investigations. This
is illustrated in Figure 6 where we have executed the MCGLS algorithm shown above for 50
iteration on a least-squares problem with multiple right-hand sides that arises in the so-called
SOLA method used in helioseismic inversion (see [42]); the coefficient matrix is in fact the
testmatrix HELIO212b used elsewhere in this report. The figure illustrates the so-called filter
factors f; for the seed system (left panel) and the first non-seed system, and they show how
the different SVD-components contribute to the solution:

uin(i)

:L'](;):Zfz Vi,

i—1 i

see [36] for a further discussions of filter factors and the regularizing effect of the CGLS al-
gorithm. In the figure, circles show the filter factors for MCGLS without reorthogonalization
and crosses show filter factors when reorthogonalization is used; in CGLS the reorthogo-
nalization can be implemented by keeping the residual vectors, s;, of the normal equations
orthogonal using one of the methods discussed in Section 5.2 (it should be straightforward to
derive a partial reorthogonalization scheme, which is tailored specifically for (M)CGLS, using
techniques similar to those in Section 6 — more future work!). Without reorthogonalization,
the behavior is a little erratic and it remains to be seen if the regularized solutions for the
non-seed systems computed thus are acceptable in general. We have made a few experi-
ments with systems arising in large-scale 2-dimensional helioseismic rotational inversions (see
e.g. [61, 41]), which seem to indicate that the computed solutions are quite acceptable, but
many extra iterations are required for systems where the right-hand side looks very different
from b) when no reorthogonalization is used. This is also what one would expect from the
discussion above.

It is our general impression that while methods for solving linear systems with multiple
right-hand sides have received some attention in (cf. [63, 59, 52, 66, 13]), the questions
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discussed in this section in relation to the solution of sparse linear least squares problems
with multiple right-hand sides have received little attention so far, maybe except for a few
remarks in [5, 46].

5 Lanczos bidiagonalization in finite precision arithmetic

Knabe sprach: Ich breche dich,
Roslein auf der Heiden!
Roslein sprach: Ich steche dich,
Dajf$ du ewig denkst an mich,
Und ich will’s nicht leiden.
Roslein, Roslein, Roslein rot,
Rislein auf der Heiden.

When the Lanczos bidiagonalization is carried out in finite precision arithmetic Equations
(2.4) and (2.5), which describe the central steps in the computation, become

ajv; = Aluj—Bjvi 1+ fj, (5.1)

Biyiujrr = Avj—ozui+gj,

where f; € R"™ and g; € R™ are error vectors accounting for the rounding errors at the
jth step (from now on u, v, @, B and so on, will refer to the computed quantities). Usually
the rounding terms are small, so after k steps (2.6) and (2.7) still hold to almost machine
accuracy. In contrast, the orthogonality among the left and right Lanczos vectors is gradually
lost such that equations (2.2) and (2.3) no longer hold.

The loss of orthogonality goes hand in hand with the convergence of Ritz pairs in a very
systematic way: A now famous result by Paige [48] shows that after 2k steps, say, of the
symmetric Lanczos process, the newly generated Lanczos vector gor41 satisfies the following
relation (using the notation of Theorem 2):

uf|Cll

T
D1 ¥il B -
g2kl 13 o]

If we recall Equation (3.19)

|ICyi — Oyill2 = |Br+1l|52k,4l

and Equation (3.20), which describe the error in the Ritz value approximation corresponding
to y;, this can be interpreted in the following way: As a result of rounding errors the generated
Lanczos vectors tend to have unwanted large components in the direction of any converged
Ritz vector.

Another remarkable feature of the Lanczos algorithm is that the accuracy of the converged
Ritz values is not affected by the loss of orthogonality, but while the large singular values of By
are still accurate approximations to the large singular values of A, the spectrum of By will in
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Ritz values in the Lanczos process, no reorthogonalization Ritz values in the Lanczos process, full reorthogonalization
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Figure 7: Illustration of the convergence of Ritz values in the Lanczos bidiagonalization process
in finite precision arithmetic. Horizontal lines indicate the true values of the singular values
and circles show the Ritz values 91(]6) = 0i(Bx). The lower and upper panel show the behavior
with and without reorthogonalization respectively.

addition contain false multiple copies of converged Ritz values, which we will call doppelganger
singular values in the following; this happens even if the corresponding true singular value
of A is isolated. Moreover, spurious singular values, so-called ghosts, periodically appear
between the already converged Ritz values.

To illustrate the effect of finite precision arithmetic on the convergence properties, we
have used the Lanczos bidiagonalization to compute approximations to the 5 largest singular
values of testmatrix HELIO212b with a relative error of 10712 (error estimates were computed
using (3.20)). The results are illustrated in Figure 7, where horizontal lines indicate the value
of the true singular values and circles show the Ritz value approximation obtained after each
iteration. Circles marking the same Ritz value ng) at different iterations & = 1,2,... have
been connected by dashed lines to show how doppelganger and ghost values that lie between
the true singular values occur during the iteration. The ghosts, marked by a filled circle, were
detected using to the criterion mentioned in Section 5.1 below.

In the left panel, which shows the behavior without reorthogonalization, we see the in-
teresting phenomenon that some of the converged Ritz values suddenly “jump” to become a
ghost and then converge to the next larger singular value after a few iterations. One example
is 03 (the fat line), which first converges to o3 at k = 8. Then at k = 10 it suddenly jumps
to become an approximation to o9, becomes spurious again at k = 19 and eventually settles
as the second doppelginger of o1 at kK = 22. In this process, many iterations are wasted on
computing false copies of the extreme singular values and for this reason 26 iterations are
needed to achieve convergence while in the right panel, where full reorthogonalization was
used, only 21 iterations was needed. With reorthogonalization the convergence behavior is
also much simpler; it can be shown that only one Ritz value converges to any given singular
value of A and no ghosts appear. Notice in both panels how the overall pattern shows the well
separated extreme Ritz values converging most rapidly as predicted by Theorem 4. We refer
to [15, 55, 51, 64], where effects of finite precision arithmetic are discussed in great detail.
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5.1 Lanczos algorithms with no reorthogonalization

Du Doppelganger, du bleicher Geselle!
Was dffst du nach mein Liebesleid,
das mich gequdlt auf dieser Stelle

so manche Nacht, in alter Zeit?

— Heinrich Heine

A
X

There exist two different “schools” with respect to what should be done to obtain a robust
method in finite precision arithmetic. One approach which has been advocated by Paige,
Cullum and Willoughby, among others, is to apply the simple Lanczos process as it is, and
subsequently use some criterion to weed out the ghost and doppelganger eigenvalues. The
criterion used in [15] for the symmetric Lanczos process, is based on the curious fact that the
spurious eigenvalues of T 1 are nearly eigenvalues of T, which is the matrix Th41 with the
first row and the first column removed. The procedure is to remove eigenvalues \; where

min |\; — p] < tol
HEXNT)

For the Lanczos bidiagonalization this corresponds to removing those those singular values of
By, which are close to a singular value of the upper bidiagonal matrix

B2 o

B3

&
Il

ag
Br+1

which is simply By with the first row removed.

The advantage of this approach is that it completely avoids the extra work associated
with the reorthogonalization schemes described below, and the storage requirements are very
low since only a few of the latest Lanczos vectors have to be remembered. The disadvantage
is that many iterations are wasted on simply generating multiple copies of the large Ritz
values, or as Parlett puts it in [51, pp. 262]: “Its fault is in not quitting while it is ahead
because it continues to compute many redundant copies of each Ritz pair”. The number
of extra iterations required compared to executing the Lanczos process in exact arithmetic
can be very large. Up to six times the original number has been reported in e.g. [54]. This
is in agreement with our own experiences from solving highly ill-conditioned problems in
inverse helioseismology [41] using algorithms based on Lanczos bidiagonalization. Here many
iterations are also wasted generating multiple copies of a few large isolated singular values,
and a reduction in the number of iterations between a factor of 5 and 10 is typically observed
when using reorthogonalization. Another disadvantage is that the criterion mentioned above
can be rather difficult to implement, and its success depends on the correct choice of various
tolerance parameters involved.
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N | k (no reorth.) | k (full reorth.)

5 26 21
10 40 30
20 61 38
40 113 46
45 223 51

The large number of extra iterations required is illustrated in the table above, where we
have listed the number of iterations k required to compute N singular values of HELIO212b
with and without reorthogonalization. As long as only a few of the extreme singular values
are required, the overhead is not very large. But the larger N the larger the overhead: As
can be seen in Figure 3, the singular values start to drop off quickly at ¢ =~ 40, and it turns
out that the number of “wasted” iteration increases dramatically when /V is increased beyond
this point as is clearly seen in the table above; with reorthogonalization this behavior is not
seen.

5.2 Stabilizing Lanczos using reorthogonalization

A different way of “stabilizing” the simple Lanczos bidiagonalization process is to enforce
orthogonality among the Lanczos vectors by applying some reorthogonalization scheme. The
simplest is to use full reorthogonalization (FRO) where each new Lanczos vector u;; is or-
thogonalized against all previous u;, ¢ = 1,...,j using, e.g., the Modified Gram-Schmidt
algorithm (and similarly for the right Lanczos vector v;). With this modification, the LBD
algorithm becomes:

1. Choose a starting vector pg € R™, and let
B1 = |lpoll2, w1 =po/B1 and vy =0
2. for j=1,2,... do
T = ATUj — ﬁjvj_l
fori=1,...,7—1do
rj =rj — (v 5)vi

a5 = Iry

vj =i/

pj = Avj — aju;

for:=1,...,7do

pj = pj — (uf pj)ui
Bj+1 = lpjll2
uj41 = pj/Bj+1
end

This is usually considered too expensive for large problems where the additional O(4(m +
n)k?) operations required by the reorthogonalization quickly dominate the execution time,
unless the necessary number of iterations k is very small compared to the dimensions of
the problem. The storage requirements of FRO may also be a limiting factor, since all
the generated Lanczos vectors have to be saved. Moreover, when new Lanczos vectors are
reorthogonalized the program sweeps through all the previous ones. When solving large
problems, the Lanczos vectors typically require too much storage to fit in fast (cache-) memory
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and must be recalled from either main memory or secondary storage in every iteration. This
will cause the performance of FRO to be poor on machines with a memory hierarchy.

An alternative implementation of reorthogonalization was developed by Golub, Under-
wood and Wilkinson [28], who suggested that Ug,; and V) be represented as a product of
Householder reflectors. If the reflectors are accumulated as so-called block reflectors (see
[60]), this is probably the most efficient way of implementing full reorthogonalization. How-
ever, this representation is not possible in connection with the partial reorthogonalization
schemes treated in the remaining part of this paper, and we will not discuss the Householder
approach any further.

For the symmetric Lanczos method, a number of different schemes for reducing the work
associated with keeping the Lanczos vectors orthogonal have been developed by B. N. Parlett
and co-workers at the University of California at Berkeley, see e.g. [55, 63]. The goal of these
methods is to cut down the number of orthogonalizations yet obtain a Lanczos algorithm
that computes a result, which is close to what would have been computed in the absence of
rounding errors.

If we define the level of orthogonality «} (x7) among the left (right) Lanczos vectors at
the jth step as

;= 141951 \uJTu1| ’ Ky = 1951 |va1;¢| (5:3)
then full reorthogonalization keeps % and «j at the level of the machine round-off u. All
this work is not necessary. It was found in [55, 51, 64] that it is sufficient to maintain
semiorthogonality, that is to keep £} and «j below /u /k, to obtain accurate approximations
to the singular values and avoid ghosts and doppelgingers from appearing.

Theorem 5 Let By be the bidiagonal matriz computed after k steps of the Lanczos bidiago-
nalization algorithm where the Lanczos vectors are kept semiorthogonal. If

u .

K';'La K;JS Ea fO’I" 1SJSka
and the columns of Uk+1 form an orthonormal basis for span(Ugy1), and the columns of Vi
form an orthonormal basis for span(Vy), then

0,CT+1AI7,€ = By + E, (5.4)
where the elements of Ey are of order O(uAl2).

Proof. Since the Lanczos bidiagonalization is equivalent to applying the symmetric Lanczos
algorithm to the symmetric matrix C in (3.1), the result follows directly from [64, Theorem
4]. O

The theorem says that if the Lanczos vectors are just kept semiorthogonal, then the com-
puted By is up to roundoff the Ritz-Galerkin projection of A on the subspaces span(Uy,1) and
span(Vy). The subspaces are different from the optimal ones computed in exact arithmetic,
but in practice that has not been observed to affect the convergence or final accuracy of the
Ritz-values.
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6 A Partial Reorthogonalization algorithm for LBD

Und der wilde Knabe brach

’s Roslein auf der Heiden;
Roslein wehrte sich und stach,
Half ihm doch kein Weh und Ach,
Muft’ es eben leiden.

Roslein, Rdslein, Réslein rot,
Rislein auf der Heiden.

The central idea in partial reorthogonalization is that the level of orthogonality among the
Lanczos vectors satisfies a recurrence relation that can be derived from the recurrence used
to generate the vectors themselves. This was already shown by Paige in his pioneering thesis
[48]. It was Simon [63, 64], however, who realized that these recurrences can be used as a
practical tool for computing estimates of the level of orthogonality in an efficient way, and
devised scheme by which this information can be used to decide when to reorthogonalize, and
which Lanczos vectors it is necessary to include in the reorthogonalization.

Below we present a result, which introduces the LBD equivalent of the w-recurrence derived
by Simon in [63] for the symmetric Lanczos process:

Theorem 6 Let pj; = ulu; and vji = vFv;. Then wji and vj; satisfy the following coupled

j J
recurrences.
Bivikitii = Qi+ Bivji1 — ajpgi +ui gj — o] fi, '
fO’f‘]_ <1<y, andui0507
viie = 1, Jor 1<i<j, (62)
ajvji = Binipji + eipgi — Bivj—ii —uf g + o] f '
for1<i<j—1, and v;p = 0.
Proof. Write (5.2) and (5.1) for j and ¢ to obtain
ﬂj+1uj+1 = Avj — QUj + gj (6.3)
Bit1ui+1 = Avi — qui + gi -
and
;v = ATUj — ﬁjvj_l + fj (6.5)
o = AT — Bivis + fi (6.6)

Premultiply (6.4) by uJT, subtract this from (6.5) premultiplied by v}, and simplify to obtain
(6.2). Similarly, subtract (6.6) premultiplied by va from (6.3) premultiplied by u!, and sim-
plify to obtain (6.1). O
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We now give a general outline of BPRO. In light of Theorem 5 it will be sufficient to
reorthogonalize the Lanczos vectors whenever k7., or xj exceeds 1/ u/k. We cannot check
this condition directly without forming inner products of the latest Lanczos vector with all
previous ones, and this involves almost the same amount of work as full reorthogonalization.
However, Theorem 6 says that the inner products u! u;11 and v} v; are simply linear combi-
nations of inner products from the previous Lanczos step, and therefore updating estimates
tj+1,; and vj; from one step to the next only involves manipulating two vectors of length j+1
and j respectively. These estimates can then be used to determine when and against which
of the previous Lanczos vectors to reorthogonalize. The resulting algorithm BPRO takes the
following form:

1.  Choose a starting vector pg € R™, and let
B1 = llpoll2, u1=po/B1 and vy =0
2. forj=1,2,...,k
rj = ATu; — Bjvj
2.1a Update Vi1, = Vji , 1= 1, Ce ,j —1
2.1b Determine a set of indices £] C {i[1 <i<j—1}
for i € L7
rj =1 — (v] 75) i
Reset v;; to O(u)

end
aj = Irll2
vj =rj/ey

pj = Avj — aju;

2.2a Update pj; = pjt1,i, 1=1,...,]

2.2b Determine a set of indices E;H C{i|1<i<j}
for i € E;-‘H

pj = p; — (u] pj)ui

Reset pj4+1, to O(u)

end
Bit1 = lIpjll2
uj1 = pi/Bis

end

The outline above is still far from a full algorithmic description of the method. In the two
paragraphs below we discuss the details involved in implementing steps 2.1a, 2.1b, 2.2a and
2.2b, which are crucial to turn BPRO into a robust and efficient algorithm.

6.1 Tracking the loss of orthogonality

In steps 2.1a and 2.2a, we intend to use equations (6.1) and (6.2) to update the estimates
Kj+1,4 and vj; from their values in the previous Lanczos step (in the following p and v will
refer to the estimates computed using the updating rules above and not their Platonic images
used in Theorem 6). To do this we need an estimate of the size of the round-off terms on the
form u;frgj — v;‘.r fi- In practice f; and g; are unknown, but we can give an upper bound on
their size based on the forward error bound for the matrix-vector multiplication. From (5.2)
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and (5.1) we see that the elements in f; (g;) mainly come from the rounding errors that occur
when the inner product of a column (row) of A with u; (v;) is accumulated. This gives us the
following simple bounds: ||fill2 < mul|All2, [|gjll2 < nu|All2, which are quite pessimistic
in practice. Instead we use the rule of thumb that the mean rounding error is proportional
to the square root of the number of arithmetic operations. This is justified by regarding the
rounding errors as independent random variables and applying the central limit theorem?.

Hence we use the estimate:
uf g; —v] f;| = max(m,n)/? - u- || Al = er||Allz -

This gives the following updating rules for u;11; and vj;:

Hivig = Cavsit B = i, for 1<i<j, (6.7)
Hi+1i = (#ij + Slgn(ﬂi]‘)fl)/ﬁj+1
and pjt1541 =1,
r_ A - R T
Vij = 52‘/"1MJ7Z.+1 +Ialu'ﬂ /6]1/]—1,2 for 1<i< j—1, (68)
Vij = (V«L‘j + Slgn(yz'j)el)/aj

and v;j; = 1. Here v;0 = 0 and pip = 0.

In Figure 8 we have shown the result computed with the updating rules for two of the
testproblems from Section 7.3. We notice that the computed estimates describe the qualita-
tive behavior of the true level of orthogonality quite well. Even for the smaller test problem
HELIO212b, where the size of the rounding errors is clearly overestimated, p;; reaches the
limit y/u/k only one step too early. By overestimating the level of orthogonality the method
will perform more reorthogonalizations than strictly necessary. On the other hand, if the level
of orthogonality is underestimated by using too optimistic updating rules, the semiorthogo-
nality requirement could be violated and cause spurious singular values to be computed. As
reported in Section 7 we have used the resulting method on a variety of problems, and have
seen no examples of failure to keep the Lanczos vectors semiorthogonal when the conservative
rules above are used; the method seems to be robust.

As an experiment we tried to use a more optimistic updating rule with ¢; = u and the
recurrences still produced slight overestimates of u;,1; and v;;, except for the two large test
matrices QH1484 and MHD4800a (see Table 6). The amount of work in the reorthogonaliza-
tion was reduced from 12% (HELIO212b) up to 38% (RBS480a) by using the optimistic rule,
and the largest savings occurred in well-conditioned problems where the reorthogonalizations
were reduced to a fairly small number. However, until we have a better understanding of this
behavior, we stick to the conservative bound above, which was also used for the experiments
reported in Section 7. It should be emphasized that even with the conservative rule, the
reduction in the amount of work compared to full reorthogonalization is quite significant.

If additional information about the matrix is available this should be used to get tighter
bounds on the size of the round-off terms, and thus reduce the amount of reorthogonalization.
In the case of a sparse matrix, such information could be the maximum number of non-zero

?Keeping in mind, yet ignoring (which can be achieved using the technique commonly known as Doublethink,
see the appendix of [47]) the fundamental improbability (or doubleplusungodness) of such probabilistic error
analyzes, as pointed out in the very thought-provoking notes by W. Kahan [38], we shall nonetheless proceed
to use this estimate.
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Figure 8: Illustration of the recurrence in Theorem 6. The estimated (dashed) and true (solid)
levels of orthogonality as a function of the number of iterations j. The left figure shows
the results for the small testproblem HELIO212b where the estimates are rather pessimistic
(high). The right figure shows the same thing for the large and very ill-conditioned testproblem
MHD/4800a, where the estimates predict the true level of orthogonality more accurately. The
upper and lower dotted horizontal line marks /u/k ~ 1078 and n = ud/t ~ 1012,

elements per row and column. Other examples where the bounds could be reduced include
applications where the matrix-vector product is computed using the fast Fourier transform
[23, 34] (when A is Toeplitz or circulant) or involve Kronecker products [41, 24].

Another point of great importance for the stability and efficiency of the algorithm is the
proper estimation of ||A||2, which enter into the bounds on the round-off terms. If the norm is
underestimated it may lead to wrong results being computed as explained above, and if || A||2
is overestimated unnecessary work may be spent in reorthogonalization. In the applications
we consider here, the matrix is usually not directly available, but is supplied in the form of
subroutines that calculate the matrix-vector products Av and A”u. Fortunately, the norm
of A can be estimated cheaply from the quantities generated during the execution of the
LBD algorithm. We know that the largest singular value o1(A) = ||A||2 usually converges
in just a few iterations, and therefore we can simply use ||Bg||2 as an estimate of ||A|2. In
the algorithm we will maintain an estimate of || Bg||2 in the variable anorm which is updated
every iteration. This can be done in a number of ways:

1. If we use that ||Bg|l2 = ||T2k+1]|2 and apply the well known result

[Tok+1ll2 < \/||T2k+1||1||T2k+1||oo = [[Tok+1ll1,

we get the following simple updating rules for anorm:

anorm = { ifi=1,
| max(anorm,a; + ;) ifj>2,

which should be executed just before step 2.1a in the algorithm on page 30, and

anorm = max (anorm, aj + G41) ,
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which should be executed just before step 2.2a.

2. A tighter bound can usually be obtained by using that
IBkll5 = |Bf Brll2 < | B{ Bllx -
From this we get the following updating rules for anorm:

a1 ifj=1,
anorm = { max (anorm, (oz% + ﬁ% + 04252)1/2) ifj =2,
max (anorm, (oz?_1 + ﬁjz + o181+ ajﬂj)l/Q) if >3,

which should be executed just before step 2.1a, and

max (anorm, (a? + (53)'/?) ifj=1,
anorm = 5 . 5 AN2Y e
max (anorm, (o + 87,1 +a;8;)/%) ifj>2,

which should be executed just before step 2.2a. Needless to say, care should be taken
when implementing this rule to avoid overflow.

3. After a few (k=5, say) Lanczos steps, a very accurate estimate of ||A||2 can usually be
found by computing the largest Ritz value o1 (By)-

The simpler updating rules in 1 are used in most symmetric Lanczos codes (including
lanso), but since this might increase the amount of work in partial reorthogonalization, we
have decided to use the tighter bounds produced by 2 and 3.

6.2 Computing the reorthogonalization

To complete our description of BPRO, we need to provide the details of steps 2.1b and
2.2b, where the reorthogonalization takes place. An important question is which of the
previous Lanczos vectors should be included when reorthogonalizing v; or u;1. The simplest
approach would be to choose LY = {1,2,...,j — 1}, whenever ? exceeds the limit. This
corresponds to performing one step of full reorthogonalization, and usually represents more
work than necessary. To see what might be done to save some of the work, let us take a
closer look at what is happening during the iteration. In Figure 9 we have plotted a series
of snapshot from the Lanczos bidiagonalization showing for each iteration j the estimates
lviil, © = 1,...,5 — 1 and |pj414], ¢ = 1,...,j (dotted lines) and the true value of the
inner products |ulu;j1|, i = 1,...,5 and |vlv;|, i = 1,...,5 — 1 (solid lines) of the new
Lanczos vectors with all the previous ones. It is very instructive to study how the levels of
orthogonality behave as the iteration proceeds:

After 10 steps p11,1 reaches the limit, but while u1; has large components along the first
few Lanczos vectors, the remaining /111 ; are several orders of magnitude below the limit. This
suggests that we can save work if we only reorthogonalize against the vectors where p111; is
larger than some constant 7, 0 < 1 < \/u/k. In the figure we see what happens when this
is done: After the reorthogonalization of v11 and wuq1, the level of orthogonality (dash-dotted
line) is reduced below 7 and in the following steps it grows steadily and reaches the limit
once more in step 14. Again, the first few Lanczos vectors make the largest contribution to
the deviation from orthogonality. The components in p11; and v114, ¢ > 6 corresponding
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Figure 9: Illustration of the partial reorthogonalization procedure, on testproblem HELIO212b.
Each panel shows the level of orthogonality of v; (upper panels) and u; (lower panels) against
the previous vectors after a Lanczos step. Solid lines show the true level of orthogonality
luluji1|, i=1,...,5 and [vlv;|, i=1,...,5 — 1, and dashed lines show the estimated level
of orthogonality |vj|, i = 1,...,5 — 1 and |pjq14], i = 1,...,5, while dot-dashed lines show
the true level of orthogonality after reorthogonalization was performed in steps 10 and 15.

to vectors that were not reorthogonalized at step 10 have hardly risen above their original
level, and consequently it would have been a complete waste to have included them in the
reorthogonalization. The observed behavior is explained in the language of Paige’s theorem
by noting that the matrix in question has a large isolated singular value that converges within
the first few iterations. After it has converged large round-off components are generated in
every iteration along the corresponding Ritz vector, which lies in the span of the first few
Lanczos vectors and this in turn causes p;; and v;; (for i = 1,2,3 or so) to grow rapidly in
magnitude. For this reason it suffices to reorthogonalize against the first few Lanczos vector
— a strategy which is automatically effected by using the n-criterion.

Paige’s theorem also gives a clue to the reason for our observation that large components
in pjr1,; (and vj;) tend to peak around some i’s, such that components i1y .. fjt1,
... Mjt1i+s in @ region around the ;i1 ; actually exceeding the limit can also be expected
to be large. This is because the Lanczos vectors generated in the iterations preceeding the
convergence of a Ritz value usually all contain large components along the corresponding
Ritz vector, which contributes to the round-off following the convergence. A few isolated
components that exceed 7, such as 1511 and p15,12 in the second panel from the right in the
lower part of Figure 9, usually grow slowly and are therefore quite harmless.

Based on these observations we choose the vectors to be included in a reorthogonalization
as the union over all ;1j41,; exceeding \/u/k and their neighbors exceeding 1. Thus the index
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sets L% and L}, are described by the formulas

£y = |JkN<i-r<k<i+s<j—1, vyp>n} (6.9)
Vi >0

iy = U kI1<i—r<k<i+s<j, pjae>n}, (6.10)
Mj41,i>0

where § = /u/k is the desired level of orthogonality among the Lanczos vectors. Notice that
when no estimates exceed the limit the corresponding £ will be the empty set.

The idea of using the parameter 1 was introduced by Simon in [63] as part of the original
PRO algorithm, and he demonstrated that the strategy could significantly reduce the amount
of work without affecting the accuracy of the final results. Experimentally he found that
n = u®/* was the value that minimized the amount of work, and this is also the value we have
used in Figure 9. The effect of changing 7 is illustrated for BPRO in Figure 10. In the left
panel a value of n = 0 (orthogonalize against all previous vectors) caused 92 inner products to
be used in the reorthogonalization. In the right panel, where a value of n = (2u)3/* ~ 2.10~'2
was used, this number was reduced to 76, without changing the number of iterations or when
the reorthogonalizations occurred. The results in Table 3 show how changing the value of 5
affects the amount of work in BPRO. Increasing the value of 7 means that the total number of
reorthogonalizations N, increases because the number of steps from one reorthogonalization
to the next goes down. This is however more than compensated by the fact that fewer y’s and
v’s will actually have exceeded 7, and thus the number of inner products Ngot performed in
the reorthogonalization (a good measure of the total amount of work) is decreased. From the

Table 3: The number of reorthogonalizations N, and inner products Ny performed by BPRO
for different values of n on testproblem HELIO212b. The left part shows the amount of work
when the estimated level of orthogonality is use. The right part shows the amount of work
used when the true level of orthogonality is used to decide which vectors to reorthogonalize
against.

Work, Estimated levels Work, True levels
Ui N, Nyot N, Nyot
103u3/% | 31 + 30 431 + 386 | 36 + 35 383 + 355
102u3/4 | 23 + 23 405 + 405 | 28 + 27 368 + 356

10u?/* | 17 + 17 444 + 444 | 22 +21 375 + 365
u¥/t | 16 + 16 474 + 474 | 16 + 16 390 + 390

10 1ud/% | 16 + 16 491 + 491 | 16 + 15 467 + 418
1072u3/% | 16 + 16 491 + 491 | 16 + 15 494 + 449

table we see that the number of inner products is minimized for a value larger than the one
recommended by Simon, namely 1 ~ 100u?/%. Despite the fact that the value recommended
by Simon is not optimal for BPRO, we use it in the experiments reported below to allow
consistent comparisons with the results obtained with PRO. Figures 9 and 10 also show the
effect of using the pessimistic bound on the round-off terms, since estimates produced are
approximately a factor of 100 too high — this seems to offer an explanation of the ratio of
100 between the value of  recommended by Simon and the value found to be optimal in
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Figure 10: Illustration of a typical BPRO run on testmatric HELIO212b. The upper row
shows Kk (solid line) and max; vj; (dashed line), the lower panel k (solid line) and max; pi;
(dashed line). The upper dotted horizontal line marks the value of /u ~1.5-10~% (all panels)
and the lower marks the value of n which is 0 in the left plots and w3/* ~1.8-107'2 on the
right.

the experiment reported in the table, but there may be other effects at play, and it is not
obvious why a value of u?/# should be the optimal. Had the true level of orthogonality been
known only the first few vectors would have been reorthogonalized against, hence reducing
the amount of work by approximately 20% as shown in Table 3.

From PRO we can borrow another important observation, namely that for a reorthogo-
nalization at step j to be effective, another one should be carried out at step j+ 1. A similar
thing proves to be essential for the efficiency of BPRO, as can be seen from the recurrences
in Theorem 6: Assume that u; was orthogonalized against u;, ¢ = 1,...,j — 1 at step j — 1.
Then at step 7 we have

1 . .
Pit1i = (v + Bivji—1 +O(u)) , i=1,...,7.
ﬁj—l—l

But since u; was reorthogonalized, one of pj;, ¢ = 1,...,j — 1 must have been O(y/u), and
therefore one or more of

vji = — (Biv1ttjit1 + cipji — Bjvj—1, +O(u)) , i=1,...,j—1,

1
@
is likely to be of order /u. Because pj;1; contains terms involving vj; it will immediately
jump back up to level O(y/u) unless v; is also reorthogonalized to reduce the large components
vji, 1 =1,...,7 — 1 to the round-off level. Needless to say, if this happens nothing will have
been gained from the reorthogonalization.

This phenomenon is illustrated in Figure 11, where the positive effect of the reorthogonal-
ization of u16 is annihilated in the following step by the large values of v16 ;. This should be
compared with Figure 9, where the coupling between u and v was taken into account. With
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Figure 11: The effect of ignoring the coupling between p;; and v;;. When the reorthogonal-
ization of wu; is not immediately followed by a reorthogonalization of vj, as is the case at
step 16 in the figure, then the orthogonality of w;i1 is destroyed and thus triggers a new
reorthogonalization of wji1 in every iteration. Linestyles as in Figure 9.

this modification, we are now in a position to write down the final form of steps 2.1b and
2.2b:

2.1b if ﬁ? # () then

v _ M
Ly =L}
else
Choose L] according to (6.9)
end

2.2b if LY # () then

£?+1 =L
else

Choose LY, | according to (6.10)
end

Finally we mention that in the actual implementation, the reorthogonalization is com-
puted using either iterated classical Gram-Schmidt (CGS) or iterated modified Gram-Schmidt
(MGS), since this is guaranteed to reduce the |u?+1ui|, i€ LY, and |v]Tv,-|, i € L%, to order
u; see the discussion in [6, pp. 68-69] and [17]. In practice even the CGS is very rarely it-
erated, unless one attempts to compute small singular values of an ill-conditioned matrix, so
the cost of this safeguard is negligible. For implementation on parallel computers the iterated
CGS, which can be implemented as two dense matrix-vector multiplications, often performs
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better than the inherently sequential MGS algorithm. As an example, iterated CGS is used
in ARPACK for this reason (cf. [43, p. 50]).

6.3 Computing small singular values

Before we go on to the evaluate the performance of the algorithm developed in this section,
we wish to discuss a situation that requires special attention when a semiorthogonalization
scheme such as BPRO is implemented. We know from Theorem 5 that if the columns of Vj,
and Uy, 1 are kept semiorthogonal, then the computed By corresponds to the matrix obtained
from a Ritz-Galerkin projection of A where the elements have been perturbed by O(u). This
means we can expect the final accuracy of the converged Ritz values to be described by (3.14).
However, if we attempt to compute the small singular values of A, the values of a; and 3,11
can become smaller and smaller and the growth rate of y1;11; and v;; will become larger and
larger. From the form of the updating rules (6.7) and (6.8) we see that if eventually o; and
Bj+1 become so small that

ell|All2 elllAlla
>/u/k or — 2 >\ /u/k
Biq1 / a; T /

then pjy1; or vj; will reach the limit already in the Lanczos step following a reorthogo-
nalization, and the algorithm has effectively switched to full reorthogonalization. There is
nothing wrong in this, and the algorithm may continue many steps before having computed
an invariant subspace — something which does not occur until o; and 3;41 have decreased
to O(ul|Al|2). It tells us, however, that the semiorthogonalization is now useless. To secure
a robust behavior of BPRO we have chosen to switch explicitly to full reorthogonalization
if this situation arises. An example is shown in Figure 12, where BPRO switches to full
reorthogonalization after 71 iterations on the HELIO212b testmatrix. After 100 iterations
the algorithm terminates after having computed a full SVD of the matrix. As shown in the
right panel of Figure 13 the computed singular values are comparable in accuracy to those
computed by the LINPACK (cf. [21]) SVD algorithm used by MATLAB.

Although a sparse SVD algorithm is typically used to compute only a few of the largest
(or smallest) singular values, we feel that a robust implementation should be able to handle
problems, where singular values of highly differing magnitudes must be computed accurately.
This situation occurs, e.g., when the matrix is numerically rank deficient.

6.3.1 A correction to the LANSO package

O rose thou art sick.
The invisible worm,
That flies in the night
In the howling storm:

Has found out thy bed
of crimson joy:

and his dark secret love
Does thy life destroy.

— William Blake
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Figure 12: Illustration of the level of orthogonality when computing all singular values for
HELIO212b, which is ill-conditioned (01/0912 ~ 2.9-10'2). At iteration 71 semiorthogonality
can no longer be maintained and the algorithm switches to full reorthogonalization. Linestyles
as in Figure 8.

In [23] Eldén and Sj6strom analyze a class of rank deficient Toeplitz matrices that arise in
signal analysis applications. They use the lanso subroutine found in SVDPACK, and compare
the performance and accuracy with a number of other iterative methods for sparse SVD
calculations including the ARPACK codes ssaupd.f and sseupd.f. On the largest problems
the convergence of PRO is reported to fail. We have analyzed the FORTRAN code of the
latest version of lanso, and found that this behavior is most likely due to a bug, which causes
||All2 to be estimated incorrectly. In the subroutine an updating rule similar to the simple
rule 1 from page 32 is used, but instead of setting anorm = max (anorm, o; + ;) (using the
notation of this paper) it is assigned the value anorm = «; + ;. As long as only a few large
singular values are computed this is not very important. However, once small singular values
start to converge a; + (3; becomes small, and this causes the round-off terms to be grossly
underestimated leading to a breakdown of the semiorthogonality and appearance of spurious
singular values. We have tested this hypothesis using our own MATLAB implementation of
PRO, which is is modeled carefully after the abovementioned FORTRAN subroutine, and



6 A PARTIAL REORTHOGONALIZATION ALGORITHM FOR LBD 40

we observe the same failure as reported by Eldén and Sjostrom, when calculating the small
singular values of the testproblem HELIO212b. After replacing the updating of anorm with
one of the rules discussed in section 6.1 the method converges correctly, and even the smallest
singular values are calculated with the accuracy expected from the error bound in (3.14)
(results are shown in Section 7.1). This will be corrected in the next version of the LANSO
package [68].

6.4 A hybrid method to improve performance on cache-based architectures

In this section we propose a small modification of BPRO that will help improving the perfor-
mance on computers with a memory hierarchy. The improvement is not massive, but since
the modification is very simple to implement, we feel that it is worthwhile considering.

A problem with any Lanczos algorithm employing reorthogonalization, is the need to store
Lanczos vectors and recall them from secondary storage when required. As discussed earlier
this can lead to poor performance on computers with a memory hierarchy, involving e.g. one
or more levels of cache. The partial reorthogonalization idea only reduces the number of times
vectors need to be recalled, and the number of vectors needed in a given recall. The selective
reorthogonalization (SO) algorithm by Parlett and Scott, on the other hand, works directly
from Paige’s theorem by explicitly computing and reorthogonalizing against the converged
Ritz vectors. This is potentially superior to the simpler approach of PRO, because the number
of converged Ritz values can be much smaller than the total number of Lanczos vectors. We
do not use the SO algorithm directly, but propose a modification of BPRO that is built on
the same basic principle.

We argued in the previous section that it is often the same few vectors with large com-
ponents along the converged Ritz vectors that make the main contribution to the round-off,
and hence are included in the reorthogonalization over and over again. A simple modification
to the basic BPRO scheme would be keep these few vectors in the fast cache memory and
reorthogonalize against them in every iteration. This would keep the fastest growing com-
ponents in p and v at the O(u) level, and would increase the number of iterations from one
reorthogonalization to the next. Although this is likely to increase total amount of work, the
number of reorthogonalizations where vectors have to be recalled from secondary storage will
decrease. If the ratio tmem/tcache Of the time to execute a floating point operation when the
operands reside in secondary storage and in the cache is large, then the actual execution time
may decrease by a significant amount, since most of the of the work is performed on vectors
in the cache.

In Table 4 we have estimated the speedup for 50 iterations of BPRO on the HELIO212b
testproblem resulting from keeping the first p Lanczos vectors in the cache. The speedup is
calculated from the formula

Ndot(p = O)
(tmem/tcache)_chNdot(p) + (1 - Fc)Ndot(p) ’

which is the well-known Amdahl law (cf. [1]) in disguise. In the table we have further assumed
that tmem/tcache = 10, which is quite reasonable (on the SGI PowerChallenge, for example, this
ratio is around 15-20). The table shows that this simple modification of the basic algorithm
(which is also used in the LANSO package), could give a non-trivial reduction in the execution
time. As the number p of vectors that are kept in the cache and reorthogonalized against in
every iteration increases, more and more inner products are computed, and at some point the

S =
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Table 4: Effect of enforcing orthogonality against the first pairs u;,v;,1 = 1,...,p of Lanczos
vectors. In the table is given the number of pairs of vectors p that fit in the cache, the
number of reorthogonalizations Ny, the number of inner products Ngyot, the fraction F, of the
inner products that are computed with the operands in the cache, and the resulting speedup S.
Numbers are for k = 50 iterations on testproblem HELIO212b.

Ny Naot F, S
17 +16 512 +462 0.00 1.00
14 +14 502 +501 0.10 1.07
13 +13 509 + 507 0.19 1.16
12 +11 546 + 496 0.28 1.25
11 +10 608 + 558  0.41 1.33
10 | 10 +10 778 + 768 0.58 1.34
51 9+8 987 + 937  0.67 1.28
20| 847 1169 4+ 1119 0.70 1.17

(S BNJCRN RS S el o

extra work is no longer compensated by the faster execution times of operations on vectors
in the cache. With the given assumptions the example shown here has a break-even point
around p = 10, but already at p = 3 we see a speedup of 25%.

We suspect that this simple minded approach may be improved if the set of vectors to
keep in the cache is chosen more carefully: From Figure 9 it is obvious that we should choose
the vectors where the corresponding p or v has the fastest rate of growth. The following
argument suggests how we may estimate the growth rates directly from the elements of By:
By manipulating the recurrences in Theorem 6 we get the following expression for v;:

of + 3 .
Vi = = ViLit (terms in vjt1, frjis pj+1) + O(u)
773

from which we can (crudely) estimate the exponential growth rate of vj; as (a? + (82)/(a;53;)-
A possible scheme would be to keep those Lanczos vectors v; and u; for which o + 32 is largest
in the cache. We have not fully implemented this modification, but experiments in MATLAB
confirm that the vectors with the largest growth rates are usually those corresponding to the
largest values of @? + 4?. Our main motivation for discussing this criterion is that it is very
simple to calculate — there is no need to compute the Ritz values and Ritz vectors as in SO.
This is to be tested in future experiments.

7 Numerical experiments

In this section we report the results from a number of numerical experiments performed to
test the efficiency and accuracy of the BPRO algorithm. To do this, we have implemented the
algorithm in the MATLAB language. A short description of the resulting PROPACK package
and the MATLAB source code is found in Appendix B; PROPACK is available from the
author upon request. To compare BPRO with the original PRO algorithm for the symmetric
Lanczos process, PROPACK includes a MATLAB version of PRO. This implementation is
modeled after the FORTRAN 77 code of the latest version of the PLANSO package, which we
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have downloaded from the address listed in Table 1. We have used the simple forms of PRO
and BPRO, without the modifications discussed in Section 6.4, since these aim at improving
cache performance — an issue that we have not addressed in the experiments because they
were carried out in MATLAB. As mentioned in the introduction, we have also included
routines from a recent software package for large sparse eigenvalue problems and singular
value decomposition called ARPACK in the comparison. The ARPACK subroutines are built
on the implicitly restarted Lanczos algorithm described in [43, 12]. A subset of ARPACK
has been included in MATLAB version 5.1 as the function eigs. A sparse SVD routine called
svds that calls eigs to compute the eigenvalues of C' in the way described in Section 3, is also
available. In the experiments below we have set up matrix C' and computed the eigenvalues
by calling eigs directly, since this proved to be slightly more efficient than calling svds. It
should also be mentioned that we used a new version of eigs in which a number of bugs in the
interface routine have been removed [44] — no significant changes, which might have affected
the results in Section 7.3, were made to the main computational routines.

All experiments were carried out in MATLAB 5.1 on an SGI Octane ST workstation with a
175 Mhz R10000 CPU, 256 Mbytes of memory, 32 Kbytes of primary and 1 Mbyte of secondary
cache. The operating system was IRIX version 6.4. We used IEEE double precision arithmetic
with unit round-off u = 2733 ~ 1.11 - 10716, If nothing else is mentioned in the text, the
starting vector used for BPRO was pg € IR™ with random entries distributed uniformly on the
interval [—0.5 : 0.5], PRO(C) was started with ¢; = (p},0,...,0)T € R™™™ and PRO(AT A)
was started with ¢; = A7'p,.

7.1 Experiment 1: Accuracy of the computed singular values

In the first experiment we have analyzed the accuracy of the singular values computed by
BPRO and PRO applied to ATA and C. This was done for matrices HELIO212a and HE-
LIO212b, and for comparison we also analyzed the output from the svd routine in MAT-
LAB, which uses the standard Golub-Kahan algorithm implemented in the LINPACK routine
_SVDC. The results in the lower panel were obtained for a full matrix A constructed by first
computing the SVD of HELIO212b

A=UzVT

computed using svd, and then setting A equal to U x X % VT, Subsequently all methods
(including svd) were used to compute the singular values of A and these were subsequently
compared to . The results are shown in the right-hand panel of Figure 13. We notice that
the accuracy of BPRO, PRO(C) and the standard SVD algorithm is comparable, and that the
results look similar to Figure 3 shown in connection with our discussion of the error bounds.
In fact, we cannot expect the accuracy to be any better, since the singular values of A are the
singular values of A+ E, ||E||2 = ul|Al|2, where E accounts for the round-off errors committed
in setting up A.

To see how far we can push the accuracy of the partial reorthogonalization procedures,
we applied the Lanczos algorithms to a simple matrix, where the singular values were known
exactly. The results displayed in the left-hand panel were computed for the matrix HELIO212a
generated by permuting randomly the rows and columns of the diagonal matrix ¥ obtained
from the SVD of HELIO212b. Mathematically, the Lanczos algorithm is invariant with respect
to any similarity transformation of the matrix. This means that in exact arithmetic PRO and
BPRO would compute exactly the same Ritz values for HELIO212a as for HELIO212b. In
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Figure 13: Relative error in the computed singular values of HELIO212a (upper panel) and
HELIO212b (lower panel). Diamonds correspond to PRO(AT A), crosses to PRO(C), circles
to BPRO(A) and pluses to the built-in svd command in MATLAB. The plusses are (almost!?)
missing in the upper panel because the svd command computes the singular values of a per-
muted diagonal matriz exactly.

finite precision arithmetic the situation is quite different, since when multiplying a vector by
HELIO212b the round-off errors committed in accumulating the inner products will perturb
the singular values by ul||A||2, which was what we observed in the right-hand panel above. For
the matrix HELIO212a, however, the matrix-vector products are computed almost exactly,
because they just consist in scaling and permuting the entries in the vector, and we should
therefore expect the computed singular values to be almost exact. As can be seen in the
upper panel in the figure, this also seems the case for BPRO while PRO is apparently not
able to take advantage of HELIO212a being (apart from a permutation) diagonal. This seems
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a bit odd, and the explanation is that the difference has nothing to do with the two different
Lanczos algorithms used! The entries aq,...,a; and (o,..., 0, in Ty, and By computed
by PRO(C) and BPRO are the same to within round-off. Instead, the difference is in the
algorithms that are used to calculate the eigenvalues of Ty, and the singular values of By:
The bidiagonal SVD algorithm (see [19]) can compute even the smallest singular values with
guaranteed high relative accuracy; the same is not true for the QL/QR algorithm used for
computing the eigenvalues of a symmetric tridiagonal. As a test we used the a’s and §’s in
T}, to construct an equivalent bidiagonal matrix Bj, and used the bidiagonal SVD algorithm
to compute its singular values. It turns out that these are equal to the true singular values
within a few units of round-off, exactly like those of the bidiagonal computed by BPRO —
another warning to be careful when computing singular values via an equivalent symmetric
system!

In both panels we also notice the destructive effect of the rounding errors when working
with AT A that make it impossible to determine the small singular values. For this testmatrix
PRO(AT A) terminates after j = 71 iterations with a numerically invariant subspace. This is
due the squaring of the singular values, which causes the 29 smallest eigenvalues of AT A to
be numerically zero, i.e. smaller u||AT A||,.

7.2 Experiment 2: Efficiency of the reorthogonalization methods

The next experiment compares the efficiency of the various reorthogonalization methods. To
do this we generated Krylov subspaces of different dimensions for HELIO212a, and recorded
the number of reorthogonalizations and inner products computed in the Gram-Schmidt proce-
dure. The results for PRO(AT A), PRO(C), BPRO, and the corresponding Lanczos algorithms
with full reorthogonalization are listed in Table 5, along with the actual number of floating
point operations used. The latter was measured using the flops command in MATLAB, which
counts the number of arithmetic operations actually performed by the program. All methods
perform two matrix-vector multiplications per iteration, one with A and one with A", and
we deliberately chose the diagonal matrix HELIO212a to minimize the contribution from the
matrix-vector multiplications to the flop count. It should be noticed that the PRO method
applied to AT A switches to full reorthogonalization after 7 = 46 iterations (see Section 6.3)
and both PRO and FRO(AT A) terminates at j = 71 after having found a numerically invari-
ant subspace. The PRO method applied to C' and BPRO switch to full reorthogonalization
after 142 and 72 iterations respectively.

The table shows that for £ < 40 the three algorithms based on partial reorthogonaliza-
tion (PRO(AT A4), PRO(C), BPRO) are successful in reducing the amount of work, both in
terms of the number of reorthogonalizations performed and in terms of the number of flops.
Compared to its FRO counterpart, the amount of work is approximately halved by using
PRO(A” A) while PRO(C) and BPRO reduce it by almost a factor of 3 compared to FRO(C)
and BFRO(A). With k£ > 40 the smaller Ritz values start to converge, forcing the algorithms
to perform more reorthogonalization. At 71 iterations the advantage of PRO over FRO is
reduced to 30% for C and a mere 9% for AT A. The advantage of BPRO over BFRO has also
decreased, but is still a factor of 1.8.

We recall from Table 2 shown in Section 3.3, that the expected ratio between the amount
of work in FRO(AT A) and BFRO is approximately (n + m)/n = 3.12 and approximately 4
between BFRO and FRO(C). This is confirmed by numbers in the lower part of the table. If
we use the numbers in the “Mops” columns to calculate the same ratios for the three algo-
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Table 5: Work used by the various algorithms to generate an orthogonal basis for the Krylov
subspaces Kp(AT A, u1) and Ki(AAT v1), where A is the testmatrizc HELIO212a. In the table
is given the number of reorthogonalizations N,, the number of inner products Nyoz and the
number of floating point operations Mops (in millions). Entries on the form N, = p + q for
BPRO/BFRO indicates that p reorthogonalization were performed for u; 1 and g for v;.

| k | N, Ngot Mops | N, N, Mops | N, Ngot Mops |
PRO(AT A) PRO(C) BPRO(A4)
10 2 10 0.019 4 54  0.16 141 6+6 0.038
20 8 84 0.066 | 10 174 0.40 4+ 4 42 + 42  0.12

40 | 23 505 028 | 28 1072 1.73 | 10+ 10 209 + 209 040
60 | 43 1506 071 | 65 4798 6.65 | 23 + 23 859 + 859 1.30
71| 54 2232 1.05 | 8 7681 1040 | 31+ 30 1316 + 1316 1.92

100 | — —  — | 145 17887 2344 | 60+ 59 3810+ 3781  5.14
FRO(ATA) FRO(C) BFRO(A)
10| 9 54 0039] 20 230 039| 10+9 55+ 45 0.11

201 19 209 012 40 860 1.28 | 20+ 19 210 + 190  0.35
40| 39 819 040 | 80 3320 4.56 | 40+ 39 820 + 780 1.20
60 | 59 1829 083|120 7380 9.82 | 60+ 59 1830 + 1770  2.54
71| 70 2555 1.14 | 142 10295 13.58 | 71 + 70 2556 4+ 2485  3.50
100 | — — — 1 200 20300 25.34 | 100 + 99 5050 4+ 5050  6.30

rithms based on partial reorthogonalization we obtain the following;:

k | 10 20 40 60 71 100
BPRO/PRO(ATA) [20 18 14 18 18 —
PRO(C)/ BPRO |42 33 43 51 54 46

We notice that while PRO(C)/ BPRO is slightly higher than the expected value of 4, the
ratio between BPRO and PRO(AT A) is only about half of the expected. We can find an
explanations for the relatively poor performance of PRO(A” A) by comparing the number of
reorthogonalizations NV, in the upper and lower part of the table. We notice that while NV,
for FRO(AT A) is half the value of N, for BFRO, this quantity is approximately the same for
PRO(AT A) and BPRO. PRO(AT A) reorthogonalizes twice as often as BPRO.

The problem with PRO(A? A) is, exactly as we saw in the error analysis, that the eigen-
values of AT A are the square of the singular values of A, which means that the growth rates
(see Section 6.4) of uj; and v;; are doubled. For this particular experiment we can explain
the results by noticing that the matrix HELIO212b has a large isolated singular value that
converges almost in the first two steps. Following the convergence the growth rate of the
dominating components p;1 and vj; in BPRO are approximately given by the ratio

(B2 +02) /(B2 + o) ? ~ 6, /65 ~ 1.7542/0.7599 ~ 2.3 .

Thus the number of steps [ it takes for these components to rise from n ~ 1.8 - 107!? to
Vu =~ 1.5-107% is determined by

01\ log 6, — log eﬂ
=) .n> —|==7 o7l _11
(92) nzvu - ! [log\/ﬁ—logn
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which is indeed equal to the number of steps before the first reorthogonalization occurs in
the experiment. The same kind of analysis applies to the w-recurrences in PRO(A” A) from
which we get

0% ! 61\ % 1 log 61 — log 65
(e‘) 0=(G) 2 s ]
Here the exponent (21) is doubled compared to BPRO and therefore only half as many Lanczos
steps can be taken before it becomes necessary to reorthogonalize the Lanczos vectors. A
similar behavior is observed at later stages in the iteration process.

The result is that the number of reorthogonalizations in PRO (AT A) will always be about
twice the number used by BPRO, and as a consequence the expected ratio between the
number of operations in the two methods will be (n + m)/(2n) rather than (n + m)/n. As
an example, this means that we can expect BPRO to be just as efficient as PRO(A” A) when
the matrix is square. This result is confirmed by our experiments with testmatrices from the
Harwell-Boeing collection described in the next section.

7.3 Experiment 3: Comparison of sparse SVD algorithms

To make sure that our algorithms have not simply been tuned to perform well on one “toy
problem”, we have submitted the implementations of PRO and BPRO to an experiment
involving a set of matrices from a variety of different application ranging from Geodetic
surveying to the calculation of Alfven spectra in magnetohydrodynamics. The suite of test-
matrices represents a wide variety of sparsity patterns, sizes and numerical properties. In
light of the discussion in Section 6.3 regarding the challenge of computing small singular val-
ues and the effect of the matrix structure on the estimates of the round-off terms that occur
in the updating of y;1; and vy;, it is important to include matrices with different densities,
and the testsuite should include both well- and ill-conditioned problems. To achieve this we
have used a number of matrices from the Harwell-Boeing collection, which contains a large
set of matrices from a variety real-world applications and is widely used for testing numerical
linear algebra software. The matrices together with MATLAB, C or FORTRAN subroutines
for input and output, can be downloaded from the web-site called “Matrix Marked” [9]. The
characteristics of the testmatrices are given in Table 6, and the 10 largest singular values of
each matrix are listed in Appendix A.

From the Harwell-Boeing collection we have selected two sparse least squares problems:
ABB313 which is small and well-conditioned, and ILL.C1850 which is larger and ill-conditioned
and was originally used for testing the LSQR algorithm. In addition, we have chosen 4
square non-symmetric matrices (originally non-symmetric eigenvalue problem): WEST0479,
RBS480a, QH1484 and MHD4800a. The matrices WEST0479 and RBS480a are both fairly
small, and while WEST0479 is very sparse and ill-conditioned RBS480a is denser and fairly
well-conditioned. In particular RBS480a has a cluster of large singular values, which makes
the Ritz values converge quite slowly. This is the reason for the large value of k in Table 6,
and explains why PRO and BPRO are so effective for this particular matrix since the growth
rates of y and v become small. The matrices QH1484 and MHD4800a have been included
to test the methods on large and very ill-conditioned problems. The matrix AF23560 was
included for the simple reason that it is one of the largest matrices in the collection.

In this experiment we have computed the 10 largest singular values of the nine testma-
trices. The number of floating point operations and the execution time for the different
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Table 6: Characteristics of the test problems. The column k lists the dimension of the Krylov
subspaces necessary to obtain a relative error |0; — o;|/o; < 100u, i = 1,...,10 in the ez-
periment reported in Table 7. The criterion was checked by comparing the computed singular
values &; with o; computed by the built-in svd routine in MATLAB.

Matrix m n nnz Density k2(A) k| Description
HELIO212a 212 100 100 0.0047 2.9-10'2 29 | Helioseismic inversion
HELIO212b 212 100 21200 1.0 2.9-10!2 29 | Helioseismic inversion
ABB313 313 175 1557 0.028 1.5-10' 40 | Sudan Survey

ILLC1850 1850 712 8758 0.0066 1.4-103 61 | Gravity meter survey
WEST0479 479 479 1887 0.0082 1.4-10'2 17 | Chemical engineering
RBS480a 480 480 17088 0.074 1.3-10° 75 | Robotics

QH1484 1484 1484 6110 0.0028  5.6-10'7 28 | Power systems simulation
MHDA4800a | 4800 4800 102252 0.0044 3.2-10%7 25 | Magnetohydrodynamics
AF23560 23560 23560 460598 0.0008 Unknown 70 | Comp. fluid dynamics

algorithms is listed in Table 7. The number of flops listed for BPRO include the cost of
computing the SVD of the bidiagonal matrix By by means of the svd routine in MATLAB,
and the number of flops listed for PRO include the cost of computing Schur decomposition
of the tridiagonal matrix 7} by means of the eig routine in MATLAB. The t indicates that it
was not possible to make the eigs function converge for QH1484 (not even after increasing the
size of the Lanczos basis and the maximal number of iterations.) One way in which QH1484
differs significantly from the other matrices, is that it has a very large norm || A|s = 1.26-10'6,
and that could be part of the explanation. Neither eigs nor the built-in svd routine could be
used with the largest testproblems MHD4800a and AF23560 due to lack of memory. The
column “error” lists the quantity [log, |6; — oi|/(uo;)], i.e. the number of “wrong bits” in
the binary representation of 8; compared to the values o; calculated by the svd routine. For
problems MHD4800a and AF23560 where the full matrix was too large to fit in memory, the
singular values calculated using LBD with full reorthogonalization (BFRO) were used as the
reference values o; to estimate the error. For HELIO212a the singular values were known ex-
actly, as explained in Section 7.1. Also notice that HELIO212b is a full matrix and the large
contribution to the flop count from the matrix-vector multiplications reduces the difference
in performance between the different algorithms. Finally, we should point out that svd is a
built-in command in MATLAB implemented by calling a FORTRAN library routine. This is
the reason behind the smaller execution time of svd even for problems like ABB313, where it
performs many times more floating points operations than the Lanczos based methods.

In Table 7 we find the same ratio between the number of floating point operations used
by BPRO and PRO(AT A) observed in the previous experiment, namely that BPRO performs
approximately (m +n)/(2n) times as many operations as PRO(AT A). This relation seems to
hold independent of the condition number or other properties of the matrix. Moreover, BPRO
and PRO(AT A) are 3 to 4 times faster than PRO(C), and the latter is even slower than BFRO
for most problems. The improvement in performance of BPRO over BFRO can be seen to
vary quite dramatically, ranging from a factor of 1.5 for MHD4800a to 5 for ILL.C1850. This
value depends on the gap-structure of the spectrum of singular values for the matrix involved.
If the singular values are densely clustered, the growth rate of y and v will be small and a lot
of work can be saved by BPRO compared to full reorthogonalization. If on the other hand
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Table 7: Comparison of the various methods using testmatrices from the Harwell-Boeing
collection. The column “Mops” is the number of floating point operations used (in millions),
“time” is the execution time in seconds and “error” is the relative error given as the number
of erroneous bits in the result.

| |  Mops time error | Mops time error | Mops time error |

Matrix HELIO212a HELIO212b ABB313

svd(full(4)) 1.88 0.05 0 7.30 0.17 51 29.06 0.60 0
eigs(C) 4.12 1.37 4| 1841 17.30 5| 19.82 6.30 6
PRO(AT A) 0.15 0.22 5 260 1.11 7 0.48 0.35 6
PRO(C) 0.91 0.50 5 5.90 1.77 5 2.32 0.87 6
BPRO(A) 0.27 0.30 4 2.71 120 5 0.65 0.46 6
BFRO(A4) 0.69 0.46 4 3.14 141 6 2.20 0.91 5
Matrix ILLC1850 WEST0479 RBS480a

svd(full(4)) | 3272.38  71.10 0] 293.04 6.54 0 | 299.48 7.12 0
eigs(C) 133.07  32.72 6| 23.01 5.88 5| 79.58  20.73 7
PRO(ATA) 3.65 1.54 5 0.44 0.24 12 6.58 2.52 6
PRO(C) 21.56 441 5 1.87 0.55 5| 20.16 4.88 6
BPRO(A) 4.74 1.83 6 0.47 0.26 4 7.02 2.75 6
BFRO(A) 23.80  4.83 6 091 0.31 4| 17.37 5.15 6
Matrix QH1484 MHD4800a AF23560

svd(full(4)) | 8599.10 184.99 0 - — — — — —
eigs(C) 75.22  20.74 35 - = — — — —
PRO(AT A) 3.30 0.93 5| 16.71 5.21 12 | 200.16  60.06 6
PRO(C) 12.58 2.57 6| 48.95 9.60 6 | 641.12 177.36 6
BPRO(A) 2.76 0.91 6| 16.90 5.44 2 | 20697 63.15 4
BFRO(A) 6.46 1.41 8| 25.39 6.65 0 | 628.52 126.40 0

the matrix has large isolated singular values, then as soon as these begin to converge u and
v will start growing rapidly with the result that many reorthogonalizations will be necessary
to keep the Lanczos vectors semiorthogonal. From the table in Appendix A we see that for
MHD4800a the initial growth rate of y and v is approximately o1 /o9 = 2.76, while it is only
o1/02 = 1.02 for ILLC1850. This explains the large variations in the relative performance of
BPRO compared to BFRO.

When we compare the Lanczos based algorithms with the eigs routine that is based on the
implicitly restarted Lanczos algorithm, the difference in performance is quite striking. The
execution time for BPRO is from 4.6 (HELIO212a) to 22.8 (QH1484) times smaller than for
eigs applied to the same problem. This large difference cannot be explained by inefficient
MATLAB programming alone, because the actual number of operations is also reduced be-
tween 6.8 (HELIO212b) and 50 (WEST0479) times. One may speculate why the implicitly
restarted Lanczos algorithm in eigs is so inefficient for solving the equivalent symmetric eigen-
problems, but since this may simply be a problem with the MATLAB implementation, we
postpone this discussion until we have made a comparison of a FORTRAN implementation
of BPRO with the original routines in ARPACK3.

3The Mathworks (the creator of MATLAB) are aware that eigs and svds are very slow, as can be seen in
their reply to a question from a MATLAB user regarding this issue. The reply can be found in the document
http://www.mathworks.com/support/solutions/v5/7788.shtml on their website. A number of bugs found
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Finally we regard the accuracy of the computed singular values. The singular values
computed by the majority of the Lanczos based methods differ from the singular values
computed by svd in the last 5-6 bits, and as suggested by the result for HELIO212b this is
indeed the accuracy that can be expected from svd itself. Only PRO(A” A) exhibits larger
errors for some problems To understand this we need to consider the effective condition
number o1 /019 for computing the 10 largest singular values. In the table below this number
is listed for the testproblems used in the experiment:

Matrix | HELIO212(a,b) ABB313 ILLC1850 WEST0479
o1/010 6.8 1.4 1.1 75.2
Matrix RBS480a QH1484 MHD4800a AF23560
0’1/0'10 1.2 1.0 16.3 1.2

The table indicates that HELIO212(a,b), WEST0479 and MHD4800a are the problems where
we might expect problems for PRO(A” A). Indeed, if one calculates from (3.9) and (3.14) the
additional error caused by the squaring of the condition number this predicts the differences
in the number of correct bits in Table 7 quite well. The fact that this effect is important when
calculating the 10 largest singular values is a fair warning that an unstable method working
explicitly with AT A should be used with care if the effective condition number of the problem
to be solved is not known in advance.

8 Conclusion

Compared to sparse SVD algorithms based on the symmetric Lanczos algorithm with partial
reorthogonalization the BPRO algorithm developed here has the advantage that it is both
computationally efficient and capable of computing the singular values with good relative
accuracy. In comparison with the two variants of PRO used in SVDPACK, BPRO achieves
the same (or higher) accuracy as PRO(C) and at the same time is just as fast as PRO(AT A)
for square matrices and only a factor of (m + n)/(2n) slower for rectangular matrices as
opposed to (m + n)/(n) as one might aspect from comparing the corresponding algorithms
with full reorthogonalization. In particular for problems where the singular values must be
computed very accurately, or where they are of highly varying magnitudes, e.g. when the
matrix is almost numerically rank deficient, BPRO represents a substantial improvement,
because it reduces the amount of work by a factor of 3-4 compared to PRO(C).

Our experiments with matrices from the Harwell-Boeing collection have shown that the
BPRO implementation is efficient and robust when applied to problems of different size and
with a wide variety of numerical properties. We believe that BPRO is well suited as the
computational kernel in software for large-scale sparse or structured SVD calculations, as
well as other methods based on the Lanczos bidiagonalization. It will be useful for solving
large sparse or structured linear least squares problems with multiple right-hand sides, and
also provides the basis for an efficient implementation of the LSQR algorithm where the
convergence is not slowed down by the loss of orthogonality.

A number of questions regarding the BPRO algorithm still need to be considered. First
of all we believe that there is room for improvement in computing better estimates of the
round-off terms that enter into the recurrences to monitor the loss of orthogonality. Our
experiments have shown that especially for problems where the loss of orthogonality is slow,

in these routines will be corrected in the next version of MATLAB [44].
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the simple estimates used in the current implementation can be up to 100 times above the true
values, and up to 40% of the work done in the reorthogonalization is unnecessary. Choosing
a larger value for n will solve this problem for some matrices, but since we have observed the
factor by which u and v are overestimated to be very problem dependent, this is probably
not a very general solution. As discussed earlier we believe the inclusion of problem specific
information, such as the number non-zeros per row and column in the sparse matrix, to be
part of the answer, but one might also consider adaptive schemes that try to collect statistical
information about the rounding errors during the iteration.

Another interesting point is the hybrid schemes discussed in Section 6.4, where ideas from
selective reorthogonalization are used to suggest a way of improving the performance of BPRO
on machines with a memory hierarchy. Finally we wish to mention that an efficient parallel
implementation of the LANSO package has recently appeared. The structure of PRO and
BPRO is very similar, and we see no reason why the good parallel performance reported in
[67] should not be attainable by a parallel implementation of BPRO.

It should be emphasized that our experiments have been carried out in MATLAB, and it
is therefore difficult to compare the computational efficiency of our methods with the routines
from, e.g., ARPACK. Using the flops counter in MATLAB usually gives a good estimate
of the amount of work involved in various algorithms, but it is obvious that implementation
details can have a substantial impact on the performance of the program on a given machine.
Therefore we look forward to comparing a parallel FORTRAN implementation of BPRO with
the routines from (P)ARPACK, SVDPACK and (P)LANSO.
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A Singular values of the testmatrices

In the table below we have listed the 10 largest singular values of the matrices used for the
numerical experiments.

HELIO212

ABB313

ILLC1850

WEST0479

1.75416885208775
0.75994788932135
0.56464846522408
0.41932269628941
0.37725028038295
0.36297882213116
0.32834791912147
0.32150825430870

8.624571506285145
7.837679685693903
7.522436441654018
7.504555680595632
7.115057823411112
6.846632032905399
6.743829397959233
6.518455343678970

2.123342642739714
2.079293601886760
2.070148692246095
2.055344464000141
2.034954713061991
2.026870406060143
1.973716978288877
1.939631441087475

318951.7598051425
317252.8998362914
316948.9798008894
316847.7370186802
316687.7890987259
30383.15433419206
14669.17025840166
5277.606250923692

O O 0T U WNRFH-OCWOWGOIOD Uk WN

—

0.28286240653325 6.439690716473062 1.909188260790087 | 4575.849920006961

10 | 0.25850995888747 6.198118832238062 1.874764369104710 | 4244.119958839099
RBS480a QH1484 MHD4800a AF23560

857.482872013056 | 1.256792690959426e+16 | 362870.1170020910 | 645.740014579336

795.544455546689
778.061225081411
770.514550295336
753.309670903894
746.680238728886
740.515959817913
721.852134169162
720.643353502449
712.450713136385

1.256792690959425e+-16
1.256611401591208e+-16
1.256611401591189¢e+-16
1.256608510545386e+-16
1.256608510545368e+-16
1.256604051085655e4-16
1.256604051085654e+-16
1.256603988609464e+-16
1.256603988609461e+-16

132097.1357652045
81449.70955249084
58951.80607480534
46211.49691522065
38005.99628606661
32277.98581214598
28051.84097285097
24805.00862837231
22232.26491274030

645.714884295259
593.345456826059
593.324126772549
582.210949117382
582.172081847832
543.273745152562
543.257878163888
532.626669256042
532.568016147591
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B PROPACK: Sparse SVD and eigenvalue routines in MAT-
LAB

B.1 Introduction

A MATLAB package PROPACK has been written to test the algorithms discussed in this
paper, and to provide robust implementations of PRO and BPRO to be used as building blocks
in other applications. PROPACK contains a number routines that implement the symmetric
Lanczos algorithm with partial reorthogonalization (PRO) and the Lanczos bidiagonalization
algorithm with partial bidiagonalization (BPRO). In addition, two driver routines laneig and
lansvd are available. The function laneig is modeled after the FORTRAN 77 subroutine lanso
from the latest version of the PLANSO package by Parlett et al. and uses PRO to solve the
symmetric eigenvalue problem. The function lansvd is similar to laneig but uses the BPRO
algorithms to compute singular values and (if requested) singular vectors of a sparse matrix.
We have tried to make the interface and calling sequences to both laneig and lansvd as close
as possible to those of the MATLAB 5 functions eigs and svds.

B.2 On-line documentation

In this section we have listed the on-line documentation for the four main routines in PROPACK:
lanbpro, lanpro, lansvd and laneig. The documentation for the remaining routines can be found
in the source code listings in the following section.

B.2.1 lansvd

LANSVD Compute a few singular values and singular vectors.
LANSVD computes singular triplets (u,v,sigma) such that
Axu = sigma*v and A’*v = sigma*u using the Lanczos
bidiagonalization algorithm with partial reorthogonalization (BPRO).

S
S

LANSVD (A)
LANSVD(’Afun’,’Atransfun’,M,N)

The first input argument is either a real matrix, or a string
containing the name of an M-file which applies a linear operator
to the columns of a given matrix. In the latter case, the second
input must be the name of an M-file which applies the transpose of
the same linear operator to the columns of a given matrix,

and the third and fourth arguments must be M and N, the dimensions
of the problem.

The full calling sequence is

,_|

(=]

<

[}
|

= LANSVD(A,K,OPTIONS)
= LANSVD(’Afun’,’Atransfun’,M,N,K,OPTIONS)

,_|

[e=}

<

(]
|

where K is the number of singular values desired.
The OPTIONS structure specifies certain parameters in the algorithm.

Field name Parameter Default



B PROPACK: SPARSE SVD AND EIGENVALUE ROUTINES IN MATLAB

OPTIONS.tol Convergence tolerance 16*eps

OPTIONS.lanmax Maximal dimension of the Lanczos
basis.

OPTIONS.vO Starting vector for the Lanczos rand(n,1)-0.5
iteration.

OPTIONS.delta Level of orthogonality among the sqrt (eps/K)
Lanczos vectors.

OPTIONS.eta Level of orthogonality after 10*eps” (3/4)
reorthogonalization.

OPTIONS.cgs reorthogonalization method used 0
’0? : iterated modified Gram-Schmidt
’1? : iterated classical Gram-Schmidt

OPTIONS.elr If equal to 1 then extended local 1

reorthogonalization is enforced. i.e.
v_{j} is orthogonalized against v_{j-1}
and u_{j+1} is orthogonalized against
u_j in every step.

See also LANBPRO, SVDS, SVD.

References:
R. M. Larsen, ‘‘Lanczos bidiagonalization with partial
reorthogonalization’’,Tech. Report, Dept. of Computer Science,
Aarhus University, 1998.

B. N. Parlett, ¢‘The Symmetric Eigenvalue Problem’’,
Prentice-Hall, Englewood Cliffs, NJ, 1980.

H. D. Simon, ‘‘The Lanczos algorithm with partial reorthogonalization’’,
Math. Comp. 42 (1984), no. 165, 115--142.

B.2.2 lanbpro

LANBPRO Lanczos bidiagonalization with partial reorthogonalization.
LANPRO computes the Lanczos bidiagonalization of a real
matrix using the with partial reorthogonalization.

[U_k,B_k,V_k,R,ierr,work]
[U_k,B_k,V_k,R,ierr,work]

lanbpro(A,K,R0,0PTIONS,U_old,B_old,V_old)
lanbpro(’Afun’,’Atransfun’,M,N,K,RO,
OPTIONS,U_old,B_old,V_old)

Computes K steps of the Lanczos bidiagonalization algorithm with partial
reorthogonalization (BPRO) with M-by-1 starting vector RO, producing a
lower bidiagonal K-by-K matrix B_k, an N-by-K matrix V_k, an M-by-K
matrix U_k and a M-by-1 vector such that

AxV_k = U_k*B_k + R
Partial reorthogonalization is used to keep the columns of V_K and U_k
semiorthogonal:

MAX(DIAG((EYE(K) - V_K’*V_K))) <= OPTIONS.delta
and

MAX(DIAG((EYE(K) - U_K’*U_K))) <= OPTIONS.delta.

If an invariant subspace for range(A) or range(A’) is found before K
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steps have been computed, LANBPRO attempts to restart the iteration with
a random starting vector orthogonal to the invariant subspace already
computed.

B_k = LANBPRO(...) returns the bidiagonal matrix only.

The first input argument is either a real matrix, or a string
containing the name of an M-file which applies a linear operator
to the columns of a given matrix. In the latter case, the second
input must be the name of an M-file which applies the transpose of
the same linear operator to the columns of a given matrix,

and the third and fourth arguments must be M and N, the dimensions
of then problem.

The OPTIONS structure is used to control the reorthogonalization:
OPTIONS.delta: Desired level of orthogonality
(default = sqrt(eps/K)).

OPTIONS.eta : Level of orthogonality after reorthogonalization
(default = 10*eps~(3/4)).

OPTIONS.cgs : Flag for switching between different reorthogonalization
algorithms:

0 = iterated modified Gram-Schmidt (default)
1 = iterated classical Gram-Schmidt
OPTIONS.elr : If OPTIONS.elr = 1 (default) then extended local
reorthogonalization is enforced.

If both RO, U_old, B_old, and V_old are provided, they must
contain a partial Lanczos bidiagonalization of A on the form

A V_old = U_old B_old + RO .

In this case the factorization is extended to dimension K x K by
continuing the Lanczos bidiagonalization algorithm with RO as a
starting vector.

The output array work contains information about the work used in
reorthogonalizing the u- and v-vectors.
work = [ RU PU ]

[RV PV ]
where
RU = Number of reorthogonalizations of U.
PU = Number of inner products used in reorthogonalizing U.
RV = Number of reorthogonalizations of V.
PV = Number of inner products used in reorthogonalizing V.

See also LANSVD, REORTH, COMPUTE_L.

References:
R. M. Larsen, ‘‘Lanczos bidiagonalization with partial
reorthogonalization’’,Tech. Report, Dept. of Computer Science,
Aarhus University, 1998.

G. H. Golub & C. F. Van Loan, "Matrix Computations",
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3. Ed., Johns Hopkins, 1996. Section 9.3.4.

B. N. Parlett, ‘‘The Symmetric Eigenvalue Problem’’,
Prentice-Hall, Englewood Cliffs, NJ, 1980.

H. D. Simon, ‘‘The Lanczos algorithm with partial reorthogonalization’’,
Math. Comp. 42 (1984), no. 165, 115--142.

B.2.3 laneig

LANEIG Compute a few eigenvalues and eigenvectors.
LANEIG solves the eigenvalue problem Axv=lambda*v, when A is
real and symmetric. Only a few eigenvalues and eigenvectors are
computed using the symmetric Lanczos algorithm with partial
reorthogonalization (PRO).

Lv,D]
Lv,D]

LANEIG(A)
LANEIG(’Afun’ ,N)

The first input argument is either a real symmetric matrix, or a
string containing the name of an M-file which applies a linear
operator to the columns of a given matrix. In the latter case,
the second input argument must be N, the order of the problem.

The full calling sequence is

[V,D,ERR]
[V,D,ERR]

LANEIG(A,K,PART,0PTIONS)
LANEIG(’Afun’,N,K,PART,0PTIONS)

On exit ERR contains the computed error bounds.
K is the number of eigenvalues desired and PART is a two letter
string which specifies which part of the spectrum should be computed:

PART Specified eigenvalues

AL’ Algebraically Largest (default)

’AS? Algebraically Smallest

LM’ Largest Magnitude

’BE’ Both Ends. Computes k/2 eigenvalues

from each end of the spectrum (one more
from the high end if k is odd.)

The OPTIONS structure specifies certain parameters in the algorithm.

Field name Parameter Default
OPTIONS.tol Convergence tolerance 16*eps
OPTIONS.lanmax Maximal dimension of the Lanczos
basis.
OPTIONS.vO Starting vector for the Lanczos rand(n,1)-0.5
iteration.
OPTIONS.delta Level of orthogonality among the sqrt (eps/K)

Lanczos vectors.
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OPTIONS.eta Level of orthogonality after 10*eps™~(3/4)
reorthogonalization.

OPTIONS.cgs Reorthogonalization method used 0
’0? : iterated modified Gram-Schmidt
’1? : iterated classical Gram-Schmidt

OPTIONS.elr If equal to 1 then extended local 1

reorthogonalization is enforced, i.e.
q_{j+1} is orthogonalized against
q_{j-1} and q_j in every step.

See also LANPRO, EIGS, EIG.

References:
R. M. Larsen, ‘‘Lanczos bidiagonalization with partial
reorthogonalization’’,Tech. Report, Dept. of Computer Science,
Aarhus University, 1998.

B. N. Parlett, ‘‘The Symmetric Eigenvalue Problem’’,
Prentice-Hall, Englewood Cliffs, NJ, 1980.

H. D. Simon, ‘‘The Lanczos algorithm with partial reorthogonalization’’,
Math. Comp. 42 (1984), no. 165, 115--142.

B.2.4 lanpro

LANPRO Lanczos tridiagonalization with partial reorthogonalization
LANPRO computes the Lanczos tridiagonalization of a real symmetric
matrix using the symmetric Lanczos algorithm with partial
reorthogonalization.

[Q_K,T_K,R,ANORM, IERR,WORK]
[Q_K,T_K,R,ANORM, IERR,WORK]

LANPRO(A,K,RO,0PTIONS,Q_old,T_old)
LANPRO(’Afun’,N,K,RO,OPTIONS,Q_old,T_old)

Computes K steps of the Lanczos algorithm with starting vector RO,
and returns the K x K tridiagonal T_K, the N x K matrix Q_K
with semiorthonormal columns and the residual vector R such that

A*xQ_K = Q_K*T_K + R .

Partial reorthogonalization is used to keep the columns of Q_K
semiorthogonal:
MAX (DIAG((eye(k) - Q_K’*Q_K))) <= OPTIONS.delta.

If an invariant subspace is found before K steps have been computed,
LANPRO attempts to restart the iteration with a random starting vector
orthogonal to the invariant subspace already computed.

The first input argument is either a real symmetric matrix, or a
string containing the name of an M-file which applies a linear
operator to the columns of a given matrix. In the latter case,
the second input argument must be N, the order of the problem.

The OPTIONS structure is used to control the reorthogonalization:
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OPTIONS.delta: Desired level of orthogonality
(default = sqrt(eps/K)).

OPTIONS.eta : Level of orthogonality after reorthogonalization
(default = 10*eps~(3/4)).

OPTIONS.cgs : Flag for switching between different reorthogonalization
algorithms:

0 = iterated modified Gram-Schmidt (default)
1 = iterated classical Gram-Schmidt
OPTIONS.elr : If OPTIONS.elr = 1 (default) then extended local
reorthogonalization is enforced.

If both RO, Q_old and T_old are provided, they must contain
a partial Lanczos tridiagonalization of A on the form

A Q_old = Q_old T_old + RO .

In this case the factorization is extended to dimension K x K by
continuing the Lanczos algorithm with RO as starting vector.

On exit ANORM contains an approximation to |[|A[|][_2.

IERR = 0 : K steps were performed successfully.

IERR > 0 : K steps were performed successfully, but the algorithm
switched to full reorthogonalization after IERR steps.

IERR < 0 : Iteration was terminated after -IERR steps because an

invariant subspace was found.
On exit WORK(1) contains the number of reorthogonalizations performed, and
WORK(2) contains the number of inner products performed in the
reorthogonalizations.

See also LANEIG, REORTH, COMPUTE_L.

References:
R. M. Larsen, ‘‘Lanczos bidiagonalization with partial
reorthogonalization’’,Tech. Report, Dept. of Computer Science,
Aarhus University, 1998.

G. H. Golub & C. F. Van Loan, "Matrix Computations",
3. Ed., Johns Hopkins, 1996. Chapter 9.

B. N. Parlett, ‘‘The Symmetric Eigenvalue Problem’’,
Prentice-Hall, Englewood Cliffs, NJ, 1980.

H. D. Simon, ‘‘The Lanczos algorithm with partial reorthogonalization’’,
Math. Comp. 42 (1984), no. 165, 115--142.
B.3 Source code

B.3.1 lansvd

This routine computes the singular values decomposition of a sparse matrix.

function [U,S,V,bnd] = lansvd(varargin)
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% Rasmus Munk Larsen, DAIMI, 1998

Tt b h b h ookt hhteth Parse and check input arguments. %%%hh%khh%khhhhhhhhhhhhkhl
if nargin<l | length(varargin)<1

error(’Not enough input arguments.’);
end

A = varargin{1};
if “isstr(A)
if “isreal(A)
error (’A must be real’)
end
Aisfunc = 0;
[m n] = size(A);
if length(varargin) < 2, k=min(min(m,n),6); else k=varargin{2}; end
if length(varargin) < 3, options = []; else options=varargin{3};end
else
if length(varargin)<4
error (’Not enough input arguments.’);
end
Aisfunc = 1;
Atrans = varargin{2};
if “isstr(Atrans)
error (’Atransfunc must be the name of a function’)

end
m = varargin{3};
n = varargin{4};

if length(varargin) < 5, k=min(min(m,n),6); else k=varargin{5}; end
if length(varargin) < 6, options = []; else options=varargin{6}; end
end

if “isnumeric(n) | real(abs(fix(n))) "= n | “isnumeric(m) | .
real(abs(fix(m))) "= m | “isnumeric(k) | real(abs(fix(k))) ~= k
error(’M, N and K must be positive integers.’)
end

% Quick return for min(m,n) equal to O or 1 or for zero A.
if min(n,m) < 1 | k<1
if nargout<3
U = zeros(k,1);
else
U = eye(m,k); S = zeros(k,k); V = eye(n,k); bnd = zeros(k,1);
end
return
elseif min(n,m) == 1 & k>0
if Aisfunc
% Extract the single column or row of A
if n==1
A = feval(A,1);
else
A = feval(Atramns,1)’;
end
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end

if nargout==
U = norm(A);

else

[U,S,V] = svd(full(A));
bnd = zeros(k,1);
end
return
end

% A is the matrix of all zeros (not detectable if A is a string)
if “Aisfunc
if nnz(A)==0
if nargout<3
U = zeros(k,1);
else
U = eye(m,k); S = zeros(k,k); V = eye(n,k); bnd = zeros(k,1);
end
return
end
end

lanmax = min(m,n);
tol = 16%*eps;
p = rand(m,1)-0.5;
% Parse options struct
if isstruct(options)
c = fieldnames(options);
for i=1:length(c)
if any(strcmp(c(i),’p0’)), p = getfield(options,’p0’); p=p(:); end
if any(strecmp(c(i),’tol’)), tol = getfield(options,’tol’); end
if any(strcmp(c(i),’lanmax’)), lanmax = getfield(options,’lanmax’); end
end
end

% Protect against absurd options.
tol = max(tol,eps);
lanmax = min(lanmax,min(m,n));
if size(p,1)"=m
error(’p0 must be a vector of length m’)
end

lanmax = min(lanmax,min(m,n));
if k>lanmax

error (’K must satisfy K <= LANMAX <= MIN(M,N).’);
end

Tttt hto ot htolotofote e Here begins the computation  %%h%hhhhhhtltsttsttstshtshtste
ksave = k;

neig = 0; nrestart=-1;

j = min(k+max(8,k),lanmax) ;

U=1[]; V=1[]; B=1[]; anorm = []; work = zeros(2,2);
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while neig < k

Tl IR IRk hhhhhh’h Compute Lanczos bidiagonalization %h%h%hhA%hhAAAKAL LKA
if isnumeric(A)
[U,B,V,p,ierr,w] = lanbpro(A,j,p,options,U,B,V,anorm);
else
[U,B,V,p,ierr,w]
end

lanbpro(A,Atrans,m,n, j,p,options,U,B,V,anorm) ;

work= work + w;
%printf (’j=, work = %e, work(FRD) = %e’,j,sum([m n]l*work(:,2)), (m+n)*j*(j+1)/2)

if ierr<0 % Invariant subspace of dimension -ierr found.
j = -ierr;
end

%l ot h o toteh et htitehhds Compute singular values and error bounds %%hkh%hhlhhhlhhlh
% Analyze B

resnrm = norm(p);

[P,S,Q] = svd(full([B; [zeros(l,j-1),resnrm]]),0); S = diag(S);

bot = min([P(end,1:j);Q(end,1:3)1)7;

% Use Largest Ritz value to estimate ||A||_2. This might save some
% reorth. in case of restart.
anorm=S (1) ;

% Set simple error bounds
bnd = resnrm*abs(bot);

% Examine gap structure and refine error bounds
bnd = refinebounds(S."2,bnd,n*eps*anorm) ;

TRhh ekt hhhhhhhhhh Check convergence criterion %%hhhhhhhhhhhletshhhhh
jj =1; neig = 0;
while jj<=min(j,k)

if (bnd(jj) <= tol*abs(S(jj)))

33 =331
neig = neig + 1;
else
33 = k+1
end
end

Whhhhhhh%% Check whether to stop or to extend the Krylov basis? %%A%hAhhhAhh%
if ierr<Q % Invariant subspace found
if j<k
warning([’Invariant subspace of dimension ’,num2str(j-1),’ found.’])
end
break;
end
if j>=lanmax % Maximal dimension of Krylov subspace reached. Bail out
if neig<ksave
warning ([’Maximum dimension of Krylov subspace exceeded prior’,...
> to convergence.’]);
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end
break;
end

% Increase dimension of Krylov subspace
h
if neig>1
j = j + ceil(min(20,max (2, ((j-1)*(k-neig+1))/(2*(neig+1)))));
elseif neig<k
j = j + ceil(min(20,max (8, (k-neig)/2)));
end
j = min(j,lanmax) ;
nrestart = nrestart + 1;
end

Nt lolo ot htolotetohtohhtete Lanczos converged (or failed). Prepare output %%hkhhhhlehithhisl
k = min(ksave,j);

if nargout>2
j = size(B,2);
% Compute eigenvectors
% [P,S,Q] = svd([full(B);[zeros(1,j-1),resnrm]],0); S = diag(S);

S = S(1:k);
Q =QC,1:k);
P =P(:,1:k);

% Compute and normalize Ritz vectors (overwrites U and V to save memory).
if resnrm™=0
U = [U,p/resnrm] *P;
else
U = UxP(1:j,:);
end
V = VxQ;
for i=1:k
nq = norm(V(:,1i));
if isfinite(nq) & nq~=0 & nq~=1
V(:,i) = V(:,1)/nq;
end
nq = norm(U(:,1i));
if isfinite(nq) & nq~=0 & nq~=1
U(:,i) = U(:,1)/ng;
end
end
end

% Pick out desired part the spectrum
S = S(1:k);
bnd = bnd(1:k);

if nargout<3
U =S;
S = B; % Undocumented feature - for checking B.
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else
S = diag(S);
end

B.3.2 lanbpro
This function implements the BPRO algorithm.

function [U,B_k,V,p,ierr,work] = lanbpro(varargin)
% Rasmus Munk Larsen, DAIMI, 1998.

% Check input arguments.
if nargin<l | length(varargin)<2
error (’Not enough input arguments.’);
end
narg=length(varargin) ;

A = varargin{1};
if “isstr(A)
if “isreal(A)
error (’A must be real’)
end
Aisfunc = 0;
[m n] = size(A);
k=varargin{2};
if narg < 3, p = rand(m,1)-0.5; else p=varargin{3}; end
if narg < 4, options = []; else options=varargin{4}; end
if narg > 4

if narg<7
error(’All or none of U_old, B_old and V_old must be provided.’)
else
U = varargin{5}; B_k = varargin{6}; V = varargin{7};
end
else
U=1[;Bk=10;V=1[;
end
if narg > 7, anorm=varargin{8}; else anorm = []; end
else
if narg<5
error (’Not enough input arguments.’);
end

Aisfunc = 1;

Atrans = varargin{2};

if “isstr(Atrans)
error (’Atransfunc must be the name of a function’)

end

m = varargin{3};

n = varargin{4};

if “isreal(n) | abs(fix(n)) "= n | “isreal(m) | abs(fix(m)) "= m
error (’M and N must be positive integers.’)

end

k=varargin{5};



B PROPACK: SPARSE SVD AND EIGENVALUE ROUTINES IN MATLAB

if narg < 6, p = rand(m,1)-0.5; else p=varargin{6}; end
if narg < 7, options = []; else options=varargin{7}; end
if narg > 7
if narg < 10
error(’All or none of U_old, B_old and V_old must be provided.’)

else
U = varargin{8}; B_k = varargin{9}; V = varargin{10};
end
else
U= [1; B.k = [1; v=[1;
end
if narg > 10, anorm=varargin{11}; else anorm = []; end
end

% Quick return for min(m,n) equal to O or 1.
if min(m,n) == 0
U=1[; Bk=1[; V=1[; p=1[00; ierr = 0; work = zeros(2,2);
return
elseif min(m,n) == 1
if isnumeric(A)
U=1; Bk =A; V=1; p=0; ierr = 0; work = zeros(2,2);
else
U=1; B_.k
end
if nargout<3
U = B_k;
end
return

feval(A,1); V= 1; p = 0; ierr = 0; work = zeros(2,2);

end

% Set optionms.
delta = sqrt(eps/k); % Desired level of orthogonality.

eta = 10xeps~(3/4); % Level of orth. after reorthogonalization.
cgs = 0; % Flag for switching between iterated MGS and CGS.
elr = 1; % Flag for switching extended local
% reorthogonalization on and off.
LL = 0; % Number of initial Lanczos vectors to reorthogonalize

% against.

% Parse options struct
if “isempty(options) & isstruct(options)
c = fieldnames(options);
for i=1:length(c)
if strmatch(c(i),’delta’), delta = getfield(options,’delta’); end
if strmatch(c(i),’eta’), eta = getfield(options,’eta’); end
if strmatch(c(i),’cgs’), cgs = getfield(options,’cgs’); end
if strmatch(c(i),’11’), LL = getfield(options,’11’); end
if strmatch(c(i),’elr’), elr = getfield(options,’elr’); end
end
end

if isempty(anorm)
anorm = []; est_anorm=1;
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else
est_anorm=0;
end

hhhhhhhhlotetotototothlohololole Here begins the computation  %hhhhhllelelelololeloleloststetstes

% Conservative statistical estimate on the size of round-off terms.
% Notice that {\bf u} == eps/2.
epsl = sqrt(max(m,n))*eps/2;

% Prepare for Lanczos iteration.
npu = 0; npv = 0; ierr = 0;
if isempty(U)
V = zeros(n,k); U = zeros(m,k);
beta = zeros(k+1,1); alpha = zeros(k,1);
beta(1l) = norm(p);
% Initialize MU/NU-recurrences for monitoring loss of orthogonality.
nu = zeros(k,1); mu = zeros(k,1);
mu(1)=1; nu(1)=1;

numax = zeros(k,1); mumax = zeros(k,1);
force_reorth = 0; mnreorthu = 0; nreorthv = 0;
jo = 1;

else
j = size(U,2); % Size of existing factorization
alpha = zeros(k+1,1); beta = zeros(k+1,1);
alpha(l:j) = diag(B_k); beta(2:j) = diag(B_k,-1);
beta(j+1) = norm(p);
% Reorthogonalize p.
if j<k & beta(j+1)*delta < anorm*epsli,

fro = 1;
ierr = j;
end
int = 1:j;
[p,beta(j+1) ,rr] = reorth(U,p,beta(j+1),int,0.5,cgs);
npu = rr*j; nreorthu = 1; force_reorth= 1;

% Compute Gerscgorin bound on ||B_k||_2
if est_anorm
anorm = sqrt(norm(B_k’*B_k,1));
end
mu = epsl*ones(k,1); nu = ones(k,1);
numax = zeros(k,1); mumax = zeros(k,1);
force_reorth = 1; nreorthu = 0; nreorthv = 0;

jO = j+1;
end
LLint = [];
if delta==0

fro = 1; % The user has requested full reorthogonalization.
else

fro = 0;
end
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% Perform Lanczos bidiagonalization partial reorthogonalization.
for j=jO:k
if beta(j) ~=0
U(:,j) = p/beta(j);
else
U(:,3) = p;
end

%htolhlhtehhth Lanczos step to generate v_j. %hhhkhlhithltels

if j==
if “Aisfunc
r = A’xU(:,1);
else
r = feval(Atrans,U(:,1));
end
alpha(1l) = norm(r);
if est_anorm
anorm = alpha(1);
end
else
if “Aisfunc
r = A’xU(:,j) - beta(j)*V(:,j-1);

else
r = feval(Atrans,U(:,j)) - beta(j)*V(:,j-1);
end
% Extended local reorthogonalization
if elr
for i=1:1

t = V(:,j-1) 7 *r;
r=r - V(:,j-1)*t;
if beta(j) "= 0
beta(j) = beta(j) + t;
end
end
end
alpha(j) = norm(r);

if est_anorm

if j==
anorm = max(anorm,sqrt(alpha(1l) "2+beta(2) "2+alpha(2)*beta(2)));
else
anorm = max(anorm,sqrt(alpha(j-1)"2+beta(j) “2+alpha(j-1)*beta(j-1)+ ...
alpha(j)*beta(j)));
end
end

% Possibly orthogonalize against first LL Lanczos vectors.
if LL>0
LLint = 1:min(j-1,LL);
[r,alpha(j),rr] = reorth(V,r,alpha(j),LLint,0.5,cgs);
npv = npv + rr*LL;
nu(LLint) = epsl; % Reset nu for orthogonalized vectors.
% so they do not contribute to new nu-bounds.
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end

if “fro
% Update estimates of the level of orthogonality for the
% columns 1 through j-1 in V.
nu = update_nu(nu,mu,j,epsl,alpha,beta,anorm);
nu(LLint) = epsl; % Reset nu for orthogonalized vectors.
numax(j) = max(abs(nu(l:j-1)));

end

% IF level of orthogonality is worse than delta THEN
% Reorthogonalize v_j against some previous v_i’s, 0<=i<j.
if ( fro | numax(j) > delta | force_reorth )
% Decide which vectors to orthogonalize against:
if fro
int = LL+1:j-1;
elseif force_reorth==0
int = compute_int(nu,j-1,delta,eta,LL,0,0);

end
% Else use int from last reorth. to avoid spillover from mu_{j-1}
% to nu_j.

% Reorthogonalize v_j using Modified Gramm-Schmidt.
[r,alpha(j),rr] = reorth(V,r,alpha(j),int,0.5,cgs);
npv = npv + rr*xlength(int); % number of inner products.
nu(int) = epsl; J Reset nu for orthogonalized vectors.
if force_reorth==0
force_reorth = 1; % Force reorthogonalization of u_{j+1} to avoid
% spillover into nu_{j+1}
else
force_reorth = 0;
end
nreorthv = nreorthv + 1;
end
end

% Check for convergence of invariant subspace or failure to
% maintain semiorthogonality
if alpha(j) < max(n,m)*anormxeps & j<k,
% If alpha is "small" we deflate by setting it
% to 0 and attempt to restart with a basis for a new
% invariant subspace by replacing r with a random starting vector:
alpha(j) = 0;
bailout = 1;
for attempt=1:3
r = rand(m,1)-0.5;
if “Aisfunc

r = A’ *r;
else

r = feval(Atrans,r);
end

nrm=sqrt(r’*r); % not necessary to compute the norm accurately here.
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int = 1:j-1;
[r,nrmnew,rr] = reorth(V,r,nrm,int,0.5,cgs);
npv = npv + rr*length(int(:)); nreorthv = nreorthv + 1;

if nrmnew > 0
% A vector numerically orthogonal to span(Q_k(:,1:j)) was found.
% Continue iteration.
bailout=0;
break;
end
end
if bailout
i=31
ierr = -j;
break;
else
r=r/nrmnew; % Continue with new normalized r as starting vector.
nu(l:j-1) = epsi;
force_reorth = 1;

if delta>0
fro = 0; % Turn off full reorthogonalization.
end
end
elseif j<k & “fro & anorm*epsl > delta*alpha(j)
fro = 1;
ierr = j;

end

if alpha(j) "= 0
V(:,j) = r/alpha(j);
else
V(:,j) = r;
end

%htothhhthhhh Lanczos step to generate u_{j+1}. %hhhhhththhth
if "Aisfunc
p = AxV(:,j) - alpha(j)*U(:,j);

else
p = feval(A,V(:,j)) - alpha(j)*U(:,j);
end
% Extended local reorthogonalization
if elr
for i=1:1
t = U(:,]) > *p;
p=p - UC,jl*t;

if alpha(j) "= 0
alpha(j) = alpha(j) + t;
end
end
end
beta(j+1) = norm(p);

% Possibly orthogonalize against first LL Lanczos vectors.
if LL>0

72



B PROPACK: SPARSE SVD AND EIGENVALUE ROUTINES IN MATLAB 73

LLint = 1:min(j,LL);
[p,beta(j+1),rr] = reorth(U,p,beta(j+1),LLint,0.5,cgs);
npu = npu + rrx*LL;
mu(LLint) = epsl; % Reset nu for vectors that have been orthogonalized.
% so they do not contribute to new nu-bounds.
end

if est_anorm
% We should update estimate of ||A|| before updating mu - especially
% important in the first step for problems with large norm since alpha(1)
% may be a severe underestimate!

if j==
anorm = max(anorm,sqrt (alpha(1) "2+beta(2)"2));
else
anorm = max(anorm,sqrt(alpha(j) “2+beta(j+1)"2 + alpha(j)*beta(j)));
end
end
if “fro

% Update estimates of the level of orthogonality for the columns of V.
mu = update_mu(mu,nu,j,epsl,alpha,beta,anorm);
mu(LLint) = epsi;
mumax(j) = max(abs(mu(1:j)));
end

% IF level of orthogonality is worse than delta THEN
% Reorthogonalize u_{j+1} against some previous u_i’s, 0<=i<=j.
if (fro | mumax(j) > delta | force_reorth)
% Decide which vectors to orthogonalize against.
if fro
int = LL+1:j;
elseif force_reorth==0
int = compute_int(mu,j,delta,eta,LL,0,0);
end
% Else use int from last reorth. to avoid spillover from nu to mu.

% Reorthogonalize u_{j+1} using Modified Gramm-Schmidt.
[p,beta(j+1),rr] = reorth(U,p,beta(j+1),int,0.5,cgs);
npu = npu + rrxlength(int); nreorthu = nreorthu + 1;

% Reset mu to epsilon.
mu(int) = epsl;
if force_reorth==0
force_reorth = 1; % Force reorthogonalization of v_{j+1}.
else
force_reorth = 0;
end
end

% Check for convergence of invariant subspace or failure to
% maintain semiorthogonality
if beta(j+1) < max(m,n)*anormxeps & j<k,
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% If beta is "small" we deflate by setting it
% to 0 and attempt to restart with a basis for a new
% invariant subspace by replacing p with a random starting vector:
beta(j+1) = 0;
bailout = 1;
for attempt=1:3
p = rand(n,1)-0.5;
if "Aisfunc

p = Axp;
else

p = feval(A,p);
end

nrm=sqrt(p’*p); % not necessary to compute the norm accurately here.

int = 1:j;
[p,nrmnew,rr] = reorth(U,p,nrm,int,0.5,cgs);
npu = npu + rr*length(int(:)); nreorthu = nreorthu + 1;
if nrmnew > 0O
% A vector numerically orthogonal to span(Q_k(:,1:j)) was found.
% Continue iteration.
bailout=0;
break;
end
end
if bailout
ierr = -j;
break;
else
p=p/nrmnew; % Continue with new normalized p as starting vector.
mu(l:j) = epsl;
force_reorth = 1;

if delta>0
fro = 0; % Turn off full reorthogonalization.
end
end
elseif j<k & “fro & anorm*epsl > deltaxbeta(j+1)
fro = 1;
ierr = j;
end
end
k=min(k,j);

B_k = spdiags([alpha(l:k) [beta(2:k);0]1,[0 -1]1,k,k);
if nargout==

U = B_k;
else
U=10(,1:k);
V=vV(,1:k);
end

if nargout>5
work = [[nreorthu,npu]; [nreorthv,npv]];
end
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B.3.3 laneig
This routine computes the eigenvalues and eigenvectors of a sparse symmetric matrix.

function [V,D,bnd] = laneig(A,nin,k,part,options)
% Rasmus Munk Larsen, DAIMI, 1998
Tt bbbt hhhhihh Parse and check input arguments. %h%h%hh%AhAGAAANALLAA AN

if “isstr(4)
if nargin<1
error(’Not enough input arguments.’);
end
[m n] = size(A);
if m™=n | “isequal(A,A’) | “isreal(A)
error (’A must be real symmetric’)
end
if nargin < 4 | isempty(part)
options = [];
else
options = part;
end
if nargin < 3 | isempty(k), part = ’AL’; else, part = k; end
if nargin < 2 | isempty(nin), k = min(min(lanmax,n),5); else, k = nin; end
else
if nargin<2
error(’Not enough input arguments.’);
end
n = nin;
if nargin < 5 | isempty(options)
options.tol = 16*eps;
options.lanmax = n;
options.v0 = rand(n,1)-0.5;
end
if nargin < 4
if nargin < 3

| isempty(part), part = ’AL’; end
| isempty(k), k = min(n,5); end

end

if “isnumeric(k) | real(abs(fix(k))) =k | ~“isnumeric(n) | real(abs(fix(n))) =n
error (’Input arguments N and K must be positive integers.’)

end

if “isstr(part)
error (’Input argument PART must be a string.’)
end

% Quick return for n==1 or n==0

if n==0
v =1[1;
D = [1;
bnd =[];
return

end

if n ==

if isnumeric(A)
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1]
N = =

D = feval(A,1);
1;

end
if nargout<2
V=D;
end
return
end

lanmax = n;
tol = 16*eps;
r = rand(n,1)-0.5;
% Parse options struct
if “isempty(options) & isstruct(options)
c = fieldnames(options);
for i=1:length(c)
if strmatch(c(i),’v0’), r = getfield(options,’v0’); r=r(:); end
if strmatch(c(i),’tol’), tol = getfield(options,’tol’); end
if strmatch(c(i),’lanmax’), lanmax = getfield(options,’lanmax’); end
end
end

% Protect against absurd arguments.
tol = max(tol,eps);
lanmax = min(lanmax,n);
if size(r,1)"=n
error (’v0 must be a vector of length n’)
end
lanmax = min(lanmax,n);
if k>lanmax
error (’K must satisfy K <= LANMAX <= N.’);
end
ksave = k;
neig = 0; nrestart=-1;
if strcmp(part,’AL’) | strcmp(part,’AS’)
j = min(2*xk+2,lanmax) ;
else
j = min(k+1,lanmax);
end

T D DD DAL D Db b D Am A% %A% Here begins the computation hhhhhUhhhhhhhhhhhhhhhh%
V=1[; T=[]; anorm = []; work = zeros(1,2); rnorm=0;
while neig < k
Tt bt hhh il thth Compute Lanczos tridiagonalization %Ahhh%A%hhhAANAAA %A
if rnorm > eps*anorm
i=3%
end
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j = min(lanmax, j+mod(j,2));
% "Trick" to avoid unwanted zero eigenvalues when laneig is used for
% SVD calculations. (Nothing to if lanmax is odd, though.)

if isnumeric(A)
[V,T,r,anorm,ierr,w] = lanpro(A,j,r,options,V,T,anorm) ;
else
[V,T,r,anorm,ierr,w]
end

lanpro(A,n,j,r,options,V,T,anorm);
work= work + w;

if ierr<0 % Invariant subspace of dimension -ierr found.
j = -ierr;
end

"l hhhhhhhhhhhhhhdh Compute eigenvalues and error bounds %h%hh%h%hhhhhhh A NAS
% Analyze T
rnorm = norm(r);
if rnorm > eps*anorm
% Might as well use the extra informatiom...
[D,top,bot,err] = tqlb([full(diag(T));0],full([0;diag(T,1) ;rnorm]));
else
[D,top,bot,err]
end
[D,I] = sort(D);
bot = bot(I);
if err>0
printf([’TQLB failed. Eigenvalue no. %i did not converge in 30’,
’ iterations’],err);

tqlb([full(diag(T))],full([0;diag(T,1)1));

end

% Set simple error bounds
bnd = rnormx*abs(bot) ;

% Use ||T_k||_2 for accurate estimate of ||A[|]|_2.
% In case of restart it usually saves some reorthogonalizations.
anorm = max(D);

% Estimate gap structure and refine error bounds
bnd = refinebounds(D,bnd,n*eps*anorm) ;

if rnorm > eps*anorm
§ = 3+
end

ottt lolalohlolotototololalote Check convergence criterion hhkhhhiietelollstslolotelolslols
% Reorder eigenvalues according to PART
switch part

case ’AS’
IPART = 1:j;
case ’AL’

IPART = j:-1:1;
case LM’

7



B PROPACK: SPARSE SVD AND EIGENVALUE ROUTINES IN MATLAB 78

[dummy , IPART] = sort(-abs(D));
case ’BE’
mid = ceil(k/2);
IPART = [[1:min(j,mid-1)], [max(1,j-mid+1):j1];
end
D = D(IPART); bnd = bnd(IPART);

% Check if enough have converged.
jj =1; neig = 0;
while jj<=min(j,k)

if (bnd(jj) <= tol*abs(D(jj)))

33 =33+
neig = neig + 1;
else
3j = k+1;
end
end

%hotototitehtetohte Check whether to stop or to extend the Krylov basis? %%hh%hhhhhh
if ierr<0 % Invariant subspace found
if j<k
warning ([’ Invariant subspace of dimension ’,num2str(j-1),’ found.’])
end
break;
end
if j>=lanmax } Maximal dimension of Krylov subspace reached => Bail out!
if neig<ksave
warning ([’Maximum dimension of Krylov subspace exceeded prior’,...
’ to convergence.’]);
end
break;
end
% Increase dimension of Krylov subspace and try again.
if neig>1
j = j + ceil(min(20,max (2, ((j-1)*(k-neig+1))/(2*(neig+1)))));
elseif neig<k
j = j + ceil(min(20,max (8, (k-neig)/2)));
end
j = min(j,lanmax) ;
nrestart = nrestart + 1;
end

%hl btttk h ettt Lanczos converged (or failed). Prepare output %%hkhhhhthhlthis
k = min(ksave,j);
if nargout>1
% Compute eigenvectors
[Q,D] = eig(full(T)); D = diag(D);
[D,I]1 = sort(D);
D = D(IPART(1:k));
Q = Q(:,I(IPART(1:k)));
% Compute and normalize Ritz vectors (overwrite V to save memory).
V = VxQ;
for i=1:k
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nq = norm(V(:,1i));
if isfinite(nq) & nq™=0
V(:,i) = V(:,1)/nq;
end
end
end

% Pick out desired part of the spectrum
D = D(1:k);
bnd = bnd(1:k);

if nargout<2

V = D;
else

D = diag(D);
end
B.3.4 lanpro

This routine implements the PRO algorithm.

function [Q_k,T_k,r,anorm,ierr,work] = lanpro(A,nin,kmax,r,options,...
Q_k,T_k,anorm)

% Rasmus Munk Larsen, DAIMI, 1998

% Check input arguments.
if “isstr(4)
Aisfunc = 0;
if nargin<l, error(’Not enough input arguments.’); end
[m n] = size(A);
if m"=n | “isequal(A,A’) | “isreal(d)
error (’A must be real symmetric’)
end
if nargin<7 | isempty(T_k),
anorm = []; est_anorm=1;
else,
anorm = T_k; est_anorm=0;
end
if nargin<6, Q_k=[]; T_k=[]; else, T_k = Q_k; Q_k = options; end
if nargin<4 | isempty(r), options = []; else, options = r; end
if nargin<3 | isempty(kmax),
r = rand(n,1)-0.5;
else
r = kmax;
end

if nargin<2 | isempty(nin); kmax = max(10,n/10); else, kmax = nin; end

else
Aisfunc = 1;
if nargin<2
error(’Not enough input arguments.’);
end
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% Check input functions and parse to create an internal object
% if an explicit expression is given.
[A, msg] = fcnchk(A);
if “isempty(msg)
error (msg) ;
end
n = nin;
if nargin<8 | isempty(anorm), anorm = []; est_anorm=1; else est_anorm=0; end
if nargin<7, Q_k=[]; T_k=[]; end
if nargin<b | isempty(options), options = []; end
if nargin<4 | isempty(r), r = rand(n,1)-0.5; end
if nargin<3 | isempty(kmax); kmax = max(10,n/10); end
end

% Set options.
delta = sqrt(eps/kmax); % Desired level of orthogonality.

eta = 10xeps”(3/4); % Level of orth. after reorthogonalization.
cgs = 0; % Flag for switching between iterated CGS and MGS.
elr = 1; % Flag for switching extended local

% reorthogonalization on and off.

% Parse options struct
if “isempty(options) & isstruct(options)
c = fieldnames(options);
for i=1:length(c)
if strmatch(c(i),’delta’), delta = getfield(options,’delta’); end
if strmatch(c(i),’eta’), eta = getfield(options,’eta’); end
if strmatch(c(i),’cgs’), cgs = getfield(options,’cgs’); end
if strmatch(c(i),’elr’), elr = getfield(options,’elr’); end
end
end

np = 0; nr = 0; ierr=0;
Wttt hhhhthhhhhhhhhhhle Here begins the computation %hhhh%hkhhhhehshhhhtetetsthh

% Rule-of-thumb estimate on the size of round-off terms:
epsl = sqrt(n)*eps/2; % Notice that {\bf u} == eps/2.

% Prepare Lanczos iteration
if isempty(Q_k) % New Lanczos tridiagonalization.
% Allocate space
alpha = zeros(kmax+1,1); beta = zeros(kmax+1,1);
Q_k = zeros(n,kmax);
q = zeros(n,1); beta(l)=norm(r);
omega = zeros(kmax,1); omega_max = omega; omega_old = omega;
omega(l) = 0; force_reorth= 0;
jo = 1;
else % Extending existing Lanczos tridiagonalization.
j = size(Q_k,2); % Size of existing factorization
% Allocate space
Q_k = [Q_k zeros(n,kmax-j)];
alpha = zeros(kmax+1,1); beta = zeros(kmax+1,1);
alpha(l:j) = diag(T_k); beta(2:j) = diag(T_k,-1);
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q = 0Qk(:,3);

% Reorthogonalize r.

beta(j+1) = norm(r);

if j<kmax & beta(j+1)*delta < anormxepsi,

fro = 1;
ierr = j;
end
int = 1:j;
[r,beta(j+1) ,rr] = reorth(Q_k,r,beta(j+1),int,0.5,cgs);
np = rr*j; nr = 1; force_reorth= 1;

% Compute Gerscgorin bound on ||T_k||_2 as SQRT(||T_k’*T_k||_1)
if est_anorm
anorm = sqrt(norm(T_k’*T_k,1));
end
omega = epslx*ones(kmax,1); omega_max = omega; omega_old = omega;
jo = j+1;
end

if delta==

fro = 1; % The user has requested full reorthogonalization.
else

fro = 0;
end

for j=jO:kmax,
% Lanczos Step:

q-old = q;
if beta(j)==0
q=r;
else
q = r / beta(j);
end
Q_k(:,j) = q;
if "Aisfunc
u = Axq;
else
u = feval(A,q);
end

r = u - beta(j)*q_old;
alpha(j) = q’*r;
r = r - alpha(j)*q;

% Extended local reorthogonalization:

if elr
if j==

t1=0;

for i=1:2
t = q’*r;
r = r-qg*t;
t1 = tl+t;

end

alpha(j) = alpha(j) + t1;
elseif j>1
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tl = gq_old’*r;

t2 = q’*r;
r =r - (g_old*tl + g*t2); % Add small terms together first to
if beta(j)~=0 % reduce risk of cancellation.
beta(j) = beta(j) + ti;
end
alpha(j) = alpha(j) + t2;
end

end
beta(j+1) = sqrt(r’*r); % Quick and dirty estimate.

% Update Gersgorin estimate of ||T_k|| if required
if est_anorm & beta(j+1)~=0

anorm = update_gbound (anorm,alpha,beta,j);
end

% Update omega-recurrence
if j>1 & “fro & beta(j+1)~=0
[omega,omega_old] = update_omega(omega,omega_old,j,alpha,beta,...
epsl,anorm) ;
omega_max(j) = max(abs(omega));
end

% Reorthogonalize if required
if j>1 & (fro | force_reorth | omega_max(j)>delta) & beta(j+1)~=0
if fro
int = 1:j;
else
if force_reorth ==
force_reorth= 1; % Do forced reorth to avoid spill-over from q_{j-1}.
int = compute_int (omega, j,delta,eta,0,0,0);
else
force_reorth= 0;
end
end
[r,beta(j+1) ,rr] = reorth(Q_k,r,beta(j+1),int,0.5,cgs);
omega(int) = epsl;

np = np + rrxlength(int(:)); nr = nr + 1;
else

beta(j+1) = norm(r); % compute norm accurately.
end

if j<kmax & beta(j+1) < n*anorm*eps |,

% If beta is "small" we deflate by setting the off-diagonals of T_k
% to 0 and attempt to restart with a basis for a new
% invariant subspace by replacing r with a random starting vector:
beta(j+1) = 0;
bailout = 1;
for attempt=1:3

r = rand(n,1)-0.5;

if "Aisfunc

r = Axr;
else
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r = feval(A,r);

end

nrm=sqrt(r’*r); % not necessary to compute the norm accurately here.
int = 1:j;

[r,nrmnew,rr] = reorth(Q_k,r,nrm,int,0.5,cgs);

np = np + rrxlength(int(:)); nr = nr + 1;

if nrmnew > 0O
% A vector numerically orthogonal to span(Q_k(:,1:j)) was found.
% Continue iteration.
bailout=0;
break;
end

end
if bailout

ierr = -j;
break;

else

r=r/nrmnew; 7% Continue with new normalized r as starting vector.
force_reorth = 1;
omega(:) = epsi;

if delta>0
fro = 0; % Turn off full reorthogonalization.
end
end

elseif j<kmax & ~“fro & beta(j+1)*delta < anorm*epsl,

If anorm*epsl/beta(j+1) > delta then omega(j+1) will

immediately exceed delta, and thus forcing a reorth. to occur at the

% next step. The components of omega will mainly be determined
% by the initial value and not the recurrence, and therefore we
% cannot tell reliably which components exceed eta => we might
% as well switch to full reorthogonalization to avoid trouble.
% The user is probably trying to determine pathologically
% small ( < sqrt(eps)*||A||_2 ) eigenvalues.
fro = 1;
ierr = j;
end
end
% Set up tridiagonal T_k in sparse matrix data structure.
T_k = spdiags([[beta(2:j);0] alpha(1l:j) beta(1:j)],-1:1,3,3);
if nargout<2
Q_k = T_k;
else

Qk = Q_k(:,1:3);
work = [nr np];

end

B.3.5

reorth

83

This routine implements iterated classical or iterated modified Gram-Schmidt reorthogonal-
ization.

function [r,normr,nre] = reorth(Q,r,normr,index,alpha,method)
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%REORTH  Reorthogonalize a vector using iterated Gram-Schmidt

% [R_NEW,NORMR_NEW,NRE] = reorth(Q,R,NORMR,INDEX,ALPHA,METHOD)

% reorthogonalizes R against the subset of columns of Q given by INDEX.

% If INDEX==[] then R is reorthogonalized all columns of Q.

% If the result R_NEW has a small norm, i.e. if norm(R_NEW) < ALPHA*NORMR,
% then a second reorthogonalization is performed. If the norm of R_NEW

% is once more decreased by more than a factor of ALPHA then R is

% numerically in span(Q(:,INDEX)) and a zero-vector is returned for R_NEW.

% If method==0 then iterated modified Gram-Schmidt is used.
% If method==1 then iterated classical Gram-Schmidt is used.

% The default value for ALPHA is 0.5.
% NRE is the number of reorthogonalizations performed (1 or 2).

% References:
% Aake Bjorck, "Numerical Methods for Least Squares Problems",
% SIAM, Philadelphia, 1996, pp. 68-69.

% J. W. Daniel, W. B. Gragg, L. Kaufman and G. W. Stewart,

% ‘‘Reorthogonalization and Stable Algorithms Updating the

% Gram-Schmidt QR Factorization’’, Math. Comp., 30 (1976), no.
% 136, pp- 772-795.

% B. N. Parlett, ‘‘The Symmetric Eigenvalue Problem’’,
% Prentice-Hall, Englewood Cliffs, NJ, 1980. pp. 105-109

% Rasmus Munk Larsen, DAIMI, 1998.

% Check input arguments.
if nargin<2
error (’Not enough input arguments.’)
end
[n k1] = size(Q);

if nargin<3 | isempty(normr)
normr = norm(r);

end

if nargin<4 | isempty(index)

k = ki;

index = [1:k]’;

simple = 1;
else

k = length(index);
if k==k1 & index(:)==[1:k]’

simple = 1;
else

simple = 0;
end

end
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if nargin<b | isempty(alpha)
alpha=0.5; % This choice garanties that
% |l Q°T*r_new - e_{k+1} ||_2 <= 2*eps*||r_new||_2.
% cf. Kahans ‘‘twice is enough’’ statement proved in
% Parletts book.
end
if nargin<6 | isempty(method)
method = 0;
end

normr_old=normr;

if method==1
if simple
r =1 - Q%(Q’*r);
else
r =r - Q(:,index)*(Q(:,index) ’*r);
end
else
for i=index, r = r-Q(:,i)*(Q(:,i)’*r); end
end
nre = 1;
normr = norm(r);
if normr < alpha*normr_old
if method==
if simple
r =1 - Qx(Q’*r);
else
r =1 - Q(:,index)*(Q(:,index) ’*r);
end
else
for i=index, r = r-Q(:,i)*(Q(:,i)’*r); end
end
normr_old=normr;
normr = norm(r);
if normr < alpha*normr_old
% r is in span(Q) to full accuracy => accept r = 0 as the new vector.
r = zeros(n,1);
normr = 0;
end
nre = 2;
end

B.3.6 compute L

This function computes the index sets E;‘ 41 and L7 that determine which vectors to include
in the reorthogonalization.

function L = compute_L(mu,j,delta,eta,LL,strategy,extra)

%COMPUTE_L: Determine which Lanczos vectors to reorthogonalize against.
h

% L = compute_L(mu,eta,LL,strategy,extra))
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yA

% Strategy 0: Orthogonalize vectors v_{i-r-extra},...,v_{i},...v_{i+s+extra}
% with nu>eta, where v_{i} are the vectors with mu>delta.

% Strategy 1: Orthogonalize all vectors v_{r-extra},...,v_{s+extra} where

% v_{r} is the first and v_{s} the last Lanczos vector with

% mu > eta.

%  Strategy 2: Orthogonalize all vectors with mu > eta.

h

% Notice: The first LL vectors are excluded since the new Lanczos
% vector is already orthogonalized against them in the main iteration.

% Rasmus Munk Larsen, DAIMI, 1998.

if (delta<eta)
error (’DELTA should satisfy DELTA >= ETA.’)
end
switch strategy
case 0
I0 = find(abs(mu(l:j))>=delta);
if length(I0)==0
[mm,I0] = max(abs(mu));
end
L = zeros(j,1);
for i = 1:1ength(I0)
for r=I0(i):-1:1
if L(r)==1 | abs(mu(r))<eta,
break;
else
L(r) = 1;
end
end
L(max(1,r-extra+l):r) = 1;
for s=I0(i)+1:]
if L(s)==1 | abs(mu(s))<eta,
break;
else
L(s) = 1;
end
end
L(s:min(j,s+extra-1)) = 1;
end
if LL>0
L(1:LL) = 0;
end
L = find(L);
case 1
L=find(abs(mu(l:j))>eta);
L = max(LL+1,min(L)-extra) :min(max(L)+extra,j);
case 2
L=find(abs(mu(1:j))>=eta);
end
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B.3.7 update_mu, update_nu
These functions implement the updating rules for p;41; and v;;.

function mu = update_mu(muold,nu,j,epsl,alpha,beta,anorm)
% UPDATE_MU: Update the mu-recurrence for the u-vectors.
%

% mu_new = update_mu(mu,nu,j,epsl,alpha,beta,anorm)

% Rasmus Munk Larsen, DAIMI, 1998.

mu = muold;

T = anorm*epsi;
if j==

mu(1l) = T / beta(2);
else

mu(1) = alpha(1)#*nu(1) - alpha(j)*mu(1);

mu (1) (mu(1) + sign(mu(1))*T) / beta(j+1);

% Vectorized version of loop:

k=2:j-1;

mu(k) = alpha(k).*nu(k) + beta(k).*nu(k-1) - alpha(j).*mu(k);
mu(k) = (mu(k) + sign(mu(k)).*T) ./ beta(j+1);

mu(j) = beta(j)*nu(j-1);

mu(j) = (mu(j) + sign(mu(j))*T) / beta(j+1);
end
mu(j+1) = 1;

function nu = update_nu(nuold,mu,j,epsl,alpha,beta,anorm)

% UPDATE_MU: Update the nu-recurrence for the v-vectors.
T

% nu_new = update_nu(nu,mu,j,epsl,alpha,beta,anorm)
% Rasmus Munk Larsen, DAIMI, 1998.

nu = nuold;

T = anorm*epsli;

k=1:(j-1);

nu(k) = beta(k+1).*mu(k+1) + alpha(k).*mu(k) - beta(j).*nu(k);
nu (k) (nu(k) + sign(nu(k)).*T) ./ alpha(j);

nu(j) = 1;

B.3.8 update_omega
This routine updates the w-recurrence in the PRO algorithm.

function [omega,omega_old] = update_omega(omega, omega_old, j,
alpha,beta,epsl,anorm)
% UPDATE_OMEGA: Update Simon’s omega_recurrence for the Lanczos vectors.

h

% [omega,omega_old] = update_omega(omega, omega_old,j,epsl,alpha,beta,anorm)
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%
% Rasmus Munk Larsen, DAIMI, 1998.

% Estimate of contribution to roundoff errors from Axv

% f1(Axv) = Axv + f,

% where ||f|| \approx epsix||A]|].

% For a full matrix A, a rule-of-thumb estimate is epsl = sqrt(n)*eps.
T = epsl*anorm;

binv = 1/beta(j+1);

omega_old = omega;

% Update omega(l) using omega(0)==0.

omega_old(1)= beta(2)*omega(2)+ (alpha(1l)-alpha(j))*omega(l) -
beta(j)*omega_old(1);

omega_0ld(1) = binv*(omega_old(1l) + sign(omega_o01d(1))*T);

% Update remaining components.

k=2:j-2;

omega_old(k) = beta(k+1).xomega(k+1l) + (alpha(k)-alpha(j)).*omega(k)

+ beta(k) .*omega(k-1) - beta(j)*omega_old (k) ;

omega_old(k) = binv*(omega_old(k) + sign(omega_old(k))*T);

omega_o0ld(j-1) = binvx*T;

% Swap omega and omega_old.

temp = omega;

omega = omega_old;

omega_old = omega;

omega(j) = epsl;

B.3.9 refinebounds

This routine refines the error bounds of the eigenvalues of a symmetric matrix based on the
gap-structure.

function [bnd,gap] = refinebounds(D,bnd,toll)

%REFINEBONDS Refines error bounds for Ritz values based on gap-structure
% If the GAP for the ith eigenvalues is defined as

% GAP(i) == min_{i "= k} | LAMBDA(i) - LAMBDA(k) |

% then BND = REFINEBOUNDS (LAMBDA,BND,TOL1) refines the error bounds for
% isolated eigenvalues where GAP(i) > BND(i) by replacing

% BND(i) with BND(i)"2/gap.

% Eigenvalues closer than TOL1 are treated as a cluster.
% Rasmus Munk Larsen, DAIMI, 1998

j = length(D);

% Sort eigenvalues to use interlacing theorem correctly
[D,PERM] = sort(D);

bnd = bnd (PERM) ;

% Massage error bounds for very close Ritz values
eps34 = sqrt(eps*sqrt(eps));
[y,mid] = max(bnd);
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for 1=[-1,1]

for i=((j+1)-1*(j-1))/2:1:mid-1
if abs(D(i+1)-D(i)) < eps34*abs(D(i))
if bnd(i)>toll & bnd(i+l)>toll
bnd(i+l) = pythag(bnd(i),bnd(i+1));

bnd(i) = 0;
end
end
end
end
% Refine error bounds

gap = inf*ones(1,j);

gap(1:j-1) = min([gap(1:j-1);[D(2:3j)-bnd(2:3)-D(1:j-1)1°1);
gap(2:j) = min([gap(2:3);[D(2:j)-D(1:j-1)-bnd(1:j-1)1°1);
gap = gap(:);

I

= find(gap>bnd) ;

bnd(I) = bnd(I).*(bnd(I)./gap(I));

bnd (PERM) = bnd; % Undo permutation.

B.3.10 update_ghound

This routine updates the estimate of the 2-norm of a tridiagonal matrix.

function anorm = update_gbound(anorm,alpha,beta,j)
%UPDATE_GBOUND Update Gerscgorin estimate of 2-norm

t

ANORM = UPDATE_GBOUND (ANORM,ALPHA,BETA,J) updates the Gersgorin bound
for the tridiagonal in the Lanczos process after the J’th step.
Applies Gerscgorins circles to T_k’*T_k instead of T_k itself

since this gives a tighter bound.

Rasmus Munk Larsen, DAIMI, 1998

if j==1 % Apply Gerscgorin circles to T_k’*T_k to estimate || A |[_2

i=j;

% scale to avoid overflow

scale = max(abs(alpha(i)),abs(beta(i+1)));

alpha(i) = alpha(i)/scale;

beta(i+1l) = beta(i+l)/scale;

anorm = 1.01*scale*sqrt(alpha(i) "2+beta(i+1) "2 + abs(alpha(i)*beta(i+1)));

elseif j==

i=1;

% scale to avoid overflow

scale = max(max(abs(alpha(1:2)),max(abs(beta(2:3)))));
alpha(1:2) = alpha(1:2)/scale;

beta(2:3) = beta(2:3)/scale;

anorm = max(anorm, scale*sqrt(alpha(i) "2+beta(i+1)"2 + ...
abs(alpha(i)*beta(i+1) + alpha(i+1)*beta(i+1)) + ...
abs(beta(i+1) *beta(i+2))));

i=2;

anorm = max(anorm,scalex*sqrt(abs(beta(i)*alpha(i-1) + alpha(i)*beta(i)) + ...

beta(i) "2+alpha(i) ~“2+beta(i+1) "2 +
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abs(alpha(i)*beta(i+1))) );
elseif j==
% scale to avoid overflow
scale = max(max(abs(alpha(1:3)),max(abs(beta(2:4)))));
alpha(1:3) = alpha(1:3)/scale;
beta(2:4) = beta(2:4)/scale;
i=2;

anorm = max(anorm,scalexsqrt(abs(beta(i)*alpha(i-1) + alpha(i)*beta(i)) + ...

beta(i) "2+alpha(i) "2+beta(i+1)"2 +
abs(alpha(i)*beta(i+l) + alpha(i+1)*beta(i+l)) + ...
abs(beta(i+1) *beta(i+2))) );

i=3;

anorm = max(anorm,scalexsqrt(abs(beta(i)*beta(i-1)) + ...
abs(beta(i)*alpha(i-1) + alpha(i)*beta(i)) + ...
beta(i) "2+alpha(i) “2+beta(i+1) "2 +
abs(alpha(i)*beta(i+1))) );

else

% Avoid scaling, which is slow. At j>3 the estimate is usually quite good

% so just make sure that anorm is not made infinite by overflow.

i=j-1;

anorml = sqrt(abs(beta(i)*beta(i-1)) + ...
abs(beta(i)*alpha(i-1) + alpha(i)*beta(i)) + ...
beta(i) "2+alpha(i) ~"2+beta(i+1) "2 +
abs(alpha(i)*beta(i+1) + alpha(i+1)*beta(i+1)) + ...
abs(beta(i+1) *beta(i+2)));

if isfinite(anorml)

anorm = max(anorm,anorml) ;

end

i=13;

anorml = sqrt(abs(beta(i)*beta(i-1)) + ...
abs(beta(i)*alpha(i-1) + alpha(i)*beta(i)) + ...
beta(i) "2+alpha(i) "2+beta(i+1)"2 +
abs(alpha(i)*beta(i+1)));

if isfinite(anorml)

anorm = max(anorm,anorml) ;
end
end
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