Combining implicit restarts and
partial reorthogonalization in
Lanczos bidiagonalization

Rasmus Munk Larsen
SCCM & SOI-MDI
Stanford University

UC Berkeley, April 2001



Overview

Introduction

Golub-Kahan (Lanczos) bidiagonalization and the
SVD

Partial (semi-) orthogonalization (PRO)
Bidiagonalization with implicit restarts (IR)
Combining PRO and IR

Shift strategies for IR, dealing with close singular
values

Performance comparison between PROPACK,
LANSO and ARPACK

Conclusion



The singular value decomposition (SVD)

Computing the SVD of very large sparse matrices has numerous
applications in, e.g.,

Data mining: Information retrieval (LSI), clustering, ...

Rank deficient and ill-posed (inverse) problems, regularization
Image and signal processing (Karhunen-Loéve transform)
Data analysis in the physical and medical sciences

Definition: Let A be a rectangular m X n matrix with m > n,
then the SVD of A is

A=UsV"' =) oiuv; ,
=1

where the matrices U € IR™”™ and V' € IR"™" are orthogonal
and
n 21
d! =
Sl
where ¥; = diag(o1, 02, ..., 0,) and
012022 -+ 20,>0p41=+"=0,=0,

7 is the rank of A.



Equivalent symmetric eigenvalue problems

The SVD is normally computed via an equivalent symmetric
eigenvalue problem:

Let the singular value decomposition of the m X n matrix A be
A=UxVv"
and assume without loss of generality that m > n. Then

VI(ATAV = diag(o,...,00),

n

UT(AATU = diag(o3,...,02,0,...,0) .

Moreover, if U = [ U; U, | and

1 Ui, U V20U, 0O A
Yy = o=
Slv —v o AT 0

then the orthonormal columns of the (m 4+ n) X (m + n) matrix
Y form an eigenvector basis for the 2-cyclic matrix C' and

Y'CY = diag(o1,...,0mn, =01, —0n, 0,...,0) .

m—n



The Lanczos algorithm and the SVD

When 2k steps of the Lanczos algorithm are applied to the 2-cyclic
matrix C' with starting vector

T T
g1 = (u;,0,...,0) , JJuil| =1

n

it produces the special (Golub-Kahan) tridiagonal matrix

0
( o7 C(Y)l B2 \
T2k: - 62 0 - ’

\ a0

and orthonormal vectors

q2j—-1 = (ufao)T ’ q2; = (Oavrf)T ’ .7 — 17 ey k )
such that
0 A U
[ AT o ] Q2r = QarTox + Br+1 ( kOH ) s .

The extreme eigenvalues of T converge (usually) rapidly to +
the largest singular values of A.



Using a symmetric eigensolver as a “black box”

Using a symmetric eigensolver as a “black box” for SVD has
certain disadvantages.

Method 0: AT A

e Severe loss of accuracy of small singular values if A is ill-
conditioned.

e Fast when n < m since only Lanczos vectors of length n
need to be stored.

0O A
Method 1: C' =
etho [ o }
e Lanczos vectors have length m 4+ n = Waste of memory and
unnecessary work in reorthogonalization.

e Ritz values converge to pairs of £0; = Twice as many
iterations are needed.

To (almost) get the best of both worlds:  Combine
Lanczos bidiagonalization (LBD) with the efficient semi-
orthogonalization and implicitly restarted Lanczos algorithms
developed for the symmetric eigenvalue problem.



Algorithm Bidiagl (Paige & Saunders)

1. Choose a starting vector pg € IR™, and let
B1 = ||poll, w1 = po/B1 and vg =0

2. for: =1, 2,...,kdo
r, = ATui — Bivi—1, i = reorth(ri)
a; = ||rill, vi=ri/oy

p; = Av; — au; , pi = reorth(pz-)

Bit1 = ||pill, wit1 = pi/Bi+1
end

After k steps we have the decomposition:

AV = Ug4+1Bsg
AT U

T T
ViBj, + Qrt1Vkt1€p
where V; and U,41 have orthonormal columns and
(o )
B2 a2

By = B3

o
\ Brss )
The largest singular values of By converge (usually) rapidly to
the largest singular values of A.




Partial reorthogonalization and Lanzos
bidiagonalization

As argued above, Bidiagl is equivalent to performing 2k + 1
steps of symmetric Lanczos on the matrix

[ & 0]

with starting vector (u1,0,...,0)" € IR™™™. Using Horst
Simon’s (1984) result about semiorthogonality for symmetric
Lanczos gives us the following:

Corollary: Define the levels of orthogonality in Bidiagl by
i = U?Uj and Vij = ’UiT’Uj. If

max |,uzj| < \/11/(2k+1) for 4 75.] ’

1<i,j<k+1 =

max |v;;] < \/U./(Zk-l-l) fori # 7,

1<,5<k

then

U1 AV = B+ O(u|A]]) ,
where Upi1 = 0k_|_1jk_|_1 and V;, = kak are the compact
QR-factorizations of U1 and V.

Therefore o(By) are Ritz values for A within O(ul|A||).



The “w-recurrences” for LBD

In finite precision arithmetic:
av;, = Al w;—Bivi 1+ fi
vy = J jvi—1 J
Biriujy1 = Awv; — aju; + g,
where f; and g; represent round-off errors.

It is simple to show that p;y1; and vj; satisfy the coupled
recurrences:

Bitikj+1i = Vi + BiVji—1 — lhji
+ u; g5 — vj fi s (1)
Vi = Bivipir1l + o — Bivio1
— ujgi+v; fi (2)

where Mii = Vi; = 1 and /,LO,L'ZI/()?;EO'FOI’]. S 1 S]

These recurrences were derived independently by Larsen 1998 and
Simon & Zha 1997.

Partial reorthogonalization: Use the recurrences to monitor
the size of pjy1,; and vj;. Reorthogonalize only when necessary.



Bounding the round-off terms

We can bound the size of the round-off term

ui g5 — v il < gl + £l
du((af+ B2, )"+ (F + BHY?) + emv

T

IA

Round-off from matrix-vector multiply €py is  estimated
conservatively: eyy < u(n + m) ||A||, where i (m) is
the maximum number of non-zeros per row (column) in A.

Conservative updating rules v;_1; — vj; and pj; = (414

/
Vii =  Bitiljit1 + aiplgi — Bivi-1i
/ . /
Vii = (ij' + Slgn(yji)T)/aj
!/
Piy1i = Qilji + Bilji—1 — Qi
/ . !/
Hj+1: = (:u’j—l—l,i + Slgn(:u’j—l—l,i)T)//Bj-l-l



Outline of Algorithm LBDPRO

Lanczos bidiagonalization (Bidiagl) with Partial Reorthogonalization:

force = FALSE
for ; =1,2,...,kdo
;U = AT Uj; — ﬂjvj_l
Update Vij—1,i — Vj;
if maxij<i<; |ij‘| > tol or force
Reorthogonalize v;
force = (maX1§i<j |1/j7;| > tOl)
end
Bitiujr1 = Avj — aju;
Update p1ji — pj41,6
if maxi<i<jt1|pjs1,i| > tol or force
Reorthogonalize w44
force = (maxi<icjt1 |pj+1,4] > tol)
end
end

e The variable “force” causes extra reorthogonalizations, which
are necessary due to the coupling between v;; and 11

10
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Iterative SVD algorithm LBDSVD

Input N, €01, and kmax

2. Set k = min(2N, knax)

© N o o

Use LBDPRO to extend the bidiagonalization to
AV = Up41 By
Compute the Ritz values 61, 05, . .., 0% and error bounds

e = ||urs1l|(lpr+1,1ls |PE41,2]5 - - 5 [ PR+1,E])

where
By = Pyyy diag(61,60a,...,601) Q; |

is the SVD of Bj and (pk+1,1,pk+1’2, . ,pk-l—l,k) is the
last row of Pjy1.

Refine error bounds using the gap-theorem
If e1,€e2,...,en < € then goto 8
If & < Kkmax then increase k and goto 3 else fail

If singular vectors are needed then compute a full SVD of

By = Py diag(6y,0s,...,0k) Q, ,

and form Ritz vectors U = Uy 1 Pry1(:,1: N), and V =
ViQr(:, 1: N).

13



Implicitly restarted bidiagonalization

Following Bjorck, Grimme and Van Dooren (1995), we notice
that after k + p steps of Bidiagl we have

T T
(AA7 ) Uk+p+1 = Ukpt+1(BrtpBiip) T Qktpt1 AVt pr1€k4pt1

Here one could use the implicitly restarted Lanczos algorithm
of Sorensen et al. on AAT, which applies implicitly shifted QR
steps to Tjyp = Bk+pB,rf+p. However, a more stable approach
is to apply Golub-Kahan SVD steps to By, directly:

1. First compute a Givens rotation Gl(l) such that

sl =16 ]

—S$1 € o151 0

2. Then bring G\" By, back to bidiagonal form by applying
k — 1 additional rotations from the left and from the right to
“chase the bulge”:

B+

ey =G GG B, Gl - GV = QiB,Q;

r

14



lmolicit] ! bidi ligati

3. By applying the rotations to the left and right Lanczos vectors,
we can recover a bidiagonalization

+ g+ pt
AVk+p—1 _ k:+ka:+p—1 ?
were
Ul;:—p = Ukypr1Qi(:,1:k+p),
V,:;p_l = Vi Qr(s,1:k4+p—1).

The updated quantities are what would have been uptained from
k + p — 1 steps of Bidiagl with starting vector

ul = (AA" — pPIu, .

If this algorithm is repeated for p shifts p1, po, ..., pp we
obtain a bidiagonalization

- + pt

corresponding to the starting vector

p

ul = H(AAT — ,u,?I)ul :

1=1

15



Implicitly restarted SVD algorithm LBDIR

1. Input k, p, and €4y

NS ok

Use LBDPRO to extend the bidiagonalization to

AVitp = Uk4p+1Bryp

Compute the Ritz values 61, 02, . . ., x4+, and error bounds
e = ||uktpt1ll(IPetpt11ls [PRtpt12]s - - o5 [Potpt1ktpl)
where
: T

Bitp = Pript1 diag(61, 02, ..., Okyp) Qpyp
is the SVD of Byyp and (Pr+p+1,15 Pktp+1,25 « « + » Phtp+1,k+p)
is the last row of Pjypi1
Refine error bounds using the gap-theorem
If e1,e9,...,€er < € then goto 8
Select p shift p1, po, . .., 1y
Apply p restarting steps to obtain

+ + ot
AV, =U,. By ,
goto 2

16



8.

If singular vectors are needed then compute a full SVD of

Bitp = Prapr1 diag(01,02, . .., 0k1) Qryyp »

and form Ritz vectors U = Ugtp+1Ppip+1(:;1: k), and
V = sz—I—ka-i—p(:) L: k)

17



Setup for Numerical Experiments

Test matrices from Matrix Market:

Name m n  nnz(A)
WELL1850 1850 712 8758
ILLC1850 1850 712 8758
TOLS4000 4000 4000 8784
MHD4800A 4800 4800 102252
AF23560 23560 23560 460598
FIDAPM11 | 90449 90449 1921955
Software:
Algorithm Subroutine
Lanczos bidiagonalization with PRO LBDSVD
Lanczos bidiagonalization with PRO & IR | LBDIR
Lanczos with PRO on AT A LANSO
Lanczos with PRO on C LANSO
IRL on AT A ARPACK
IRL on C ARPACK

Hardware and software used:

e 600 MHz Pentium Il CPU, 512 KB L2 cache, IEEE arithmetic
e RedHat GNU/Linux 7.1, GNU 2.96-79 compiler suite
e ASCI Red BLAS by Greg Henry, LAPACK 3.0 from Netlib

18



Is it stable?

The fundamental question is: Are the Lanczos vectors still
semiorthogonal after a restart?

Before applying the shifts we have that

Vk:+pvk+p =I+FE, |E[< 2k + 1

and similarly for Ug4p41.

Therefore the updated vectors satisfy the following bound

| Ql k+ka+le|

|Qz EQZ|
| E|l2

(’erz?)\/%ljr ]

So we may experience some further loss of orthogonality due to
the implicit restarting.

| ( k+p) k—l—p'

IA

IN
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Is it stable? (cont.)

In practice we have found that it is sufficient to orthogonalize
ul . against ul, uy, ..., u; and v} against v, vy, ..., v |
before extending the bidiagonalization.

This set of precautions manages to preserve semiorthogonality,
even after many restarts, as illustrated below:

Level of orthogonality for WELL1850, k=p=50

T T .
IV orthogonalized

- — uupdated |

T T

10° |-~

]

1#
J —
o
T

max |u.T ul, i#

—
o
N
o
é

107" ‘ ‘
0 20 40 60 80 100 120

restarts

In our experience, the singular values computed with the restarted
algorithm were just as accurate as those computed without

restarts.
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Is it worth the trouble?

How much is gained, compared to full reorthogonalization, by
applying partial reorthogonalization to LBD and its implicitly
restarted variant?

For computing £ = 100 singular values we get:

Program LBDSVD
n  # of DOTS efficiency
WELL1850 | 500 80798 68%
ILLC1850 403 44908 72%
TOLS4000 315 20020 80%
MHD4800A | 203 42213 0%
AF23560 299 37369 57%
FIDAPM11 | 301 29791 67%
Program LBDIR(p = 100)
restarts # of DOTS efficiency
WELL1850 3 32550 75%
ILLC1850 2 25733 74%
TOLS4000 2 21580 78%
MHD4800A 0 41811 0%
AF23560 1 27263 61%
FIDAPM11 1 21628 69%

21



___ Shift strategies

The selection of the shift i, pa, ...,y is crucial to the
efficiency of a restarted algorithm.

Intuition: The shifts should be chosen such that the polynomial
filter

P

ul = H(AAT — wo1)u; .

i=1
removes components in uj corresponding to the unwanted part
of the spectrum and retains components in the desired part.
Examples:

e Exact shifts: Use 041, Okt2, ..., Okip.
e Chebychev shifts: Use zeros of 1), scaled to an interval
containing the unwanted part of the spectrum.

e Leja point shifts: Use Leja points for interval containing the
unwanted part of the spectrum.

Lehoucq, Sorenson & Yang (ARPACK) use exact shifts, while
Calvetti, Reichel & Sorensen recommend shift based on Leja
points.

We find that exact shifts perform slightly better, provided close
singular values are accounted for. If not, all strategies are prone
to very poor performance or even stagnation!

22



Clusters of singular values

The normal shift strategies fail when o and o1 are close.
When 601 is used as an exact shift, the component along the
kth singular vector is greatly damped in

k+p
i=k+1

This can cause 6} to converge very slowly to o (or not at all).

Op O %
@ @ @
My M, ",

ny=0 Ho My

A simple but very effective solution is to require that the relative
gap

_ (Ok — ex) —
relgap,; =
O
between the smallest Ritz value 8 and all shifts y;, ¢ = 1,...,p

be larger than some prescribed tolerance. Experimentally we have
found that requiring relgap,; > 107° seems to work well. Bad
shifts can, e.g., be replaced by zero shifts.
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Example of poor convergence for close o's

For the matrix WELL1850, o5 has several close neighbors:

048 1.409645143251147
o49 | 1.409203443807433
oso | 1.408180353484225
os1 | 1.408059653705621
052 1.408003552724529
o053 | 1.407571434622690

With £ = p = 50 and traditional shifts the convergence of 05

is terrible:
Convergence for WELL1850

— Exact shifts
~ Chebychev [9k+p:9

____ Leja [9k+p:60pt]

|

opt ||

50 ~ Os0 |
o

_87

—
o

—
o

estimated | 6

0 20 40 60 80 100 120
restarts
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Example continued

With a minimal relative gap tolerance of 1073, the fast
convergence is recovered:

o Convergence for WELL1850 without nearby shifts
1 O T T
10° |
8
o
8
—107°
©
(0]
©
£
D
()
107°F
_ Exact shifts < G)Olot
o Chlebyche.v [9k+p:eopt]
_ Leja [ek+p.eopt]
107 ‘ ‘
0 5 10 15

restarts
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PROPACK: Software package for large-scale SVD

Main components:

DLANBPRO :  Lanczos bidiagonalization with partial reorth.
DLANSVD :  Singular value decomposition
DLANSVD_IRL : DLANSVD with implicit restarts

Important implementation details:

— respecting coupling between p and v

— extended local reorthogonalization

— iterated Gram-Schmidt reorth. (DGKS, BLAS-2)
— recovery from near zero «; or (3;

— proper estimation of || A|

— Currently uses DBDSQR for partial and divide-and-conquer
for full bidiagonal SVD (B. Grosser's Holy Grail code?).

— |IRL: updating Lanczos vectors using BLAS-3

URL: http://soi.stanford.edu/ rmunk/PROPACK
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Performance comparison

The routines LBDSVD and LBDIR were compared with LANSO
and ARPACK. The table shows CPU-time in seconds used to
compute the 100 largest singular values.

Program LBDSVD | LBDIR LANSO ARPACK
Matrix A AT A c | ATA C
WELL1850 2.79 3.16 1.21 2.73 722 4801
ILLC1850 1.91 2.36 1.55 3.17 531  36.75
TOLS4000 2.42 5.21 4.01 8.07 | 258  90.96
MHD4800A 6.16 6.04 | 733 3795 | 1514 162.48
AF23560 3539 | 3493 | 4671 199.30 | 156.60 644.11
FIDAPM11 3208 | 3336 | 38.16 151.78 | 133.96  600.72

e LBDSVD and LBDIR significantly faster than other backwards
stable methods.

e LANSO consistently faster than ARPACK on the same
problem.

e LANSO(A™ A) (not surprisingly) is the fastest for rectangular
matrices where m > n (WELL1850 and ILL1850).
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Performance computing fewer singular values

First 10 singular values:

Program LBDSVD | LBDIR LANSO ARPACK
Matrix A AT A c | ATA C
WELL1850 0.26 0.27 011  0.74 0.18  1.27
ILLC1850 0.18 0.20 020  0.76 015  1.02
TOLS4000 0.71 0.77 1.00  5.90 241 961
MHD4800A 0.40 0.45 042  1.26 091  4.84
AF23560 4.12 4.62 480 15.08 9.62 30.16
FIDAPM11 5.08 6.73 786 2311 | 2412 72.08
First 50 singular values:

Program LBDSVD | LBDIR LANSO ARPACK
Matrix A AT A c | ATA C
WELL1850 3.36 2.84 1.02  2.69 327 2864
ILLC1850 1.49 1.49 073  3.12 245  20.97
TOLS4000 1.45 1.81 637 7.41 | 1024  37.64
MHD4800A 2.01 1.99 239 823 6.42  38.86
AF23560 16.97 17.70 | 1856 70.44 | 5586 212.16
FIDAPM11 16.97 18.05 | 2490 66.80 | 61.65 207.84
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Conclusion

Implicitly restarted bidiagonalization based on Golub-Kahan
SVD steps has been implemented, and appears to be fast and
accurate.

It seems that partial reorthogonalization can be succesfully
combined with implicit restarting techniques without loss of
stability, although a rigorous proof was not given.

A simple adaptive shifting strategy significantly improves
performance if the user chooses the cut-off point in a cluster.

The resulting algorithm is significantly faster than other
Lanczos based codes if high accuracy is required.
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