MDI Calibration Issues

P. Scherrer
ISSI Irradiance Workshop
11 Oct 2004

Contents:

General MDI Overview

Specific Issues
MDI Overview

MDI is a camera with a tunable narrow band filter. It makes a repeating sequence of images in sets of tuning positions and polarizations.
MDI has several “Observing Programs” which are designed to optimize the return from the various telemetry opportunities. All programs operate in a basic 60-second cadence. The first half of each minute is the same sequence in all observing modes to obtain data for the basic continuous structure program.

In medium rate times or when SOHO is out of contact MDI operates the “structure program” for both halves of each minute averaging the results to obtain 60-second average quantities. In all cases the center of the 30 or 60 second structure program is on the TAI minute “tick”.

In short high rate times which occur at the end of the SOHO Solid State Recorder memory dumps MDI operates the “Magnetic Program” In this mode any stored magnetograms (obtained on a 96-minute (15/day) cadence) are downlinked and some standard reference images are obtained and downlinked. These include a full disk continuum proxy image.

In longer high rate telemetry intervals lasting from 8-12 hours or 60-90 days MDI operates its “Campaign” or “Dynamics” programs respectively. In these times the second 30-second intervals are used for observables not included in the structure program sequences. These may be in either full disk or high resolution (a 3.2 times magnified fixed region centered just north of disk center) and may collect magnetograms, Doppler velocity, line depth, continuum tuned filtergrams. If the collecting area is less than the full disk or full high resolution field of view several observables may be obtained.

10 October 2004

The line scanned in five wavelengths, I0, I1, I2, I3, I4 where I0 is nearly continuum and I1, I2 are on the blue wing and I3 and I4 on the red wing. I1, I2, I3, and I4 are equally spaced by 75mA.

The polarization analyzer wheel can be set at LCP, RCP, or linear. The Structure program is observed in linear polarization. The Magnetic and usually Campaign and Dynamics are in LCP/RCP pairs.

Each filtergram takes 3 seconds allowing sequences of 10 per 30-second basic interval.

\[\begin{align*}
 Sa &= (I1 - I3); \\
 Sc &= (I2 - I4); \\
 Sall &= (I1 + I2 + I3 + I4); \\
 Ssum &= Sa + Sc; \\
 V &= \text{OnBoardTable}(Ssum) / (\text{if } Ssum > 0 \text{ then } Sa \text{ else } -Sc)] \\
 M &= V_{rcp} - V_{lcp} \\
 Ld &= \sqrt{2 \times (Sa^2 + Sc^2)} \\
 Ic &= 2*I0 + Ld/2 + Sall/4
\end{align*} \]

10 October 2004
MDI Data Access

MDI data may be obtained via the Web via:

http://soi.stanford.edu/data

The first text link on that page is for

Automated Data Search and Export Requests
This is the normal way to get the data. On that page MOST data users will choose the links:

Calibrated Data Products for Structure Program or Magnetic Program data, or
Calibrated Campaign Data for Campaign or Dynamics Program data

The second text link in the data page is:

Calibration Notes and Problems
Which contains at least some information about calibration issues that the data user should be aware of.

MDI data header keywords lev1.4 and above are described in:

http://soi.stanford.edu/cgi-bin/keyword.pl

10 October 2004
MDI Dataset Names

MDI data products are specified via a multipart naming scheme. The names are of the form Program,Level,Series. The parts are formatted as:

prog:{prognname},level:{levelname}[version],series:{seriesname}[seriesnumber]

Where “version” defaults to the most recent version. “prognname” will be “mdi” for calibrated MDI data. Level names most often used are:

lev0 Raw telemetry data as FITS files, Series are onboard codes
lev1 lev0 format but calibrated to physical units.
lev1.5 lev1 with meaningful series names and expanded headers
lev1.8 lev1.5 with corrected calibration information
lev2 higher processing levels.

Lev1.4 and 1.7 are like lev1.5 and lev1.8 but stored in cropped form vs images.

Lev1.4 and above have series names constructed as:
{mode}_{observable}_{[cadence]}{blocking}

MOST data users should want lev1.8 or lev2 data

The seriesnumber interpretation is governed by the blocking. It is usually the block count since the standard MDI reference epoch of 1993.01.01_00UT
Seriesname format is usually: \{mode\}_{observable}_[\{cadence\}_]{blocking} where:

mode is:
- \text{fd} \quad \text{full disk 2” pixels}
- \text{hr} \quad \text{high resolution 0.6” pixels}
- \text{vw} \quad \text{vector weighted averages, 10” pixels}
- \text{loi} \quad \text{LOI style bins, 180 bins can be summed to mimic LOI pixels}
- \text{rwbin} \quad \text{rectangular weighted binning 16” pixels only option used}
- \text{limb} \quad \text{limb annulus of about 5 pixel thickness, 2” pixels}

observable is:
- \text{V} \quad \text{Doppler line-of-sight velocity, linear polarization}
- \text{M} \quad \text{Magnetic field as difference Vrcp and Vlcp}
- \text{Vm} \quad \text{Doppler as average of Vrcp and Vlcp}
- \text{Ic} \quad \text{Continuum proxy}
- \text{Ld} \quad \text{Line depth}
- \text{I0} \quad \text{Brightness in tuning position 0}

cadence – optional sampling cadence
- \text{96m} \quad \text{15-per day magnetograms}
- \text{6h} \quad \text{3 per day continuum proxy}

blocking – duration of each dataset in the series
- \text{01h} \quad \text{1 hour blocking. Series number is hour number since 1993.01.01}
- \text{06h} \quad \text{6-hour blocking Series number is 6-hour number}
- \text{01d} \quad \text{1 day blocking, series number is day number}
- \text{72d} \quad \text{72-day blocking, series number is 72-day number, GONG phase}
For the ISSI Irradiance Workshop the MDI dataseries of most interest are:

- `prog mdi, level: lev1.8, series: fd_M_96m_01h`
- `prog mdi, level: lev1.8, series: fd_ic_6h_01h`
- `prog mdi, level: lev2, series: fd_ic_6h_01h`

The following discussion of “Calibration Issues” introduces some of the “quirks” and “features” of these dataseries.
Things that affect all data products:

- **Image Geometry**
 - Focus and plate scale changes with time, few pixels
 - Cubic distortion, 2/3 pixel
 - “as if” CCD is tilted in camera header, Rmajor – Rminor ~ ½ pixel
 - Image center not solar center, < 0.5 pixel
 - MTF not symmetrical, astigmatism
 - Image plane not flat, focus varies across image

- Shutter exposure variation – affects all data products

- **Michelson passband**
 - Uniformity affects calibration uniformity
 - Variation effects linearity for large B and V conditions

- Ni677nm line contaminated in strong fields – umbral fields

Things that affect brightness data

- Optics transparency degrades with time
- Onboard and standard ground flat field poor, varies with focus

Things that affect Magnetograms

- Different LCP and RCP distortion allows granulation to leak as noise
- “saturation” in umbra due to onboard arithmetic precision

Things that affect velocity data

- Beat between SOHO major frame pulse and 15-seconds
Things that affect all data products:

- **Image Geometry**
 - **Focus and plate scale changes with time, few pixels**
 - Cubic distortion, 2/3 pixel
 - “as if” CCD is tilted in camera header, Rmajor – Rminor ~ ½ pixel
 - Image center not solar center, < 0.5 pixel
 - MTF not symmetrical, astigmatism
 - Image plane not flat, focus varies across image

- Shutter exposure variation – affects all data products

- **Michelson passband**
 - Uniformity affects calibration uniformity
 - Variation effects linearity for large B and V conditions

- Ni677nm line contaminated in strong fields – umbral fields

Things that affect brightness data

- Optics transparency degrades with time
- Onboard and standard ground flat field poor, varies with focus

Things that effect Magnetograms

- Different LCP and RCP distortion allows granulation to leak as noise
- “saturation” in umbra due to onboard arithmetic precision

Things that affect velocity data

- Beat between SOHO major frame pulse and 15-seconds

10 October 2004
The MDI full disk focus (curve) and commanded focus setting. The hr focus is 2 stops higher than the fd focus. Normal setting has the hr image in good focus and fd somewhat out of focus – by design. Starting in 1999, best fd focus is used during the Dynamics Program.
The plate scale depends on the current focus setting and the current optimum focus. The discreet focus changes are the cause of the largest jumps in image size.
Image size or apparent radius jumps (left) can be removed (right) by knowing the offset between the current best focus and current selected setting. The corrected best estimate of the plate scale is included in the image headers for all lev1.8 data products.
Things that affect all data products:

- **Image Geometry**
 - Focus and plate scale changes with time, few pixels
 - **Cubic distortion, 2/3 pixel**
 - “as if” CCD is tilted in camera header, Rmajor – Rminor ~ ½ pixel
 - Image center not solar center, < 0.5 pixel
 - MTF not symmetrical, astigmatism
 - Image plane not flat, focus varies across image

- Shutter exposure variation – affects all data products

- Michelson passband
 - Uniformity affects calibration uniformity
 - Variation effects linearity for large B and V conditions

- Ni677nm line contaminated in strong fields – umbral fields

Things that affect brightness data

- Optics transparency degrades with time
- Onboard and standard ground flat field poor, varies with focus

Things that affect Magnetograms

- Different LCP and RCP distortion allows granulation to leak as noise
- “saturation” in umbra due to onboard arithmetic precision

Things that affect velocity data

- Beat between SOHO major frame pulse and 15-seconds

10 October 2004
Compared to the plate scale at disk center the image it too big by about \(\frac{3}{4} \) pixel at the limb. Pixels are 21 microns. This error is not described in the \(\leq \) lev1.8 image headers.
Things that affect all data products:

- **Image Geometry**
 - Focus and plate scale changes with time, few pixels
 - Cubic distortion, 2/3 pixel

- **“as if” CCD is tilted in camera header, Rmajor – Rminor ~ \(\frac{1}{2} \) pixel**
 - Image center not solar center, < 0.5 pixel
 - MTF not symmetrical, astigmatism
 - Image plane not flat, focus varies across image

- Shutter exposure variation – affects all data products

- Michelson passband
 - Uniformity affects calibration uniformity
 - Variation effects linearity for large B and V conditions

- Ni677nm line contaminated in strong fields – umbral fields

Things that affect brightness data

- Optics transparency degrades with time
- Onboard and standard ground flat field poor, varies with focus

Things that affect Magnetograms

- Different LCP and RCP distortion allows granulation to leak as noise
- “saturation” in umbra due to onboard arithmetic precision

Things that affect velocity data

- Beat between SOHO major frame pulse and 15 seconds
The image is an ellipse with the semi-major axis about 15 degrees clockwise from East-West. The Rmajor is about a half pixel larger than Rminor. This is consistent with a tip of about 2.5 degrees in the CCD wrt the optic axis. The resulting distortion was absent before the BDS beamsplitter and CCD were changed in the spring of 1994. Lev1.8 presently does NOT make this correction.
Fig. 38.— Map of the image distortion in the plane of the CCD. The distortion has been multiplied by a factor 50 to make it visible. The largest displacement inside the solar limb is 0.96 pixel. The top panel illustrates how the distorted deparas from a circle (i.e., $e_o = (x/r)^2 + (y/r)^2 - 1$) and how well it fits an ellipse (i.e., $e_o = (x/a)^2 + (y/b)^2 - 1$).
Things that affect all data products:

- **Image Geometry**
 - Focus and plate scale changes with time, few pixels
 - Cubic distortion, 2/3 pixel
 - “as if” CCD is tilted in camera header, Rmajor – Rminor ~ 1/2 pixel
 - **Image center not solar center, < 0.5 pixel – **describe only**
 - MTF not symmetrical, astigmatism
 - Image plane not flat, focus varies across image

- Shutter exposure variation – affects all data products

- Michelson passband
 - Uniformity affects calibration uniformity
 - Variation effects linearity for large B and V conditions

- Ni677nm line contaminated in strong fields – umbral fields

Things that affect brightness data

- Optics transparency degrades with time
- Onboard and standard ground flat field poor, varies with focus

Things that effect Magnetograms

- Different LCP and RCP distortion allows granulation to leak as noise
- “saturation” in umbra due to onboard arithmetic precision

Things that affect velocity data

- Beat between SOHO major frame pulse and 15-seconds
Things that affect all data products:

- Image Geometry
 - Focus and plate scale changes with time, few pixels
 - Cubic distortion, 2/3 pixel
 - “as if” CCD is tilted in camera header, Rmajor – Rminor ~ ½ pixel
 - Image center not solar center, < 0.5 pixel
 - **MTF not symmetrical, astigmatism**
 - Image plane not flat, focus varies across image

- Shutter exposure variation – affects all data products

- Michelson passband
 - Uniformity affects calibration uniformity
 - Variation effects linearity for large B and V conditions

- Ni677nm line contaminated in strong fields – umbral fields

Things that affect brightness data

- Optics transparency degrades with time
- Onboard and standard ground flat field poor, varies with focus

Things that effect Magnetograms

- Different LCP and RCP distortion allows granulation to leak as noise
- “saturation” in umbra due to onboard arithmetic precision

Things that affect velocity data

- Beat between SOHO major frame pulse and 15 seconds
Observed acoustic wave power in different directions for different focus settings. Usually fd observed with focus set less than best focus so more power EW than NS.
Things that affect all data products:
- **Image Geometry**
 - Focus and plate scale changes with time, few pixels
 - Cubic distortion, 2/3 pixel
 - “as if” CCD is tilted in camera header, Rmajor – Rminor ~ ½ pixel
 - Image center not solar center, < 0.5 pixel
 - MTF not symmetrical, astigmatism
 - **Image plane not flat, focus varies across image**
- Shutter exposure variation – affects all data products
- Michelson passband
 - Uniformity affects calibration uniformity
 - Variation effects linearity for large B and V conditions
- Ni677nm line contaminated in strong fields – umbral fields

Things that affect brightness data
- Optics transparency degrades with time
- Onboard and standard ground flat field poor, varies with focus

Things that affect Magnetograms
- Different LCP and RCP distortion allows granulation to leak as noise
- “saturation” in umbra due to onboard arithmetic precision

Things that affect velocity data

10 October 2004
MDI image is not flat. About 1 focus block, 0.5mm, difference between center and limb. Center is usually in focus beyond the CCD.
Things that affect all data products:

- **Image Geometry**
 - Focus and plate scale changes with time, few pixels
 - Cubic distortion, 2/3 pixel
 - “as if” CCD is tilted in camera header, Rmajor – Rminor ~ ½ pixel
 - Image center not solar center, < 0.5 pixel
 - MTF not symmetrical, astigmatism
 - Image plane not flat, focus varies across image

- **Shutter exposure variation** – affects all data products

- Michelson passband
 - Uniformity affects calibration uniformity
 - Variation effects linearity for large B and V conditions

- Ni677nm line contaminated in strong fields – umbral fields

Things that affect brightness data

- Optics transparency degrades with time
- Onboard and standard ground flat field poor, varies with focus

Things that affect Magnetograms

- Different LCP and RCP distortion allows granulation to leak as noise
- “saturation” in umbra due to onboard arithmetic precision

Things that affect velocity data

- Further investigation needed

10 October 2004
Since early 2000 the MDI shutter motion is not so smooth as before. Causes noise in full disk quantities such as magnetogram zero level and Doppler for $l \leq 3$ with $l+m$ even (“GOLF modes”). Magnetogram correction offsets are computed and put into header keyword BFITZERO but are NOT subtracted from the data. That action is left to the user. (this should be done as part of lev1.8 but is not at present)
Things that affect all data products:

- Image Geometry
 - Focus and plate scale changes with time, few pixels
 - Cubic distortion, 2/3 pixel
 - “as if” CCD is tilted in camera header, Rmajor – Rminor ~ ½ pixel
 - Image center not solar center, < 0.5 pixel
 - MTF not symmetrical, astigmatism
 - Image plane not flat, focus varies across image

- Shutter exposure variation – affects all data products

- Michelson passband
 - Uniformity affects calibration uniformity
 - Variation effects linearity for large B and V conditions

- Ni677nm line contaminated in strong fields – umbral fields

Things that affect brightness data

- Optics transparency degrades with time
- Onboard and standard ground flat field poor, varies with focus

Things that affect Magnetograms

- Different LCP and RCP distortion allows granulation to leak as noise
- “saturation” in umbra due to onboard arithmetic precision

Things that affect velocity data

10 October 2004
Fig. 9. Michelson central wavelength maps: spatial variation of the peak transmission wavelength for each Michelson from solar measurements in mÅ. M1 is the narrower interferometer.
Ratio of MDI fd_M data with MtWilson magnetograms. The absolute scale is not so important as the variation across the disk. We believe this is a result of the calibration errors in the onboard V table which does not vary with disk position. Present work indicates a similar pattern results from applying the on-ground velocity recalibration to the magnetic data. This figure is from an as yet unpublished paper by Ulrich et al.
Things that affect all data products:

- **Image Geometry**
 - Focus and plate scale changes with time, few pixels
 - Cubic distortion, 2/3 pixel
 - “as if” CCD is tilted in camera header, Rmajor – Rminor ~ ½ pixel
 - Image center not solar center, < 0.5 pixel
 - MTF not symmetrical, astigmatism
 - Image plane not flat, focus varies across image

- **Shutter exposure variation** – affects all data products

- **Michelson passband**
 - Uniformity affects calibration uniformity
 - **Variation effects linearity for large B and V conditions**

- **Ni677nm line contaminated in strong fields** – umbral fields

Things that affect brightness data

- Optics transparency degrades with time
- Onboard and standard ground flat field poor, varies with focus

Things that affect Magnetograms

- Different LCP and RCP distortion allows granulation to leak as noise
- “saturation” in umbra due to onboard arithmetic precision

Things that affect velocity data

10 October 2004
Michelson passband drifts about 1 m/s per day. SOHO orbit variations cause 500 m/s annual term leading to semi-annual changes in the waveplate angles to keep the observed velocity zero near disk center.
Things that affect all data products:
- Image Geometry
 - Focus and plate scale changes with time, few pixels
 - Cubic distortion, 2/3 pixel
 - “as if” CCD is tilted in camera header, Rmajor – Rminor ~ ½ pixel
 - Image center not solar center, < 0.5 pixel
 - MTF not symmetrical, astigmatism
 - Image plane not flat, focus varies across image

Shutter exposure variation – affects all data products

Michelson passband
- Uniformity affects calibration uniformity
- Variation effects linearity for large B and V conditions

Ni677nm line contaminated in strong fields – umbral fields

Things that affect brightness data
- Optics transparency degrades with time
- Onboard and standard ground flat field poor, varies with focus

Things that affect Magnetograms
- Different LCP and RCP distortion allows granulation to leak as noise
- “saturation” in umbra due to onboard arithmetic precision

Things that affect velocity data
Line profiles for Ni6768A inside and outside spot umbra. This along with the dark pixel large field saturation renders umbra measurements suspect.
Things that affect all data products:
 - Image Geometry
 - Focus and plate scale changes with time, few pixels
 - Cubic distortion, 2/3 pixel
 - "as if" CCD is tilted in camera header, Rmajor – Rminor ~ ½ pixel
 - Image center not solar center, < 0.5 pixel
 - MTF not symmetrical, astigmatism
 - Image plane not flat, focus varies across image

Shutter exposure variation – affects all data products

Michelson passband
 - Uniformity affects calibration uniformity
 - Variation effects linearity for large B and V conditions

Ni677nm line contaminated in strong fields – umbral fields

Things that affect brightness data
 - Optics transparency degrades with time
 - Onboard and standard ground flat field poor, varies with focus

Things that effect Magnetograms
 - Different LCP and RCP distortion allows granulation to leak as noise
 - "saturation" in umbra due to onboard arithmetic precision

Things that affect velocity data
 - Beat between SOHO major frame pulse and 15 seconds
MDI light throughput has decreased during the mission. The normal fd exposure has been changed from 150 to 165 to 180 ms at present.
Things that affect all data products:

- **Image Geometry**
 - Focus and plate scale changes with time, few pixels
 - Cubic distortion, 2/3 pixel
 - “as if” CCD is tilted in camera header, Rmajor – Rminor ~ ½ pixel
 - Image center not solar center, < 0.5 pixel
 - MTF not symmetrical, astigmatism
 - Image plane not flat, focus varies across image

- **Shutter exposure variation** – affects all data products

- **Michelson passband**
 - Uniformity affects calibration uniformity
 - Variation effects linearity for large B and V conditions

- **Ni677nm line contaminated in strong fields** – umbral fields

Things that affect brightness data

- **Optics transparency degrades with time**
- **Onboard and standard ground flat field poor, varies with focus**

Things that effect Magnetograms

- Different LCP and RCP distortion allows granulation to leak as noise
- “saturation” in umbra due to onboard arithmetic precision

Things that affect velocity data
Median of 27-day set of fd_Ic images. These images are computed for each Carrington rotation and are used to correct the flat field before making Ic synoptic charts. The corrected fd_Ic data is available as lev2 data. The range between light and dark is about 700 counts of 13000 or about 0.5%.
Fd_Ic data for a random day, 23 July 2002. From left to right the images are lev1.5, lev2 with limb darkening restored, and lev2. .gif files for all such lev2 images are available online.
Synoptic chart computed from lev2 fd_lc data. These are available as .gif and .fits.
Things that affect all data products:
 - Image Geometry
 - Focus and plate scale changes with time, few pixels
 - Cubic distortion, 2/3 pixel
 - “as if” CCD is tilted in camera header, Rmajor – Rminor ~ ½ pixel
 - Image center not solar center, < 0.5 pixel
 - MTF not symmetrical, astigmatism
 - Image plane not flat, focus varies across image

 - Shutter exposure variation – affects all data products

 - Michelson passband
 - Uniformity affects calibration uniformity
 - Variation effects linearity for large B and V conditions

 - Ni677nm line contaminated in strong fields – umbral fields

Things that affect brightness data
 - Optics transparency degrades with time
 - Onboard and standard ground flat field poor, varies with focus

Things that affect Magnetograms
 - Different LCP and RCP distortion allows granulation to leak as noise
 - “saturation” in umbra due to onboard arithmetic precision

Things that affect velocity data
 - Beat between SOHO major frame pulse and 15 seconds
Distortion difference map for RCP and LCP images. From SOI_TN_95_124 Calibration Report. This differential distortion allows granulation and oscillations to leak into the magnetic signal as noise. It is larger on the west hemisphere. We do not have a good map but the effect is visible by inspection.
Hi Phil,

I estimated MDI mags (96 min) noise for east and west parts using one month mags (Aug. 1999). Here is result (median values):

east portion: offset, error (one minute mags) 0.383755 14.9191
west portion: offset, error (one minute mags) 0.353955 17.4680

east portion: offset, error (five minute mags) 0.320656 8.95392
west portion: offset, error (five minute mags) 0.399118 10.4977

Regards, Yang
Things that affect all data products:

- **Image Geometry**
 - Focus and plate scale changes with time, few pixels
 - Cubic distortion, 2/3 pixel
 - “as if” CCD is tilted in camera header, Rmajor – Rminor ~ ½ pixel
 - Image center not solar center, < 0.5 pixel
 - MTF not symmetrical, astigmatism
 - Image plane not flat, focus varies across image

- **Shutter exposure variation** – affects all data products

- **Michelson passband**
 - Uniformity affects calibration uniformity
 - Variation effects linearity for large B and V conditions

- Ni677nm line contaminated in strong fields – umbral fields

Things that affect brightness data

- Optics transparency degrades with time
- Onboard and standard ground flat field poor, varies with focus

Things that affect Magnetograms

- Different LCP and RCP distortion allows granulation to leak as noise
- “saturation” in umbra due to onboard arithmetic precision

Things that affect velocity data
MDI magnetic field saturates in umbra see SOI_TN_01_144, Liu & Norton
MDI papers and Tech Notes

Solar Physics 1995 paper:

Velocity on board algorithm:

SOI_TN_95_124 Calibration Report
http://soi.stanford.edu/technotes/MDI_guide_calib.ps

Mag field tech note, Yang and Aimee
http://soi.stanford.edu/general/TechNotes/01.144/TN01-144.pdf
Some useful references:

Effect of spatial resolution on estimating the Sun’s magnetic flux, N. A. Krivova and S. K. Solanki

Correction of Offset in MDI/SOHO Magnetograms, Yang Liu, Xuepu Zhao, J. Todd Hoeksema
http://www.kluweronline.com/oasis.htm/5256299

Weak-Field Magnetogram Calibration using Advanced Stokes Polarimeter Flux Density Maps – II. SOHO/MDI Full-Disk Mode Calibration, T.E. Berger, B.W. Lites
http://www.kluweronline.com/oasis.htm/5114853
Sample month of X0, Y0 disk center correction. If you ignore these keywords, this shows the centering error you will have.