Appendix A

Self-Adjoint Operators for

Adiabatic Oscillations in Stellar

Atmospheres 1

In this appendix we show that adiabatic oscillations in a hydrostatic magnetized
atmosphere have zero growth rate. In the adiabatic case, the eigenvalue problem
for the square of the frequency, equations (2.10)-(2.13), can be cast in the familiar

form:

LU =¥ (A1)

()

We have used x = iU to absorb all the factors of 7. The linear operator £ then has

with the eigenvector

the form

Ak + k% + E-8) + a? (k2x — £X)
) (A.3)

2(1.dx d2¢ 1 1 1 dH 1 y—1 1 d¢

L This is the appendiz from a Solar Physics paper with A. Kosovichev, E. Spigel, and L. Tao
(Birch et al., 2001b). This appendiz was mostly my work, though L. Tao helped with some of the
writing.
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where Hp = (dl‘zigp") ,Hp = (%)71 are the density and pressure scale heights
(which in general can be functions of depth). Implicit in the definition of this
boundary-value eigenvalue problem are the boundary conditions, but we defer their
consideration for now. To discuss the spectral properties of the operator L, we need

to define an inner product:
<\Ila - (Xa: ga)a \Ilb - (Xba 5b)> = / dpo[XZXb + 62&)] . (A4)

21

Our treatment holds for arbitrary hydrostatic stratification. The magnetic field does

not change the equilibrium because it has no current.

Let us consider the following inner product:

22 k
(Wa, L) = / dzpoc® [kQXZXb-Fan%-F— 93
Z1
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2
where a? = o

Partial integration on the a?x* ddzxz”, *d 5” and k&, dx” terms gives:

— = dé‘b dé-* 2k * *
(U, LTy,) = /Zl dzpoc? [2/€ ( g, + ¥R Xb ) + ’YTP (X:&b + Exxo)

dxy dxy | d&; d&
2 a 1 2. %
to dz dz+dz dz ( +a)kX“Xb
1 1 1 dHp
—— B
5 (HPHT HZ d2 ) &) +

where B represents the boundary contribution:

d 22
B = —|poc’ (5 N> xb) | (A.5)

Each of the three terms in the B have simple physical interpretations. The
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o? term depends only on the horizontal motions and corresponds to the magnetic
energy flux through the boundaries. By choosing either x or dx/dz to vanish at
the boundaries, the magnetic term can be removed. The other two terms combine
as the total mechanical energy flux through the boundaries. They can be removed
by setting & = 0 on the boundaries. For our numerical study here, we have set
¢ =0 and dx/dz = 0 at both the top and bottom boundaries, and B is identically
zero. These mathematically convenient boundary conditions therefore correspond
to physically consistent boundary conditions.

Whenever the boundary contributions can be neglected, the operator £ with the

given inner product and boundary conditions is self-adjoint:
(W,, LWy) = (LW, Ty,) (A.6)

and its eigenvalues w? are real.

When the boundary terms are non-zero, the linear operator is no longer self-
adjoint, and the eigenvalues w? are in general complex. Physically we see that this
instability is forced via the transfer of energy through the boundaries since the

operator is otherwise self-adjoint in the bulk of the atmosphere.



Appendix B

Definition of Travel Time!

This appendix is a detailed derivation of equation (3.50), which gives the linearized
relationship between perturbations to the travel time and perturbations to the cross-
correlation. According to equation (3.45) the travel times 7, (1, 2) and 7_(1,2) are

the time lags which minimize the functions

X.(1,2,t) = /oo dt’ f(+t) [C(1,2,¢) — C™(1,2,¢ F1)]” . (B.1)

As a result the time derivatives of X evaluated at 74 are zero:

Xo(1,2,74) =0. (B.2)

Notice that X does not involve a time derivative of the observed cross-correlation
C. In order to obtain the travel-time perturbations 67+ we need to linearize around

the zero-order travel times 72, which are defined by
79(1,2) = argmin{ X%(1,2,¢) }. (B.3)
t

The functions X9 refer to equation (B.1) evaluated for C = C° where C° is the

zero-order cross-correlation in the reference model. Linearizing equation (B.2) about

! This appendiz is from (Gizon € Birch, 2002)
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142 APPENDIX B. DEFINITION OF TRAVEL TIME

T+ = T3 gives
6X:|:(1: 277-:?:)

07+(1,2) = ——; . B.4
SRR TEy .

The functions 6 X are given by
5X4(1,2,1) :ﬂ/ At f(+£)C (1, 2,0 FH5C(L,2,¢).  (B.5)

We can then compute X°(72) by straightforward differentiation of equation (B.1).
The result for 674(1,2) is thus

574(1,2) :/ dt W (1,2,4)6C(1,2,1), (B.6)
with
1 )
Wi(t) = iﬁf(it)cref(t:lz 2) (B.7)
where

D= / T ar [FECOW)E (W F 72) % fE)C (W F )W F 19)] . (BS)

We have suppressed the spatial arguments 1 and 2 in the above equation for the sake
of readability. This is the general linearized result for arbitrary C™f and f. The only
assumption is that the perturbation to the cross-correlation is small compared to the
zero-order cross-correlation. Note that we have not written an explicit expression
for 7%, which needs to be computed numerically by minimizing X (¢) (eq. [B.3]).
In the case where C™ and C° are even in time, 79 = 7°. For the choice C™f = C?,
the zero-order travel times are both zero, 7% = 0. This choice is recommended if a
theoretical model is available to the observer. With C™ = C° the weight functions

W, simplify to: .
Ff(£)C(1,2,1)

Wx(l,2,1) = [ dt f(E)[Co(1, 2,2

(B.9)

In the example presented in Section 3.4.2 we choose C™ = C° and f(t) = Hea(t).



Appendix C

Fourier Conventions!

This appendix outlines the Fourier conventions that are used throughout this dis-
sertation. Given a function ¢(z,t), of horizontal position « and time ¢, we employ
the convention that the function ¢(z, t) and its Fourier transform §(k, w) are related
by

o(@t) = / /_ c: dk /_ Z dw e*=t (k) (1)
j(k,w) = (2;)3 //_: dz /_Z dt e ket g (g 1), (C.2)

where k is a two-dimensional horizontal wave vector and w is the angular frequency.

We commonly use the same symbol for ¢ and §: the arguments make clear whether
the function or its transform is intended. We use the notation ¢(k,w) when ¢(k,w)
only depends on the magnitude of k, not its direction, for example in the filter
function F'(k,w). We note that for functions g(x,¢) which do not vanish at large
||lz|| or |t| the Fourier transform is not defined. In particular there is a problem
for the case when the observable is not windowed in space or time. In such a case,
q(k,w) is intended to mean the Fourier transform of the function ¢(x,t) truncated
to zero for |t| > T/2 and ||z|| > y/A/m, where the time interval 7' and the area
A are both large and finite. This modification enables us to refer to the Fourier
transform of a stationary/homogeneous random function (cf. Yaglom, 1962, for a

rigorous formalism).

! This appendiz is from (Gizon € Birch, 2002)
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When a function of four arguments, Q(x,t; «',t'), depends only on the separa-

tions « — &’ and t — t' (translation invariance), we use the following conventions:

Qx—2',t—1t) = mta: t (C.3)

Qk,w) = d:n dt e ket O (2 1). (C.4)

The above conventions are employed, in our example, for the functions m°(k,w),
G(k,w;z), and G(k,w).

Finally, we recall the relations

/ Zdt vt = 21 6, (w), (C.5)
//_ de ek (9m)2 6, (k). (C.6)

which are very useful in rewriting the kernels in Fourier space (Appendix D).



Appendix D

Two-Dimensional Travel-Time

Sensitivity Kernel !

In this appendix we derive surface gravity wave travel-time kernels, K¢ and K7, for
perturbations to local source strength and damping rate respectively. These kernels
connect travel-times perturbations, d74, to perturbations to the model:

da(r)

5T:|:(1,2):/ dr Ki(l,Z;'r)—{—/ dr MK1(1,2;T). (D.1)
() @ 4 7

Here da(r)/a is the local fractional change in the source strength and 0+(r)/~
the local fractional change in damping rate. The spatial integral f( ) dr is a two-
dimensional integral taken over all points r on the surface z = 0. From section 3.4.1
we know that in order to compute kernels we first need to write the perturbation to

the cross-correlation in terms of the functions €% and €7 (see eq. [3.69)]):

50(1,2,t):/ ar 24r)

CY(1,2,t;r) —I—/ dr oy(r) C"(1,2,t;r). (D.2)
(4) a

(A4) 7

The general expression for 6C(1, 2, ¢) is given by equations (3.65), (3.66), and (3.67).
In our example, however, the superscripts on the Green’s function can be dropped as
the source S is scalar. To obtain €%, we use equation (3.67) for C5 and the definition

of the source perturbation 6 M (eqs. [3.89] and [3.93]). After integrations by parts

! This is appendiz is from (Gizon € Birch, 2002).
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146 APPENDIX D. TWO-DIMENSIONAL TRAVEL-TIME KERNELS

on the source variables in the right-hand side of equation (3.67) and the change of

variables r = (s + §')/2 and u = s — s', we obtain

1
CY (1,2, t;r) = — [ dt'dtydt. du m®(u,t; — ¢ D.3
T S S

xGT1—r—u/2,t' —t)G"(2—r+u/2,t' —t.+1).

The function €” is obtained from equation (3.66) with J£ defined by equations (3.86)
and (3.98). After integrations by parts on the source variables, and a partial inte-

gration on the variable 7, the result is

C(1,2,t7) = %LT / dt’ dt” ds dt, ds’ dt! dE TO(¢" — 1) (D.4)
xm®(s — §',t, — 1)) VEGy(r — 8,1 — t,)
o+ 8],
with
a = §"1-st' —t)VeG(2—r,t' +t—1t") (D.5)
B = §N2—st'+t—t)WVuG1 —r ¢ —t") (D.6)

where G, denotes the two horizontal components of the vector GG. In the space-
time domain these integrals are quite complicated to compute. They, however, are
greatly simplified when written in terms of the Fourier transforms of the various

functions:

e (1,2,t;r) = (2m)* / dwdk dk’ elf-Ar K -Ba—iot 0% 1 1) /2 (]
x G (k,w) §" (K, w) (D.7)
C'(1,2,57) = (2n) / dw dk dk’ (ei’*'Al—“ﬂ"Az—i“t+eik'A2—ik"A1+iwt)

~ Al

x0(w)m®(k, w)G" (k,w)G™ (k,w) k- k G"(K',w)/K . (D.8)
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We have used the definitions

§(k,w) = F(k,w)G"(k,w), (D.9)
G"(k,w) = iwk’G,(k,w;z=0), (D.10)

and the identity Gn(k,w) = ikG,(k,w) resulting from equation (3.110). The
Green’s function G,(k,w) is the 2 component of G, given by equation (3.110).
With the assumption that m° is independent of k, the above expressions can be

simplified to

C*(1,2,w;r) = m’(w) (AL, w)[(Ag,w), (D.11)
C(1,2,w;r) = ml(w)A;-A, (D.12)
X[M(A1,w) M(Ag,w) + T(Ag, w) M (A1, w)].

The integrals I, I, and Il are given by

dw = (21) / " kdk Jo(kd)S™ (K, w) (D.13)
Idw) = (2m)° ) / " kdk i (kd)GR (k)G (kyw) . (D.14)
Md,w) = (27)° / " dk Jy (kd)S™ (k). (D.15)

The kernels for source strength and damping are then obtained from
K2(1,2,7) = 47rRe/ dw W (1, 2,0)C%(1, 2, w: 7) (D.16)
0

with W}(1,2,w) given equation (3.106). The kernels, in terms of the integrals I, I,
and II, are reported in the main body of the text (egs. [3.118] and [3.120]).



Appendix E

Two-Dimensional Single-Source

Kernels for the Damping Rate!

This appendix is a derivation of K™, which first appears in the main text in
equation (3.126). In the single-source picture, we want to derive a kernel K7** which
provides an integral relationship between the one-way travel time 67%° (eq. [3.124])

and the local damping perturbation év(r)/7, i.e.

)

57%5(1,2) = / ar ) gerss(1 9.y, (E.1)
(4) v

We first rewrite the single-source definition of travel time (eq. [3.124]) in terms of

the temporal Fourier transform of the signal observed at point 2:

_Re [y dw iw ¢°*(2,w) 66(2, w)

0T3(1.2) =
m(1,2) [ dw |62, 0) P

(E.2)

! This appendiz is from (Gizon € Birch, 2002)
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Given the pressure source pO, located at point 1, and defined by equation (3.125),

the zero- and first-order signals observed at 2 are

°(2,w) = (2n)* /Ooo kdk Jo(kA)G" (k,w)O(k,w), (E.3)

56(2,0) = (21) TO(w) /(A) dr 575” / dk dk' dEA--As (g g

xG"™ (k,w)O(k,w) k- & G"(K',w)/k .
Using equation (E.2) we obtain the damping kernel K7 in the form

Jy© dw w?(d°(2,w) [ K*(1, 2575 0)

KY(1,2;7) = ik , E.5
+ ( J 7r) fo dw W2|¢0(2,W)‘2 ( )
with the function X7 (single-frequency kernel) defined by
’ A s V(A1 w) M(Ay, w)
KI®(1,2;mw)=A1- Ay Im [ 0 5(2,0) (E.6)
In the above equation, the function IV is a one-dimensional integral given by
N(d, w) = (27)° T(w) / kdk Jy (kd)G™(k, )0 (k, w) (B.7)
0

and the function Il denotes the integral already defined by equation (D.15). Notice
from equation (E.5) that the kernel K7™ is a frequency average of X1* weighted
by w?|¢°(2,w)[*.

In order to compute the kernel we have to make a choice for the source spectrum,
O(k,w). In general, this is difficult without a priori knowledge of the zero-order
cross-correlation. When comparing the definition of travel time of Appendix B with
the single-source definition (eq. [3.124]), we find that a good match between the two
definitions is obtained when ¢°(2,t) looks like Hea(¢)C%(1,2,¢). This condition is

best met when
k F(k,w)m®(k,w)

2I%(w)
Note that the filter function F(k,w) appears in equation (E.8). The kernel K™,

O(k,w) = — (E.8)

shown in Figure 3.15, was computed using this choice.



Appendix F

Derivation of Deep-Focusing

Kernels

This appendix gives a detailed derivation of travel-time kernels for the deep-focusing
time-distance method discussed in section 4.3. The calculations here are all straight-

forward applications of the basic theory developed in section 3.4.1.

Section 4.3.2 gives the definition of the deep-focusing cross-correlation and a
discussion of the measurement of travel times from these cross-correlations. The
purpose of this appendix is compute the travel time kernels K (r), which connect a
sound speed perturbation that is only a function of radius with a perturbation to a

deep-focusing travel time. The kernels should satisfy

(F.1)

Ro
or = / dr K(r)
0

In order to compute these kernels we follow the basic recipe presented in sec-
tion 3.4.1. In the remainder of this introductory section we define the deep-focusing
cross-correlation and discuss the measurement of travel times. The Green’s function
is discussed in section F.1. Section F.2 gives a derivation of the zero-order cross-
correlation. The power spectrum is discussed in section F.3. The final section, F.4,

gives the derivation of the kernels.

The deep-focusing cross-correlation is the time-shifted and windowed average of
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the individual cross-correlations
Ct) =) f(t—t)Ci(t —t;). (F.2)

In the above equation C(t) is the deep-focusing cross-correlation and C; are the
single-distance correlations. The index ¢ gives the distance at which the cross-
correlation C; is computed. The times ¢; are the nominal travel times; they depend
on the distance index i. The function f(t) is the window function, taken to be one
for |t| < 10 min and zero elsewhere. The number of distances that are used in the

deep-focusing average is given by N.
The zero-order deep-focusing cross-correlation is

N

-Gt — 1) (F.3)

=1

Q)
=}
—~
4~
N—
I

and the first-order perturbation to the deep-focusing cross-correlation is

N

5C(t) =) f(t —:)0Ci(t — ;). (F.4)
i=1

Throughout this appendix the superscript 0 will be used to denote background

quantities, and a preceding 0 to denote first-order perturbations.

As in section 3.4.1, we measure travel times by minimizing a function X,

T = argmin X (t), (F.5)
¢

where

2

X(t) = / dt [C(F) - C™5 (¢ — 1)] (F.6)

Notice that a reference cross-correlation, C™, has been introduced. In the case of the
deep-focusing study in this dissertation the average deep-focusing cross-correlation

over longitude was employed as the reference cross-correlation.

According to the recipe, we now need to obtain a linear relationship between

perturbations to the cross-correlations and the travel time. We are looking for the
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argument of X where the derivative of X is zero. The time derivative of X is
X(r) / at [C(t) — C™'(t — 7)] €™ (¢ — 7). (F.7)

In the unperturbed case C = C° and X is maximum when 7 = 7°, which we take

as the definition for the time lag 79. The zero order time lag 7° thus satisfies
0= / dt [CO() — O™ (t = 7%)] ™0t — 7). (F.8)

0

If we perturb X (7) around 7 = 7° in equation (F.7) and set the result equal to zero

the result is

0 = / at [00(0) +50(1) - (1 — ) + 57 (1~ 7°) (F.9)

x |Cri(t = 1%) = 6rCmI(t - 1)
The above equation can simplified by using equation (F.8). The result is

_ [dt 6C(t)Cf(t — 7°) (F.10)
[dt CO(t)Cret (¢ — 70) '

We have used the assumption that C™ vanishes at the ends of the time window,
which is reasonable. This is the result that we had set out to obtain, a linear
relationship between the perturbation to the cross-correlation and the perturbation

to the deep-focusing travel time.

F.1 Green’s Function

The spatially filtered zero order Green’s function is (Dahlen & Tromp, 1998)

S(x,@5,t) = > FiUn(Ro)Dylas) (F.11)

nlm

X Yim () Yim(xs) cos (wnit) exp (—vynt)Hea(t) .
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This Green’s function gives the radial velocity response (which we are assuming is
the signal) at location x and time ¢ to a monopole impulsive source at the solar
surface at x; at time zero. The 7,; are the mode damping rates. For this work we

assume that the filter, &, acts on spherical harmonics as

F{Yim(0,0)} = FiYim (0, ¢) . (F.12)

Equation (F.11) for the Green’s function is only exact when the eigenfunctions form
a complete basis. As we have seen throughout this dissertation, once we have the
zero order Green’s function we can obtain the zero-order cross-correlation by making

some assumption about the statistics of the wave sources.

F.2 Zero-Order Cross-Correlation

From section 3.4.1 we know that the zero-order cross-correlation can be obtained

from the Green’s function

1
Cc%1,2,t) = T/dt’dsdtsds’dt; MO (s,tg; 8, t.) (F.13)

xG(1,s,t' —t5) G(2,8,t' +t—t)).

For the sake of computational simplicity we assume that the sources are uncorrelated

in space and time, so that the source covariance can be written as

MO = A(S)éD(S — Sl)ép(ts — t’) . (F14)

S

Here s = |s| is the source depth variable and the function A(r) gives the distribution

of the square of the source strength with depth.

With equation (F.14) for the source covariance, the cross-correlation becomes

1
Cc%(1,2,t) = T/dt'dsdts A(ls]) (F.15)

xG(1,8,t" —t5) G(2,8,t' +t— 1) .
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By plugging equation (F.11) into the above equation and doing some algebra,

C°(1,2,t) = %Z/dt'stsdts A(s) (F.16)

nlm

X FPUp(Ro)Yim(1)Yim(2) Dy (5)
X 08 (W (t' — t5)) exp (—yu(t' — t5))Hea(t — t5)
X o8 (W (' +t —t5)) exp (—ym(t' +t — t5))Hea(t' +t — t5) .

The time integrals over t' and t; can be done in the small damping limit, and the
sum over m can be done analytically to obtain

C°1,2,t) = 20+ 1 s’ds A(s)FPU?(Ry)D?(s)P(cos A)  (F.17
An I “nl nl

X (=)

CoS t).
47nl (wnl )

In the above equation A is the distance between 1 and 2 and P, are the Legendre
polynomials. If we make the further simplification that the wave sources are all

located at a particular depth s then the cross-correlation simplifies to

20+1

C'1,2,t) = Y T —FUL(Ro)Diy(s)Pcos A) (F.18)
nl
exp (— i)
X e cos (wpit) -

Notice that we have nelgected to include the factor s2A(s). This is because an
overall amplitude to the cross-correlation that doesn’t depend on distance or time
is not relevant to the computation of travel-time kernels. Equation (F.19) gives the

zero order cross-correlation in the background solar model.

F.3 Power Spectrum

The calculation of the power spectrum is, in a sense, a digression from the main task
of this appendix. Knowledge of the power spectrum for a particular source model

is very useful however, as it provides a constraint on the source covariance matrix
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M. The calculation here proceeds in much the same manner as the derivation of
equation (3.113).
We define the power spectrum to be (Dahlen & Tromp, 1998)
1 !

P(w)= 57— Y E[¢}(@)pim(w)] (F.19)

20+ 1
m=—1

where ¢ is the observable, in this case radial velocity. After some algebra the above

equation can be rewritten as

—Pz Z/ s*ds A(s)Fy'Uni(Ro)Uni(Ro) Dui(s) Dut(8) Lut(w) Ly (w) - (F.20)

where T’ is the time interval the spectrum is computed over, and

1 Tnl — W
2m Wi + (Y — tw)?

L, (w) = (F.21)
Though we started from the certainly oversimplified assumption that the wave
sources were spatially and temporally uncorrelated monopoles, equation (F.20)
shows a number of important features. First of all, line asymmetry is seen as a

result of the n’ # n terms. Also the effect of mode inertia is clear, from the presence
of Unl(R@)Unll(RQ).

F.4 Derivation of Kernels

We now return to the main task, the computation of travel-time kernels. The

following definitions substantially simplify the upcoming algebra

. 20+ 1
a; = %F Py(cos ;) , (F.22)
b = UZ(Ro) D (s), (F.23)
— Y|t
elt) = cos wnt SRl (F.24)

47nl
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The index 7 on a! denotes that a depends on the distance A;. Neither b nor ¢
depend on distance. In terms of the above definitions the zero-order cross-correlation
(eq. [F.19]) is
CR(t) =) ajbucul(t). (F.25)
nl

Here again the index ¢ carries the distance dependence. As in section 3.2.2 we next

perturb the zero order cross-correlation.

The perturbations to the eigenfunctions and frequencies due to a spherically

symmetric perturbation 6L to the wave operator L are (eq. [3.33])

SLh

0Un(Ro) = Z ——"=Un(Rg) , (F.26)
n! wnl - wn’l
Y
5Dnl(8) = Z 277111.21)7”(8) ) (F27)
n' wnl - wn’l
Swn = L (F.28)
nl — g . :

The notation Z;, means the sum over n’, excluding the term n’ = n. The resulting

perturbation to the cross-correlation is

l Uﬁzcnz(t) - szz(t)cn’l(t)

8Ci(t) = > aiDyi(5)Dyii(5)0 Lty R (F.29)
nn'l nl n'l
- D? ¢, (t) — D?, ¢t
+ ) ajUn(Ro)Uni(Ro) 0Lk, = ) = Dyt
nn'l Wny — wn’l
Z afbnl(mim —tsin (wpit) exp (—ymut) '
nl 2wnl 47nl

It is convenient to introduce

P= / dt CO(t)C™ (t — 1°). (F.30)
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The following definitions will also be useful:

; 1 .
A = 2 /dt flt—t)C™ (¢ — 70) (F.31)
Uni(Bo)en(t = t:) = Upy(Ro)eul(t = t)
way — Wiy ’
i 1 .
B, = 5 [dtf-n)cme -1 (F32)
Dai(s)em(t — ) — D3y (s)cu(t — t:)
Wiy — Wiy ’
i 1 .
Gl = Gy / dt f(t — 1) C (1 — 7°) (F.33)
o —(t = t) sinfwn(t — t:)] exp (—mit)
2wnl 4/Ynl )

Equation (F.10) can then be written, using equations (F.4) and (F.29), as

0T = Z aféLl [Dnl(S)Dnll(S)Ai’l

nn' nn'

+ Unl(R@)Unll(R@)Bi’l

nn'

+buCl,| . (F.34)

nn'l,i

For the case of sound speed perturbations

Ro
oLt = / pr2dr 8¢ Dy (1) Dpn(r) (F.35)
0
S0
Bo de(r)
orT :/ dr K(r F.36
[ ar k0 (F36)
with
K(r) = 2pc” " a;Dyy(r) Don(r) (F.37)

nn'l,i

X [Dnl(s)Dn’l(s)Ai;;/ + Unl(RQ)Un’l(RQ)B:‘jLI —+ bnlcf;:ﬂ

We used the above equation to compute the kernels for section 4.3.



Appendix G

Time-Domain Calculation of 3D

Kernels

The purpose of this appendix is to describe some preliminary work that I have
done on the time-domain computation of three-dimensional travel-time kernels for
p modes. As we saw in section 3.4.1 the computation of travel-time kernels involves
numerous time-domain integrals. We then saw in section 3.4.2 that with some
reasonable assumptions regarding the source covariance matrix the computation

could be written in a simple form in the Fourier domain.

In section 3.4.2 we looked at travel-time kernels for surface gravity waves, with
a filter that only allowed waves with frequencies between two and four mHz. This
filter ensured that we did not have to compute anything using waves with very small
line-widths. For computations of p-mode kernels at large distances, we do have to
take into account modes with very small damping rates (e.g. n = 11,1 =0 has a
frequency of 1.7 mHz and a damping rate of 0.2 yHz ). When these very weakly
damped modes are present doing numerical integrations in the Fourier (temporal
frequency) domain is difficult, as essentially the grid must be fine enough to resolve
the lines in the power spectrum. Using a grid spacing of 0.02 yHz to cover a range

of a few mHz gives a grid size of 10° grid points, which is doable, but not appealing.

Another approach would be to do a calculation in the time domain, working in
the small damping approximation, as I do in Appendix F. In that particular case we

were concerned only with kernels for sound speed perturbations that are constant
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on spheres and as a result did not have to worry about coupling between modes
with different [, which vastly simplified the calculation. In the case of only coupling
modes with same angular degree, there are no accidental degeneracies. In the general
case, something must be done to treat modes that are accidentally degenerate in
frequency.

The basic outline of my approach is as follows. I start with the basic formalism
of section 3.4.1. T write the normal mode expansion of the Green’s function, as in
Appendix F. It is then straightforward, though painfully complicated, to write an
expression for travel-time kernels, keeping all the calculations in the time domain.
It is then a matter of doing algebra to obtain an expression for travel-time kernels in
the weak-damping limit. As the algebra is quite complicated, these results have not
been verified in detail, and may contain important mistakes. Rather than present
the details here, I refer the interested reader to the web:
http://soi.stanford.edu/papers/dissertations/birch/time_domain kernels.ps

for a research note detailing my progress on this problem.



Appendix H
Descriptions of Some Useful Codes

In this appendix I describe some of the MATLAB codes that I have developed for
doing the work described in this dissertation. The list of codes here is quite far from
complete. The codes described in this appendix, along with the supporting codes,
can be found on the web (http://soi.Stanford. EDU/papers/dissertations/birch).
The two sections of this appendix cover the codes for normal mode based calcu-

lations (section H.1) and ray theory calculations (section H.2).

H.1 Normal Mode Calculations

All of the routines in this section are based on a normal mode expansion of the
Green’s function (Dahlen & Tromp, 1998). In general these codes take as input a
set of eigenfunctions, frequencies, and damping rates. This is described in detail
in the on-line documentation. Most of the functions also require as estimate of the

instrumental OTF.

e run single xcorr.m: This code computes the cross-correlation signal for a
particular distance. The inputs are the normal-mode frequencies, damping
rates, and the amplitudes with which each mode contributes to the cross-
correlation. This amplitude factor can be computed from the filter function in
the single-source model, or from the OTF and the source covariance matrix in
the distributed-source model. This routine is one of the basic building blocks

for many of the computations done in this dissertation. It can be used to do
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H.2. RAY CALCULATIONS 161

forward calculations for travel times, as the forward problem for normal-mode

frequencies is already well known.

e run kernel.m: This code computes slices through the 3D single-source kernels

described in section 3.2 and can also compute 1D kernels.

H.2 Ray Calculations

This packages contains three main codes. There is one, run_tau.m, that computes
first-skip distances and group times for rays with given frequency and angular degree.
Another code, run_raypath.m, is available to compute full ray paths as well as the
phase and group times along the ray path. Finally, ray_kernel.m uses the output of
run_raypath.m to compute ray kernels for the effect of sound-speed perturbations
on travel times. None of these codes do anything that is particularly new; they are
all based on standard results from the literature. That said, however, I have found

them very useful.
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