Chapter 4

Results of Analysis of Helioseismic

Data

There are two main results in this chapter, which uses helioseismology data from
MDI, GONG, and BBSO. The first result is that near-pole rotation is slower than
one would expect from a smooth extrapolation of the rotation rate at lower lati-
tudes and furthermore the near-pole rotation rate changes with time. The second
result is a possible detection of longitudinal structures in the convection zone. The
interpretation of these structures is difficult because of the possible contamination
of the signal by surface magnetic field.

This chapter contains three sections. The first, section 4.1, is a brief introduc-
tion to inverse problems in helioseismology. The following section, 4.2, describes
the results of the inversions of frequency splittings for rotation rate in the upper
convection zone. The final section, 4.3, concerns the inversion of travel times for

large-scale longitudinal structure over three Carrington rotations.

4.1 An Introduction to Inversions

The process of inferring information about subsurface conditions from helioseismic
data consists of two steps. The first is to solve the forward problem, i.e. to determine
how the observed data depend on the parameters of the solar model. The second

step is the inverse problem, using the observed data to infer the parameters of the
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model. The forward problem for time-distance helioseismology was discussed in
some detail in the previous chapter. This chapter concerns itself with the results
of inversions of real data. As a result, a small introduction to the practicalities of

doing inversions is in order.

In this introduction I will consider only inversions using the method of Optimally
Localized Averages (OLA), pioneered in the field of geophysics by Backus & Gilbert
(1968). The other main method in use in helioseismology is Regularized Least
Squares (RLS). In this section I will discuss only the one-dimensional problem; the
OLA method in higher dimensions is not conceptually any different. The problem

that we want to solve is of the form

d; = /d:c K;(z)f(z). (4.1)

The data are d;, the kernels are K;(x), and the unknown function that we want to
estimate is f(x). The integral over z is a spatial integral; it could in general be in

more than one dimension.

The OLA method consists of writing the estimate of the function f at a particular

value of z as a linear combination of the data values

fla) =) ayd;. (4.2)

1

The estimate of f at the point z; is denoted by f (z;). By inserting equation (4.1)

into the above equation we obtain

flz;) = /dm k() f(z), (4.3)
with the averaging kernels x;(x) given by

The essential process in OLA inversion is to choose the coefficients a;; so that the av-

eraging kernels x;(x) are localized around z;. This can be carried out by minimizing
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a function of the form
X’ = /dx W (x — z;)K3(z) + Ozz az07 . (4.5)

The function W (z — z;) is an arbitrary weight function, a common choice being
W(x) = x?. The first term in x? penalizes the averaging kernels for being large
where the weight function is large, i.e. far from z;. The second term controls the
error magnification; the o; are the error estimates for each of the data points d;.
The “regularization parameter”, «, is a free parameter in the OLA approach and

controls the balance between localized kernels and large errors.

4.2 Subsurface Rotation from MDI, GONG, and
BBSO !

In this section we focus on latitudinal differential rotation, radially averaged over the
outer 30 Mm of the convection zone, using SOI-MDI, GONG, and BBSO data. The
advantage of a one-dimensional method is that what is sacrificed in radial resolution
is gained in latitudinal resolution. Therefore, this analysis is a useful complement

to two-dimensional inversions.

4.2.1 The Data

The data used in this analysis consist of the frequencies of p-mode solar oscillations
as measured by SOI-MDI (Solar Oscillations Investigation - Michelson Doppler Im-
ager), described by Scherrer et al. (1995), GONG (Global Oscillations Network
Group), described by Harvey et al. (1996), and BBSO (Big Bear Solar Observa-
tory), described by Woodard & Libbrecht (1993). Two 72-day averaged data sets
from SOI-MDI are considered. The first runs from May 1 to July 12,1996 and the
second from July 12 to September 22,1996 (hereafter called MDI A and MDI B data

1 This section is a combination of an ApJ Letter (Birch € Kosovichev, 1998a) and a proceedings
paper (Birch & Kosovichev, 1998b). I carried out the analytical and numerical work, except for the
calculation of the radial dependence of the frequency splitting kernels, and wrote the papers. The
frequency splitting data were provided by the SOI-MDI, GONG, and BBSO experiments.



4.2. SUBSURFACE ROTATION FROM MDI, GONG, AND BBSO 101

sets respectively). Each SOI-MDI data set is a set of 36 coefficients a¥, for each ob-
served n, [ pair that can be used to obtain approximate frequencies for individual

modes
36

Wnim — Wpy = Z a¥,Pt(m) (4.6)

k=1
where w,,; is the mean frequency of the multiplet and the P} are orthogonal polyno-
mials, first described by Ritzwoller and Lavely (1991).

One data set from the GONG experiment is used; it represents the average of
the data from June 6 to September 21,1996. The data consist of frequencies for

individual modes, which are used to calculate splittings for individual modes.

Four data sets from BBSO are used; they are the one year averages for 1986, 1988,
1989, and 1990. The data are sets of coefficients a¥; that are used to approximate
individual mode frequencies:

12 m
Wnim — W =LY afde(f) (4.7)
k=1
where L? = [(l + 1) and P, are Legendre polynomials of order k. (Woodard &
Libbrecht, 1993).

For this work only modes with radial turning point above .95R, are used; this is
done in order to maintain some radial resolution. In addition modes with frequencies
below 1.5 mHz or above 3.5 mHz are discarded as the splittings and errors are less

certain there.

4.2.2 Inversion Method
Frequency splitting is given approximately (e.g. Sekii, 1997) by

3 rRe
Awyp = / / Q(r, 0) Koy (1, 6) dr 6 (4.8)
0 0

with
Ko (1,0) = Ky (1) Wign (0) 4 Ly (1) X (0) (4.9)
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where €Q(r, ) is the symmetric part of the rotation rate, r is the radial coordinate,
and 6 is colatitude. Sekii (1997) also argues that the second term in the kernel is
much smaller than the first; thus in this work only the first term is used. Because
the mode kernels are even in latitude, frequency splitting is only sensitive to the
part of the rotation law that is North-South symmetric.

In order to reduce noise the data are averaged before the inversion is performed.
The asymptotics of the problem, which apply to the frequency splittings corrected
for the effect of the Coriolis force by dividing by

Ro

B = i Ky (r)dr, (4.10)
are used to suggest an effective averaging technique. For | > 1, Awnyn/Bu is
approximately a function of only the radial and angular turning points of the mode
characterized by nlm, which describe the region where the mode eigenfunction is
significant (e.g. Kosovichev & Parchevsky, 1988). We first correct the frequency
splittings by dividing them by £,,. We then discard all modes with radial turning
points below 0.95R,. Finally we average all of the corrected frequency splittings
with similar latitudinal turning points. In this work we use N = 50 equally sized
bins in latitudinal turning point.

The averaged corrected frequency splitting, defined by

Aw; = <A“”””> , (4.11)
ﬁnl i

then obeys

AL;,-:/O% /ORQ Q(r, 0) <Wlm(0)K"l(T)>i drdo, (4.12)

nl
where 7 = 1,2,...N and the angle brackets denote the average, weighted by the
inverse square of the error in the mode frequency splitting, in the i*" bin. This
approximation so far would not be useful, but the averaged kernels are approximately
separable in r and 6, so that the average of the kernels can be written as the product

of the separate averages of the functions K,;(r) and W;,,(0)

Knl(’f')

>. ~ (Wi (0)), (Kua(r)/But)y = Wi Kir) . (4.13)
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This is expected from the asymptotics, as all of the modes that are averaged together
in a particular bin have similar angular turning points and thus kernels with similar

angular dependence. With the notation
_ Ro
0(0) = / Q(r, 0) K (r) dr (4.14)
0

and the observation that ;(f), which is the radial average of the rotation rate for
each kernel K;(r), is approximately independent of i, which will be demonstrated

later, the above equation reduces to
- 2 _
0

The Optimally Localized Averaging (OLA) inversion technique (Backus & Gilbert,
1968) is then applied to the integral equation. For each target location 6, coeffi-

cients a;(6p) are computed such that

N us N
2
e=3 / (0 — 00)2a: (00)Wi(0) d0 + 0 3 [as (0] (4.16)
i=1 70 i=1
is minimum. Here o; is the formal error on the i*! frequency splitting average. The

rotation rate, averaged over both depth and latitude, Q(Ho) is then given by

Q(00) = ailo) Aw; (4.17)

2

The trade-off between localized averaging and the formal error of the result is con-
trolled by the choice of a. For this work a was chosen to be a constant which
provides sufficiently smooth inversions and reasonable error estimates independent,
of data set and 6,.

4.2.3 Averaging Kernels

The result of the OLA inversion technique, a;(6y), can be converted to a set of co-

efficients ¢, (o) such that the inferred radially and latitudinally averaged rotation
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rate at a latitude 6 is
Q(00) = Z Cnlm(HO)Awnlm . (418)

nlm

The averaging kernels, x(r, 0; 6y), which satisfy

(0,) = /O : /O o . 0:00)0r 6) dr 6 (4.19)

are thus given by

k(1,05 00) = > _ atm (00) Kt (r) Wi (6) . (4.20)

nim
The averaging kernels are peaked in 6 and very broad in r. Because the kernels are
sharply peaked in 6 they are approximately separable.

For a given data set, all of the averaging kernels have very similar radial depen-
dence, as in seen in Figure 4.1. The radial dependence of the kernels shows that
what is calculated by this inversion technique is the rotation rate averaged over the
region shallower than about 0.96R;. The latitudinal dependence of the averaging
kernels for the different data sets is shown in Figure 4.2. For all of the data sets the
kernels are localized for each target position, and for targets away from the poles

and the equator are sharply peaked.

4.2.4 Testing on Artificial Data

The method was first tested against the artificial data set test2 described by Schou
et al. (1998). First the artificial data was run through the inversion procedure. The
artificial rotation law was then radially, but not latitudinally, averaged using the
latitudinally integrated averaging kernels.

Figure 4.3 shows a comparison of the inversion result with the radial averages
of the artificial rotation rate. The radial averages, one for each target location,
are similar, which shows that the variation with 6, of the depth dependence of
the averaging kernels will not significantly affect the latitudinal dependence of the
inversion result. In addition the inversion results are very close to the expected
radial averages of the rotation rate. Formally, one should compare the inversion

result with the latitudinal as well as radial average of the rotation rate. In this
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Figure 4.1: Latitudinally integrated averaging kernels for all target locations for the
SOI-MDI and GONG data sets. The radial dependence of the averaging kernels is
similar for all target locations within a data set, and quite similar from one data
set to the next. The averaging kernels for the inversion of the GONG data have
slightly more weight than those for the MDI data in the range 0.96 R, < r < 0.98
and correspondingly less for 0.98R;, < r < 0.99R,.
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Figure 4.2: The latitudinal dependence of the averaging kernels. The top row is for
the MDI A data set, the bottom row for the GONG data set. The kernels from the
MDI A and B data sets are indistinguishable. The left column shows the kernels
nearest the pole and the right shows the kernels closest to the equator. The kernels
are localized in all cases.
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particular study, however, the latitudinal averaging is not important.

4.2.5 Results from MDI, GONG, and BBSO

The result of the OLA method applied to the MDI and GONG data sets is shown in
Figure 4.4. The three inversion results, which are approximately the average of the
rotation rate for 0.96 R, < r < R, are essentially the same to within the formal
errors.

In order to further compare the results, a separate three-term fit in even powers
of cos#, as discussed in the introduction, is removed from each curve. This smooth
component is removed in order to reveal the smaller scale features of the rotation
rate. The fitting is done by changing coordinates to x = cos # and then doing a least
squares fit, ignoring the horizontal error bars on the inversion, to a 4"* degree even
polynomial in . The results are shown in Figure 4.5. All three data sets show a
negative residual near the pole.

In addition to the large feature near the pole there is also evidence, shown in
Figure 4.6, for zonal flows. The flows have an amplitude of a few m/s and have a
spatial scale of 10° to 20°. These flows have been seen previously in the SOI-MDI
data (Kosovichev & Schou, 1997; Schou et al., 1998). The presence of zonal flows
in the inversion of the GONG data shows that the higher a coeflicients calculated
from the GONG frequency splittings contain some information about the rotation
rate. In particular it appears that the GONG data should have enough latitudinal
resolution to see the elusive high latitude jet seen by RLS inversions of SOI-MDI
data (Schou et al., 1998).

Figure 4.7 shows the OLA inversions of the four BBSO data sets. The regular-
ization parameter o has been chosen to favor small formal errors at the expense of
latitudinal resolution. This is done in order make variations from one data set to
the next clearer.

Time variation in the BBSO data has been studied before (e.g. Gough & Stark,
1993; Woodard & Libbrecht, 1993). Woodard and Libbrecht (1993) used an asymp-
totic inversion method to infer the depth-averaged rotation rate as a function of
latitude. Their work showed a change in the rotation rate at 30° colatitude of about

5 nHz from 1986 to 1990, with smaller changes elsewhere. The averaging kernels for
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Figure 4.3: Comparison between the inversion of the artificial data and the radial
averages of the artificial rotation rate. The inversion result is indicated by the
diamonds with error bars. The horizontal error bars indicate the half-width at half-
maximum to the left and right of the peak. The vertical error bars indicate the
formal uncertainty in the average rotation at that target location (Gough, 1996).
The diamonds are plotted at the centers of gravity of the radially integrated averag-
ing kernels. The radial averages are indicated by the solid lines, one for each target

location. The radial averaging is done with the latitudinally integrated averaging
kernels.
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Figure 4.4: Rotation profiles obtained by OLA inversion of the MDI and GONG
data sets. The results agree to within the formal errors. The GONG data gives a
rotation rate that is systematically, but not significantly, lower than the SOI-MDI
in the region closer than 20° to the pole.
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Figure 4.5: The residuals of the inversion results (Fig. 4.4) from three-term fits in
even powers of cosf. All three results show a sharp deviation from the three-term
law at roughly 20° as well as small zonal flows.
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Figure 4.6: The deviation of the inversions from separate three term fits. Zonal
flows are clearly seen.
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Figure 4.7: OLA inversions of the four different BBSO data sets. The regularization
parameter a was chosen to favor small formal errors in the inversion at the expense
of latitudinal resolution. This was done to make variations from one data set to the
next more visible.
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Figure 4.8: Deviations of the inversions of the BBSO data from the mean rotation.
Solar minimum was near 1986 and maximum near 1990. The inferred rotation rates
suggest that the rotation was less differential at maximum.

the asymptotic method they employed are not well localized so the exact latitude
may not be correct, but the result does indicate some year to year variation in the
BBSO data.

In order to make differences from one year to the next more clear Figure 4.8 shows
the same inversion results except with the mean over the four years subtracted. The
results suggest that closer than 30° to the pole the rotation rate is time dependent,
with the rotation less differential in 1990 than in 1986. Solar maximum was near
1990. The result of the inversion closer than 15° to the poles is not shown as the

averaging kernels cannot be localized that close to the poles.
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4.3 A Time-Distance Search for Longitudinal

Structure !

Most current models predict that magnetic field generated and stored at the base of
the convection zone plays an important role in the solar dynamo (e.g. Kosovichev,
1996b). There have not been, however, any widely accepted measurements of the
magnetic field in the tachocline. Dziembowski & Goode (1989) and Dziembowski
& Goode (1991) used normal-mode helioseismology with BBSO data and found a
megagauss strength quadrapole toroidal magnetic field at the base of the convection
zone. This result was, however, later suggested to be due to the inaccuracy of solar
models in the tachocline (Gough & Mclntyre, 1998). This problem can only be
overcome by making a differential measurement of some sort. Time-distance helio-
seismology provides a nice way to do this by looking at variations with longitude,
something that cannot be done using the normal-mode approach. By looking for
longitudinal variations, any uncertainty in the solar model can be removed as long
as it is axisymmetric, which all standard solar models are.

In addition, there are two reasons to suppose that there is a non-axisymmetric
component to the magnetic field in the tachocline: the possible presence of “active
longitudes” (Bai (1990) gives an introduction) and theoretical studies of the sta-
bility of the tachocline find that the most unstable modes are the m = 1 modes
(e.g. Gilman & Fox, 1999). In order to study the non-axisymmetric components of
the magnetic field it is necessary to do something besides standard normal mode

helioseismology.

U This section is based on unpublished work and is a result of collaboration with T. Duvall and
A. G. Kosovichev. T. Duwvall has been measuring the cross-correlations, and in some cases travel
times as well. I have been working on the kernels, the inversions, and the comparison with surface
magnetic field.
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For the above described reasons we have begun a first effort at detecting longi-
tudinal variations in the deep convection zone. The primary result of this search is
a rough upper limit of 0.8 MG on longitudinal variations in the magnetic field in
the tachocline over Carrington rotations 1965, 1966, and 1967. A secondary result
is that the effect of surface magnetic field is likely an important source of noise;
future studies should be carefully designed to minimize the artifacts it can cause.

Dziembowski & Goode (1997) discuss this issue for normal-mode helioseismology.

The outline for the remainder of section 4.3 is as follows. Section 4.3.1 describes
the basic data and introduces the deep-focusing method. Section 4.3.2 discusses
travel-time kernels for deep focusing. The inversion results are shown in section 4.3.4.
Section 4.3.5 shows a simple model of the effect of spatially distributed surface
magnetic field on the inversion. The final section, 4.3.6, makes the connection
between the sound speed perturbations that we observe and the effect of magnetic

field in the deep convection zone.

4.3.1 The Data and Deep Focusing

The basic data are time series of medium-/ (Kosovichev et al., 1997) Dopplergrams
measured with the MDI instrument over Carrington rotations 1965, 1966, and 1967.
For each rotation thirty regions are tracked, removing both the effects of solid and
differential rotation, for 2048 minutes. The centers of the regions are separated by
12° in Carrington longitude and each region covers approximately 130° degrees in

latitude centered around the equator and approximately 140° in longitude.

Throughout this dissertation we have often referred to the two-point time-distance
cross-correlation function. In practice observed cross-correlations are noisy, and a
number of cross-correlations have to be averaged together to provide a clean signal
from which travel times can meaningfully be measured. The standard technique,
termed “shallow focusing”, has been to average the cross-correlation functions over
quadrants of an annulus, with one observation point in the cross-correlation always
at the center of the annulus (e.g. Duvall et al., 1997). This technique is not ideal
for probing the solar interior, as it produces travel-time kernels that are strongest

at the solar surface at the center of the annulus.
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A new technique, termed “deep focusing”, is now being developed. The ge-
ometry is substantially more complicated than for the “shallow focusing” technique
described in the previous paragraph. The motivation for the deep-focusing technique
is to compute average cross-correlations that give travel times that have sensitivity

that is large near some “focus points” in the solar interior.

In order to think qualitatively about the sensitivity kernel for a particular travel
time, it is useful to think about the rays paths that connect the observations points of
the cross-correlations that contribute to that travel time. This is because the travel-

time sensitivity kernel can be visualized once the ray path is known (section 3.2).

In the deep-focusing approach, we want to use all of the rays that pass through
the focus point. Figure 4.9 shows the geometry. The figure is cylindrically symmet-
ric around the line x = 0, which connects the focus point to the center of the Sun.
In deep focusing we only consider cross-correlations between pairs of observation
points that are on opposite sides of the focus point. For a particular pair of obser-
vation points and a particular focus point we define A as the distance between the
observation points and A’ as the larger of the two observation point to focus point
distances. For a particular focus point we compute the cross-correlation, averaged
over all pairs of observation points with the same A and A’, with 4.2° < A < 63.6°.
We then average this result over an 11 by 21 grid of focus points that covers six
degrees in latitude around the equator and twelve degrees in longitude. Finally, as
we are interested only in sound speed we symmetrize in time lag. The result we
denote by C(A,A’,t,\). The time lag is ¢ and the central Carrington longitude of
the focus points is A\. Notice that in a spherically symmetric solar model (ignoring
line-of-sight effects) the cross-correlation would be independent of A’ and A and only

depend on total distance A and time lag t.

4.3.2 Measurement of Travel Times

From the azimuthally-averaged single-distance cross-correlations described in the
previous section, we compute the deep-focusing cross-correlations, which we denote
by C(r,t, ). The focus radius is r, the time lag ¢, and the longitude \. The deep-

focusing cross-correlation is the sum of windowed and time-shifted single-distance
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Figure 4.9: The ray paths used in the deep-focusing measurement. All of the ray
paths pass through the focus point, which is at r = 0.7R. The figure is cylindrically
symmetric around the line connecting the focus point with the center of the Sun.
If the entire surface of the Sun were continuously observable then all rays that pass
through the focus would be used. This figure is courtesy of T. Duvall.

cross-correlations

N M;

Clrit, ) =Y ) af f(t —t:)C(Ag, Aft —1;, ). (4.21)

i=1 j=1

The total number of distances is N. The number of distances A’ is M;, where the
index 7 carries the dependence on total distance A;. The window function is f
and the ¢; are the time shifts corresponding to each distance A;. The time shifts
are chosen so that the fine structure in the individual cross-correlations C'(A;, A',t)
add up coherently when shifted by the time lags ¢;. For this work we choose the
window function f(¢) to be one for ¢ < 10 min and zero elsewhere. This choice was
set by the temporal extent of the individual cross-correlations. The coefficients afj
give the weight with which the cross-correlation at total distance A; and annulus
to focus point distance of A;- contributes to the deep-focusing cross-correlation at
focus radius r,. For this work we take the ai-“j to be either zero or one, though
other schemes are possible. In particular we choose afj = 1 if the rays specified by

(A, A%) pass through the focus point and are visible for the time duration of the
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Figure 4.10: Deep-focusing travel time as a function of Carrington longitude and
focus radius for Carrington rotations 1965,1966, and 1967 (from left to right). The
color scale ranges from -4 seconds (blue) to +4 seconds (red).

observation, and afj = ( otherwise.

We then measure travel times from the deep-focusing cross-correlations C(r, t, \).
We use the general approach of section 3.4.1 with the reference cross-correlations
C™ chosen to be the longitudinal averages of the observed deep-focusing cross-

correlations. For a detailed description of the procedure see Appendix F.

The result of the travel-time measurement procedure is travel time as a function
of focus radius and Carrington longitude, 7(r, ). Figure 4.10 shows these travel
times for Carrington rotations 1965,1966, and 1967. The dominant feature is that
the travel time for Carrington longitudes 180 to 100 in rotation 1966 are larger than
for other longitudes. This feature, however, is not clearly seen in either Carrington
rotation 1965 or 1967.



4.3. A TIME-DISTANCE SEARCH FOR LONGITUDINAL STRUCTURE 119

The travel times for the shallowest and deepest focus depths are shown in Fig-
ure 4.11. Tt is clear that the deep-focusing travel times are not periodic (with a
period of 360°), which would be expected if the Sun was not changing as it rotated.
Also apparent from Figure 4.11 is that the errors in the travel times increase with
focus depth. Figure 4.12 gives an estimate of the travel time error as a function
of focus radius. This estimate was obtained by assuming that the small-scale (less
than a few bins in longitude) scatter in the travel-time measurements is due entirely

to noise. We would prefer to have a more meaningful noise estimate.

4.3.3 Travel-Time Kernels

We have travel time as a function of focus depth for thirty longitude bins for three
Carrington rotations. In order to obtain a calculation that can be done in a rea-
sonable amount of time, we make the assumption that we can do a separate one-
dimensional (depth only) inversion for each longitude bin. This is a very rough
approximation, as the longest rays that we use extend over five longitude bins. The
sensitivity of the travel-time kernels should be largest, however, in the vicinity of
the focus point, where all of the rays intersect. In the future we hope to be able to

do true three-dimensional inversions.

In Appendix F we show a detailed derivation of deep-focusing travel-time kernels
for sound speed, in the approximation that the sound speed perturbation is only a
function of radius. The result of the calculation is travel-time kernels K (7ocus; )

which satisfy
de(r)

or)

Here dc(r)/c(r) is the fractional perturbation to sound speed as a function of radius.

Ro
67—(T'focus) = / dr K(Tfocus; T) (422)
0

When doing inversions it is convenient to use a grid that is uniform in acoustic depth,

defined as
o 4.23
1r) = / o (4.23)

There is potential for a confusion of notation with the time lag ¢. It should always

be clear from context though which meaning of ¢ is intended. With the change of
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Figure 4.11: Deep-focus travel times for the shallowest (top panel) and deepest
(lower panel) focus depths. In both panels the horizontal axis is degrees Carrington
longitude since Carrington longitude 360° of rotation 1966. Notice the large feature
at around longitude 600° in the top panel. If nothing were changing on the Sun,
these plots would be periodic with a period of 360°.
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Figure 4.12: An estimate of the error in the deep-focusing travel times, shown in
Figure 4.10, as a function of radius of the focus point. Note that the error increases
rapidly with focus depth. These error estimates were obtained by assuming that
the high spatial frequency part of the travel-time signal was noise. In the future we
hope to use a more correct approach.
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variable r — t(r) in equation (4.22) we obtain

tmax
6T(Tf0cus) - / dt K(Tfocus; t) 5C(t) .
0

(4.24)

In the above equation t,,x = t(r = 0) is the acoustic depth of the center of the Sun,
tmax ~ 60 min, and K =cK.

Some sample kernels K are shown in Figure 4.13. The kernels are in most places
negative, indicating that an increase in sound speed leads to a decrease in travel
time. The kernels are largest near the surface and near the focus depth. That the
kernels have substantial weight near their focus depths shows that the deep-focusing
procedure does in fact produce a travel time that is sensitive to the sound speed at
the focus depth. As with all time-distance studies, the near-surface plays a role as

well.

4.3.4 OLA Inversion

The OLA inversion we do exactly as in section 4.1. The data are the observed travel
times. We use the kernels K described in the previous section. The error estimates
are shown in Figure 4.12. In order to choose the regularization parameter o we
look at the trade-off between error magnification and the spreading of the averaging

kernels. To measure the error magnification we use the second term in equation (4.5)
E=) a}o}. (4.25)
i
To measure the spreading of the kernels we use the first part

tmax
S = / dt W (t — tgocus) K2 (1) - (4.26)
0

In the above equation the integration variable ¢ is acoustic depth. The weight func-
tion is W (t) = ¢*. The averaging kernel is given by . Figure 4.14 shows the trade-off
between F and S as the regularization parameter « is changed. For the remainder
of this work we use the value of the regularization parameter corresponding to the

circle in Figure 4.14.
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Figure 4.13: Deep-focusing travel-time kernels, K, for sound speed. The solid line
is for a focus depth of 0.65R (39 min), the dashed line is for 0.8 R (31 min), and
the dot-dashed line is for 0.975R(13 min). The lower horizontal axis is acoustic
depth, in minutes. The upper horizontal axis is fractional radius. An acoustic depth
of 60 min corresponds to the center of the Sun and 0 to the solar surface. Notice
that all three of the kernels are similar near the surface (small acoustic depth). The
kernels are mostly negative, i.e. an increase in sound speed leads to decreased travel
time. Also notice that the kernel for the deepest focus depth (solid line) has weight

at greater depth than the other two.
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Figure 4.14: The relationship between error magnification (vertical axis) and spread-
ing of the averaging kernel (horizontal axis) as the regularization parameter « is
varied. Both axes have been scaled so that E(ag) = S(ap) = 1 where oy is the reg-
ularization parameter we have chosen for this study. This plot is for the averaging
kernel for fractional sound speed at r = 0.86R.. For large o the error magnifica-
tion is small but the averaging kernels are not well localized. For small « the error
magnification is large but the kernels are well localized.
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The result of the OLA inversion, which gives an estimate of the fractional sound
speed perturbation as a function of depth and Carrington longitude, is shown in
Figure 4.15. Were the Sun constant in time, the sound speed inversion would be
periodic with a period of 360°, this is clearly not the case in Figure 4.15. The
interpretation of the inversion result is not totally straightforward, as we will see in

the next section.

4.3.5 Effect of Surface Magnetic Field

It is well known that surface magnetic field correlates with the travel times of wave
packets (e.g. Lindsey & Braun, 2000). The physical mechanism is not, however,
known. We would like to investigate whether the inversion result that we have ob-
tained (Fig. 4.15) can be explained solely as an artifact of near-surface magnetic field.
In order to test this hypothesis we made a set of artificial travel times, 75 (Ttocus, ),

with the assumption that
7_B(Tfocus: )‘) = - /dil? F(CB; Tfocuss /\)‘B(SE)‘ . (427)

In the above equation B is the MDI magnetic field. The integral [ da is taken over
the surface of the Sun. The spatial weighting function F'(&; rcus, A) is the density of
observation points for the cross-correlations used in the deep focusing average with
focus radius rgcys and longitude A. Figure 4.16 shows some sample weight functions
F. The essential point is that the weight functions depend on focus depth. As a
result, given a non-uniform spatial distribution of magnetic field, the travel times 75
will depend on focus depth. A near surface effect, however, gives deep-focus travel
times that are independent of focus depth (in Figure 4.13 notice that the kernels
are identical near the surface).

Figure 4.17 shows the result of inverting the travel times 75. The overall ampli-
tude has been scaled to give results of the same magnitude as the inversion shown
in Figure 4.15. There are two main features in the inversion of 75. The first is
that what is nominally a surface effect has leaked down to a radius of 0.95R, this
is not surprising and merely reflects the near-surface resolution of the data, which

we confirmed by inverting a set of travel times 7(rfocus, A) = 1. The second, and
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Figure 4.15: Result of OLA inversion for sound speed as a function of depth and
Carrington longitude for rotations 1965, 1966, and 1967. The horizontal axis is
degrees Carrington longitude since Carrington Longitude 360° of rotation 1965 ar-
ranged so that time runs continuously to the right. The vertical axis is fractional
radius and the color scale denotes the value of the fractional sound speed perturba-
tion. The color scale runs from —8 x 10~* (blue) to 4.5 x 10~* (red). The contour
lines show the regions that are further than 20 and 40 from zero. The inversion has
been smoothed in longitude with a Gaussian filter with HWHM of 10° .
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Figure 4.16: Spatial weights for averaging the surface magnetic field. The top left
panel is for a focus radius of 0.975Rs, the top right for 0.875R, the bottom left
for 0.75Rs , and the bottom right for 0.65R. The color scale indicates the value
of the weight functions, with red largest, blue smallest, and white zero. Notice
as the fractional radius of the focus depth decrease, the weights become zero for
small distances. This is because the deep focus depths cannot use cross-correlations
between points separated by small distances.
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much more interesting feature, is that the inversion of 75 shows features in the deep
convection zone, of the same magnitude as the near-surface features. This result
shows that the horizontal variation in the surface magnetic field causes features at
depth in the inversion. As a result we must be very cautious about interpreting the
original inversion result (Fig. 4.15).

Figures 4.17 and 4.15 are not, however, identical. There are several possible
causes. Perhaps there are in fact sound speed perturbations at depth. This possi-
bility can not be ruled out by the current analysis. Another possibility is that the
spatial weights F' that we have employed are not sufficiently accurate. In particu-
lar, we did not take account of the distance dependence of the weight with which
individual cross-correlations contribute to the deep-focusing average. A more de-
tailed calculation would be a serious undertaking, and beyond the scope of this first

attempt.

4.3.6 Interpretation in Terms of Deep Magnetic Field

Thus far we have only obtained inversions for fractional sound speed perturbations.
We would like, however, to use these results to make some estimates about the pos-
sible strength of longitudinal variations in the magnetic field in the deep convection
zone. We expect that the magnetic field will appear in inversions for sound speed
both by the direct mechanical effect of the magnetic field on the wave speed (Koso-
vichev & Duvall, 1997) and by the effect of magnetic field on the stratification of
the convection zone. A detailed calculation of the effect of magnetic field on time-
distance measurements has not yet been done. In order to obtain a rough estimate
of the magnetic field variations in the deep convection zone, we assume that the
dominant effect of magnetic field is to increase the square of the sound speed by the

square of the local Alfvén speed (i.e. wave packets move at the fast-mode speed)
6t = B*/4np. (4.28)

With this assumption, a fractional sound speed perturbation of 5 x 10~* at the base

of the convection zone, where p = 0.2gms™3 and ¢ = 5.2 x 10'* cm? 572

estimate for B of 0.8 MG.

, glves an
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Figure 4.17: Effect of surface magnetic field on the inversion. For this figure, we
assume that travel time is proportional to the spatial average of the magnetic field
(eq.[4.27]). These travel times are then inverted, using the same inversion technique
as for Figure 4.15. The near surface effects are expected, travel times are known
to be decreased underneath magnetic regions (e.g. Lindsey & Braun, 2000). Arti-
facts, however, appear in the deep convection zone as a result of the focus depth
dependence of the spatial averaging of the surface magnetic field.
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A field strength of 0.8 MG. is substantially larger than one might expect given
the results of the recent simulations of rising magnetic flux tubes by Fan et al.
(1994). They find that flux tubes with field strengths of 10 to 100 kG emerge at
latitudes compatible with the observed active latitudes. By extrapolation of their
results to very high field strength, it would appear that flux tubes with strengths of
0.8M G emerge at essentially the same latitude as they have in the tachocline. In
particular, tubes leaving the tachocline at the equator would emerge at the surface
at the equator. There is, however, very little magnetic field seen at the equator. The
resolution of this puzzle is not at all clear, and there clearly remains a substantial

amount of work to be done on this subject.



