Chapter 3

Theoretical Interpretation of
Time-Distance Heliosesismology
Data

3.1 Introduction !

Time-distance helioseismology, introduced by Duvall et al. (1993b), has yielded nu-
merous exciting results regarding the interior of the Sun. This technique, which
gives information about travel times (introduced in section 1.5.2) for wave packets
moving between any two points on the solar surface, is an important complement
to global-mode helioseismology as it is able to probe subsurface structure and dy-
namics in three dimensions. Some of the main results concern flows and wave-speed
perturbations underneath sunspots (Duvall et al., 1996; Kosovichev & Duvall, 1997;
Kosovichev et al., 2000; Zhao et al., 2001), large-scale subsurface poleward flows
(Giles et al., 1997; Giles et al., 1998), and supergranulation flows (Duvall et al.,
1997; Duvall & Gizon, 2000).

The interpretation of time-distance data can be divided into a forward and an

inverse problem. The forward problem is to determine the relationship between

1 Parts of the introduction to this chapter are taken from the introductions to three time-distance
papers (Birch € Kosovichev, 2000; Birch et al., 2001a; Gizon & Birch, 2002). The three main
sections of this chapter are based on published papers; the particulars will be explained at the
beginning of each section.
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36 CHAPTER 3. THEORETICAL INTERPRETATION OF TIME-DISTANCE

the observational data (travel-time perturbations 7) and internal solar properties
(denoted by ¢,). Generally, this relationship is sought in the form of a linear integral
equation,

or=>" /@ dr 6qq(r) K*(v), (3.1)

where the d¢,(r) represent the deviations in internal solar properties from a the-
oretical reference model. The index « refers to all relevant types of independent
perturbations, such as sound speed, flows, or magnetic field. The integral f® dr
denotes spatial integration over the volume of the Sun. The kernels of the integrals,
K“(r), give the sensitivity of travel times to perturbations of the solar model. The
inverse problem is to invert the above equation, i.e. to estimate dq,, as a function of
position 7, from the observed d7. This chapter is concerned only with the forward
problem. The inverse problem will be discussed in the first section of Chapter 4.

Accurate computations of the sensitivity of travel times to subsurface conditions
are necessary for making quantitative inferences about the Sun from time-distance
data. The two approximations that have typically been employed in the modeling of
time-distance data, i.e. solving the forward problem, are the ray and single-source
approximations.

The ray approximation estimates travel-time perturbations as weighted integrals
along the geometrical ray connecting the observation points (Kosovichev, 1996a;
D’Silva et al., 1996) and has been employed in the bulk of the time-distance analysis
that has been done to date (e.g. Kosovichev & Duvall, 1997; Kosovichev et al.,
2000; Chou et al., 2001; Zhao et al., 2001). Ray theory is, however, well known
to be inaccurate when applied to structures with sufficiently small length scales,
in particular when the length scale of the perturbation is smaller than the first
Fresnel zone (e.g. Bogdan & Cally, 1997; Jensen et al., 2000; Hung et al., 2001;
Birch et al., 2001a). Efforts to move beyond first order ray theory have focused
on the Born approximation (Gizon et al., 2000; Birch & Kosovichev, 2000) and a
qualitative Fresnel zone approach (Jensen et al., 1998; Jensen et al., 2001). Both
of these approaches are based on previous work in the geophysics literature (e.g.
Zhao & Jordan, 1998; Marquering et al., 1999; Dahlen et al., 2000, for the Born
approximation) and (e.g. Sneider & Lomax, 1996, for the Fresnel zone approach).

In the single-source approximation the effect of random distributed wave sources
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is modeled by a single source at one of the observation points (Jensen et al., 2000;
Birch & Kosovichev, 2000). It is known that the main source of waves on the
Sun is near-surface convection (e.g. Nigam & Kosovichev, 1999) and as a result
the single-source approximation is not an obviously physical approximation. The
approximation is, however, motivated by ray theory and by the “Claerbout conjec-
ture”: “By cross-correlating noise traces recorded at two locations on the surface,
we can construct the wavefield that would be recorded at one of the locations if
there was a source at the other.” (e.g. Rickett & Claerbout, 1999).

Two studies have emphasized the limitations of the single source approximation.
Woodard (1997) employed a distributed-source model to estimate the effect of wave
absorption by sunspots on travel times. The effect discovered in that paper cannot
easily be modeled in the single-source approximation. Gizon & Birch (2002) showed
that travel-time kernels, for surface gravity waves, in the single-source approxima-
tion and in a distributed-source model could be qualitatively different. A detailed
investigation of the accuracy of the single-source approximation has not yet been

done.

This chapter makes three important claims. The first is that ray approximation
travel times are inaccurate for perturbations with length scales smaller than the
first Fresnel zone. The second is that Born approximation travel times are accurate
to lowest order in perturbation strength. The final claim is that the single-source
approximation neglects a scattering process and as a result single-source travel-time

kernels can be substantially incorrect.

The remainder of this chapter is organized in three sections. The first, sec-
tion 3.2, employs the Born approximation to compute finite-wavelength travel-time
sensitivities in the single-source approximation. In addition, the first section gives a
brief numerical comparison between Born and ray approximation travel times. The
accuracy of the Born and ray approximations is studied in section 3.3 by comparison
with direct numerical solutions of the wave equation. A general Born approximation
finite-wavelength distributed-source approach for computing travel-time sensitivities
is developed in the final section, 3.4. The final section also shows that single-source
and distributed-source kernels, computed for surface-gravity waves, are qualitatively
different.
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3.2 Single-Source Model for Travel-Time
Sensitivities !

In this section I will demonstrate the computation of travel-time kernels in the
single-source approximation. In this approximation the velocity signal from a single
source is taken as a proxy for the cross-correlation function between the “source”
and “receiver” points. The “source” point (denoted by the symbol x;) is the location
on the solar surface where the source is located and the “receiver” point (denoted
by the symbol x;,) is where the signal due to the source is observed. In this section
the signal is assumed to be radial velocity, which is a good approximation near disk
center.

In the single-source approximation the travel-time perturbation is measured from
the velocity signal. One possible choice for the definition of travel-time perturbation
is "

dr(Xs, Xy) = argmax{ / dt vo(xy, t — T)v (X, ) } : (3.2)

T to

The function argmax, {f(7)} returns the value of 7 which maximizes the function
f(7). Here vy(x,,t) is the velocity at the receiver in the lowest order solar model,
and v(x,,t) is the perturbed velocity at x,. The wave source is located at xz. In
equation (3.2), d7(xs, x;) depends on x5 as v(x;, t) and vy(x,,t) are velocity signals
due to a source at xs. The time interval [y, ;] should be chosen to isolate the
particular part of the velocity signal that is of interest, for example the first-bounce
part. From equation (3.2) we see that the travel-time perturbation is the time shift
between the unperturbed and perturbed signals at the receiver location, x,. The
above definition of travel time and the labels “source” and “receiver” are standard
in the geophysics literature (e.g. Zhao & Jordan, 1998).

This section has three main parts. The first (section 3.2.1) is a derivation of
travel-time kernels for sound-speed perturbations to a spherical solar model. The
second (section 3.2.2) shows that the Born approximation gives the same result as

standard normal mode perturbation theory when applied to spherically symmetric

! The material in this section is taken from a Solar Physics paper (Birch & Kosovichev, 2000)
and a proceedings paper (Birch € Kosovichev, 2001). I carried out the analytical and numerical
calculations, except for the computations of the normal mode eigenfrequencies and eigenfunctions,
and wrote the text for both papers.
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perturbations, in an effort to make a connection between time-distance helioseismol-
ogy and standard global helioseismology. The final section, 3.2.3, shows numerical
computations of travel-time kernels and some preliminary comparisons between the

ray and Born approximations.

3.2.1 Derivation of Travel-Time Sensitivities

The goal of this section is to compute the travel-time kernels K (xs, x;;7) that re-
late a local perturbation, dc(r), to the sound speed of the solar model, ¢(r), to a
perturbation to the travel time, denoted by d7(xs, x,), between the two locations x,

and x, on the solar surface. The kernels should satisfy

57’(xs,xr):/®drK(xs,xr;r) (3.3)

The integral [  dr means integration over the entire volume of the sun.

The first step in the derivation of kernels is to compute the radial velocities v
and v in the unperturbed and perturbed solar models, respectively. A linear relation
between travel-time perturbations and perturbations to the solar model, in the form
of equation (3.3), can then be obtained by linearizing equation (3.2). The remainder

of this section, 3.2.1, completes this task.

Governing Equations

The standard equation of motion (e.g. Gough, 1987) in the Cowling approximation,

for the fluid displacement field & due to a source S, is
(02 +L)E=S5, (3.4)

where p is the density and L is the spatial part of the wave equation operator. Here

the function S represents an impulsive monopole source, which we take as

S = AV&D(X — Xs)ép(t - ts) s (35)
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where x; is the source location, ¢, is the time of the impulse, A gives the amplitude
of the source, dp is the Dirac delta function, and V is the gradient with respect to
the variable x.

In order to apply the Born approximation we split the problem into the unper-
turbed (subscript 0) and first-order correction (preceded by a d) parts. In general we
expect that the perturbation to the travel time should depend on the perturbations
to density and sound speed and as in the case of global helioseismology both kernels
are needed in order to do inversions. In this work, in order to demonstrate the
general approach, we calculate only the sensitivity of travel times to perturbations

to sound speed at fixed density. The problem can thus be written as
(P00} + Lo+ 6L) (&y + 6€) = AVp(z — x)0p(t — t5) - (3.6)

The unperturbed and perturbed operators £° and 6L are

dP,
d—ro — g0V - (po) , (3.7)

SLE = V [6c’poV - €], (3.8)

Lot = V|2pV-€-&

where ¢ is the adiabatic sound speed, g is the gravitational acceleration (which is
a function of depth), Py is the gas pressure, and dc is the perturbation to the sound

speed, which in general is non-spherical. The radial component of € is denoted by

&

The lowest order problem is
(,008,52 + Lo)go = AV&D(LE - .Io)(SD(t - ts) s (39)
and the first-order problem is

(P00 + L0)0€ = —0LE, . (3.10)

Solution of the Lowest Order Problem

For the spherically symmetric case the eigenfunctions and eigenvalues of the operator
(p0? + Ly) are well known (e.g. Gough, 1987). We use the standard convention of
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labeling the radial order by n, the angular degree by [, and the azimuthal order by

m. For the normalization of the eigenfunctions we choose
/ dr po(r)€"™ (1) - €7 (r) = 1. (3.11)
®

For convenience of notation, following the approach of Dahlen & Tromp (1998)
we represent the unperturbed eigenfunctions in terms of the real vector spherical

harmonics Py, and By,

£"M(r,0,0) = (1) Pim(0, ) + &' (r)Bim(6, ¢) , (3.12)

where €% and £¥ are the radial and horizontal components of the displacement.
The vector spherical harmonics can be written in terms of the real (scalar) spherical
harmonics, Y;,,(6, @), as
1
By, (0, ¢0) = ——=V1Yi.(0,0), 3.14
im (0, 9) l(l+1)“(¢) (3.14)

where V is the horizontal gradient on the unit sphere (Dahlen & Tromp, 1998).

The solution to the zero-order problem is then obtained as the sum of the eigen-
functions. For the radial component of the oscillation velocity at a location x; at

time ¢ due to a source at time ¢, = 0 and location xy we obtain

o o
20+ 1
vo(A,t) = —A Z Z ;D”I(R@){ffl(R@)B(cos A)Hea(t) cos(wnit)  (3.15)
n=0 1=0 am
where we have assumed that the source and observation points x; and x, are on
the solar surface, that the displacement field is zero at time zero, and that the solar
surface is free. The great circle distance between x4 and x, is denoted by A. The

P, are the Legendre polynomials, Hea the Heaviside function, and

nl
prt = B L e g (316

which comes from taking the divergence of the eigenfunctions. Notice that the zero

order velocity signal depends only on the great circle distance between x4 and x,
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and the time ¢.

First Born Approximation

We recall that the first-order problem is
(032 + L£)3€ = —0LE, (3.17)

with &, the solution to the unperturbed problem. The operator on the left hand side
of the equation is the same as for the zero-order problem and thus we can solve the

first-order problem in exactly the same manner as we did the unperturbed problem.

The first-order solution for the radial velocity is then

Su(xe xnt) = A / dr po(r)5c2(r)Hea(t) (3.18)
O]
X n’;i_o u:iio Snt(Xes ) Rt (%, 1) (wzl)gll__czzl(wnlllt) ;
where
Sulxer) = 2 = L D" (R D™ (1) Py(cos Ay (3.19)
R (X, ) %ﬂl(RQ)D"Z(T)PI(COS Ay). (3.20)

The great-circle distance between x; (x;) and r is denoted by A; (As).

Kernels

Now that we have the unperturbed and the first Born approximation responses, vy
and vy + 0v respectively, we can calculate the time lag between them. The lineariza-
tion of the dependence of §7 on dv in equation (3.2) gives, with the assumption that
the time window [tg, ;] isolates a particular bounce in the cross-correlation,

1 h

0T = NA) ) dt 0o (t)ov(t) (3.21)
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with
N(A) = / LAt (A, Dup(A, 1) (3.22)

to

By plugging equation (3.18) into equation (3.21) we obtain

A
"o —/ dre 3.23
N(A) o(r)c P33 (3.23)
t1 nt B § p
XSnl(Xs,T’)Rn/lf(Xr,'l’)/ dt OO(A’t)COS (w 12) cos (wpp )
to wnl w ey

It is convenient to obtain kernels for the fractional perturbation to the square of the
sound speed, which satisfy equation (3.3). From equation (3.23) we can see then
that

K(xs, %, 7) = N_(A Z Z (3.24)

n,n'=0 Ll'=
" t - //t
to wnl - wnlll

This equation can be simplified by introducing the collective indices p = (n,l) and

g = (n',1") and defining the matrix

£ cos (wpt) — cos (wt)
X)) = —— o (A u . 2
G (s, %,) N(A)/to in(a, ) (3.25)

Notice that N oc A% and vy oc A so that the matrix G does not depend on A, the
amplitude of the source. With the above definitions the kernel can then be written
as

K (X4, %;,7) = —po(r)ca(r)ST (x5, ?) G (x5, X, )R (X, 7) (3.26)

where the superscript 1" denotes the transpose.

Note that the kernels K (xg, x,;7) are not, however, symmetric on interchange
of the source and the receiver locations, x5 and x,. The asymmetry is a result of
the single-source model, in which modes that have large divergence at the source
are most excited and modes which have the largest radial velocities at the surface

contribute most strongly to the observed signal. Since there is no isolated point
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source on the Sun, in reality travel times are determined from a cross-covariance
function. The exact relationship between the single-source model and the physical
distributed-source model is not established yet. For discussions of the problem see
(Rickett & Claerbout, 2000; Kosovichev et al., 2000) as well as the final section of
this chapter. Therefore, in order to obtain the desired symmetry, we simply replace
the divergence and vertical displacement at the solar surface that appear in the
vectors S and R with the square root of some function F™. The square root is used

so that the zero-order velocity is

=20+ 1
vo(A,t) = —A E E yp F™(Rg)P,(cos A)Heal(t) cos(wnt) . (3.27)
n=0 1=0

The function F™ is the amplitude with which each mode contributes to the zero-
order velocity signal and is thus related to the filtering that is done to the data in
the process of making a time-distance measurement, (Kosovichev & Duvall, 1997).
The above equation for vy, with the Heaviside function removed, is essentially equa-
tion (9) for the cross-correlation from Kosovichev & Duvall (1997), which is further
justification for the substitution of VF™ for the divergence and radial velocities at

the solar surface.
We replace the vectors S and R with a vector H, defined as

20+ 1
47

Hy(r',r) = VEUD™(r)P(cos A') (3.28)

where A’ is the great circle distance between 7’ and . In terms of H the travel-time

sensitivity kernels in the first Born approximation are
K (x4, %, 7) = —po(r)ca(r)H” (x4, 7) G (x5, X, ) H(x,, 7) . (3.29)

We now have travel-time sensitivity kernels, for sound speed, in the single-source
approximation. This result was obtained through straightforward application of the
Born approximation and a linearization of the definition of travel time. The essential
physical argument was that the velocity from a single source behaves in the same
way as the time-distance correlation function. Later in this chapter I will show that

this assumption is not entirely correct.
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3.2.2 The Born Approximation and Normal Mode Coupling

This section is an attempt to elaborate further on the use of the Born approximation
to understand the relationship between time-distance measurements and sound-
speed perturbations. We will restrict our attention, for the sake of computational
and conceptual simplicity, to sound-speed perturbations that are constant on shells
of constant radius. For this case, we will show that the Born approximation is the

same as standard first order normal mode perturbation theory.

As we showed in the previous section (eq. [3.15]), the radial velocity resulting

from a unit impulsive monopole source at the solar surface is

(o SlENe o]

w(a =33 2l4—j;1§fl(R@)D"l(R@)Pl(cos A)Hea(t) coswnt  (3.30)

where A is the great circle distance between source and receiver, P, are the Legendre
polynomials, V - £€"™(r,0,¢) = D™(r)Y;.(0,¢), and we have adopted A = —1
for convenience. The Y}, are real spherical harmonics (Dahlen & Tromp, 1998).
Equation (3.30) is exact only if the eigenfunctions form a complete basis.

We want to obtain the first order correction to the velocity that results from
a change in the sound speed, assuming that the change in sound speed depends
on radius only. This can be done by computing the first order corrections to the
functions £™(Ry), D™ (Rg), and the normal mode frequencies wy,.

The frequencies and eigenfunctions of the normal modes of the Sun can be can
be obtained from equation (3.4) by assuming harmonic time dependence for the

displacement field £ and putting the source function S equal to zero. The result is
1 2
;Lg = w’€. (3.31)

The boundary conditions are regularity at the center of the Sun and zero Lagrangian

pressure perturbation at the outer boundary.

We then add a perturbation to the sound speed in the solar model; this corre-

sponds to adding a perturbation 6L with

SLE=—V [péc°V - €], (3.32)
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to the operator £ in equation (3.31). The perturbations to the frequencies and

eigenfunctions can be found in the standard way (e.g. Sakurai, 1995)

Sw? = oLt (3.33)
n 0L g
ot = Y g (3.34)
n' ' £n nl — Wi
with
Ro '
sLt —/ pridr 6¢2(r)D™(r) D™ (). (3.35)
0

The first order correction to the velocity signal is obtained by employing the per-
turbations to w and £ from equations (3.33) and (3.34) to make the first order

corrections to v° in equation (3.30). The result is

= 2z+1 " o’
Z Z — & (Bo) D™ (Ro) Pi(cos A)
=0 n,n'=
, o8 (wnlt) — cos (wpt)

2
nl

Ro
X / pridr 502(T)D"Z(T)D”'l(r) ,
0

(3.36)

— w2

w n'l

with the understanding that the n = n’ terms are replaced with the limit w,; —
wpry. So far we have only used standard normal-mode perturbation theory. The
above result is, however, exactly the Born approximation result (eq. [3.18]) once the

integration over latitude and longitude has been done in that equation.

Notice that equation (3.36) is essentially a sum over pairs of coupled normal
modes. As the perturbation is spherically symmetric, modes of different angular
degree [ are not coupled. The result that in the case of spherically symmetric
sound-speed perturbations the Born approximation and normal-mode perturbation
theory are identical is perhaps not surprising, as both should be correct to first
order. This result, however, does give us some confidence in the Born approximation.
Helioseismologists are very comfortable with normal perturbation theory, and this
result provides some connection between standard global mode helioseismology and

time-distance helioseismology.
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3.2.3 Numerical Examples

In this section I will show the results of a numerical computation of a three-
dimensional travel-time kernel for local perturbations to sound speed, equation (3.29).
[ will then show a comparison between one-dimensional ray and Born approximation
travel-time kernels for spherically symmetric sound-speed perturbations. Finally a
brief comparison will be made between forward calculations in the ray and Born

approximations.

Three-Dimensional Born Approximation Kernels

The goal of this subsection is not to give a complete catalog of travel-time kernels
but rather to give a single simple example. Figure 3.1 shows slices through a Born
approximation sensitivity kernel, for the first-bounce travel time at a heliocentric
distance of 22.5° between source and receiver. The source and receiver are located
at the surface beneath the —11.2° and 11.2° labels in the left hand panel. The color
scale shows the value of the kernel multiplied by the sound speed in the background
model. The ray path, computed for a 5.2 minute wave packet, is shown by the black
line. For this example calculation, I used a filter function F™ that is Gaussian in
frequency, centered at 3.2 mHz with a HWHM of 0.56 mHz. 6000 normal modes
were used in the (implicit) double sum in equation (3.29).

Figure 3.1 shows that travel times are indeed sensitive to sound-speed perturba-
tions that are not located on the ray path. This is certainly not a surprise. Secondly,
we see that the kernel is not even maximum along the ray path, but rather on a
hollow tube around the ray path. This is a result that is particular to working in
three spatial dimensions. In two dimensions, for example, travel-time kernels are
maximum along the ray path. Finally, we see that the sensitivity of travel times
to sound-speed perturbations oscillates with distance from the ray path. The rate
of oscillation is controlled by the central frequency of the filter, and the decay rate
of the oscillations by the frequency width of the filter. None of these results are
fundamentally new; these kernels, dubbed “banana-doughnut” kernels, have been
studied in the geophysics literature for the case of wave propagation in the earth
(e.g. Marquering et al., 1999).

The computational burden for obtaining these kernels is substantial. Each of
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Figure 3.1: Slices through a travel-time kernel, in the source-receiver great-circle
plane (left panel) and perpendicular to the ray path at the lower turning point
(right panel), multiplied by the background sound speed. The source and receiver
are located on the surface at the —11.2° and 11.2° marks respectively, in the left
hand panel. The color scale does not indicate the full range of variation of the value
of the kernel; it is truncated in order to show the details. The black line connecting
the source to the receiver is the ray path calculated for a wave packet with a central
period of 5.2 minutes. This kernel was calculated using 6000 p modes with { < 1000
and the filter function F™ Gaussian in frequency with a central frequency of 3.2
mHz and FWHM of 0.56 mHz.
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the two dimensional slices computed here took 8 hours on a 2 GHz Pentium IV,
although the code was written in MATLAB and not at all optimized. A. Kosovichev
rewrote the code in FORTRAN and saw only a minor improvement. We have not

yet seriously investigated the problem of how to speed up the calculations.

Comparison of One-Dimensional Born and Ray Kernels

Travel-time kernels for sound speed can also be derived in the ray approximation
(e.g. Kosovichev & Duvall, 1997). For the spherically symmetric case they can be

written

Koa(r) = — (1 s ) dto(r) (3.37)

w? — w? dr
where w, is the acoustic cut-off frequency, w is the frequency, in this case 3.2 mHz,
and t4(r) measures the phase time along the ray as a function of radius. Notice that
the ray kernels are singular at the lower turning point as a result of the derivative
of the phase time.

A comparison of the ray and Born kernels, for a distance of 22.5°, is shown in
Figure 3.2. The Born approximation kernel was computed by using the normal
mode coupling approach for dv (eq. [3.36]) and the machinery of section 3.2.1. The
filter function is the same as in the previous subsection, i.e. Gaussian centered at
3.2 mHz with a HWHM of 0.56 mHz. Again 6000 normal modes were used in the
calculation. The ray and Born kernels are of the same order of magnitude and
essentially of the same sign, i.e. increases in sound speed give decreases in travel
time. Notice that the ray kernel is identically zero below the lower turning point of
the ray. In contrast, as we saw in Figure 3.1, the Born approximation kernel has
weight below the ray path. The ray kernel is singular at the lower turning point,
while the Born approximation kernel is finite.

In order to make a further comparison between the ray and Born approxima-
tions, we made a series of forward calculations, i.e. calculations of travel-time per-
turbations due to known sound-speed perturbations. The result of these forward
calculations is shown in Figure 3.3. For perturbations with large spatial scale (left
panel) the Born and ray approximations agree. In the right panel the spatial scale
of the sound-speed perturbation is reduced by a factor of ten and the two approxi-

mations give quite different results. In particular, the ray approximation gives zero
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Ray and Born kernels
1 T

8s _019 ] T

r (fractional radius)
Figure 3.2: A comparison of one-dimensional ray and Born kernels (obtained by
assuming the perturbation to the sound speed depends only on radius). Note that
the ray kernel is singular at the lower turning point while the Born kernel is finite.
The vertical axis is truncated and does not show the full range of variation of the
kernels near the surface. The ray kernel is for a frequency of 3.2 mHz. The Born
approximation kernel is computed from 6000 normal modes, with a filter that is
Gaussian, with a central frequency of 3.2 mHz and HWHM of 0.56 mHz. These
kernels are for a perturbation to the sound speed (not the square of the sound
speed).
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Vary Depth of Thick Peturbation Vary Depth of Thin Perturbation
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Figure 3.3: Travel-time perturbations due to sound-speed perturbations in the ray
(solid line) and Born (dashed line) approximations. The left panel is for sound-
speed perturbations with Gaussian dependence on radius, with amplitude of 1.6%,
FWHM of 0.2R;, and varying central radius, r. In the right panel the FWHM is
reduced to 0.02R and the amplitude increased to 10%. The calculations were done
using the kernels shown in Figure 3.2.

when the sound-speed perturbation is located below the lower turning point, as we
saw in Figure 3.2. Even above the turning point, the two approximations can differ

by a factor of two for the thin sound-speed perturbation (right panel)

3.3 The Accuracy of the Born and Ray Approxi-

mations!

In this section we address, by comparison with exact numerical results, the issue of
the validity of the Born approximation, which is a finite-wavelength single-scattering
approximation (e.g. Sakurai, 1995), in combination with the linearization of the de-
pendence of travel time on the perturbed waveform. We also study the accuracy
of the first-order ray approximation. We work with the same model as Hung et al.
(2000) but with parameters and source function appropriate to time-distance helio-

seismology rather than terrestrial seismology. The model is very idealized: adiabatic

! This taken from an ApJ paper (Birch, Kosovichev, Price, & Schlottman, 2001). I did the Born
and ray approximation calculations and wrote the text of the paper. G. Price did the numerical
work for the uniform sphere cases. I ran the finite difference code, provided by B. Schlottman, for
the smooth sphere cases.
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acoustic wave propagation in a three dimensional homogeneous background medium
with sound-speed perturbations that are constant on spheres. While very simplis-
tic, the model does allow a relatively straightforward investigation of the ability
of the Born and ray approximations to capture the effect of localized sound-speed

inhomogeneity on acoustic waves.

We study the scattering of acoustic waves, in three dimensions, from a spherical
region where the sound speed differs from the background sound speed; this is the
same problem studied by Hung et al. (2000) and Hung et al. (2001). The pressure
fluctuations, p(x, t), associated with the acoustic wave are governed by the standard

wave equation,

62
{@ - 62(4'3)V2} p(z,t) = w(t)d(z — ), (3.38)
where c?(z) is the square of sound speed, w(t) the source function, and x the source
location. We use

w(t) = exp (—at?®) cos (wot) (3.39)

with wg/27 = 3 mHz and a = 4 x 107% s72, corresponding to a solar-like FWHM
of the power spectrum of 0.75 mHz. The background medium has a sound speed of
Cous = 10 km/s so that the central wavelength is 3.3 Mm. We choose to investigate
the case where the source, receiver, and the center of the sphere containing the
sound-speed perturbation are collinear. The geometry is shown in Figure 3.4. Note
that everything in the problem is cylindrically symmetric about the line connecting
the source and the receiver, which substantially simplifies the computations. We
consider only the geometry where the sound-speed perturbation is midway between

the source and the receiver, which are 90 Mm apart.

We consider two types of sound-speed perturbations. The first, which we refer
to as the “uniform” case, is a perturbation that is uniform inside a sphere. The
second, which we refer to as “smooth” is a sound-speed perturbation that tapers
smoothly to zero at the surface of the sphere. For the “uniform” sphere the interior
sound speed is

Cn = Cout(1 +A4), |X| <R (3.40)

and elsewhere the sound speed is the background sound speed, coys. For the “smooth”
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—-50 0 50

Figure 3.4: A frame from a finite difference calculation of the pressure field, shown
as gray-scale, for the smooth sphere perturbation with A = —0.5 and R = 15 Mm.
The source is at the upper black plus sign (z = 0, y = —45 Mm) and the receiver is
at the lower (x = 0, y = 45 Mm). The black circles are contours of the sound speed,
with the sound speed smallest in the innermost circle. The heavy black lines show
the ray paths connecting, in the plane of the image, the source and the receiver. The
two curved paths correspond to the diffracted wave, which avoids the slow center of
the sphere. This is a cut through the three dimensional problem, but as the problem
is cylindrically symmetric around the line x = 0 no information is lost.
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sound-speed perturbation, the sound speed in the sphere is given by

A T ||
() = Cous 41+ = TR 2R. 41
Cin() ct{ +2<1+0082R)} x| < 2R (3.41)

In both cases R is the HWHM of the perturbation and A is the maximum fractional
sound-speed perturbation. Note that for both the uniform and smooth sound-speed
perturbations the first-order ray theory travel-time perturbation is —2AR/cqy for a
ray going through the center of the sphere.

Although we calculate results for the pressure field directly, we are most inter-
ested in the travel-time perturbation associated with the sound-speed perturbation.
As is becoming standard in geophysics (e.g. Hung et al., 2000) we define the travel-
time perturbation as the time shift that maximizes the correlation between the

unperturbed and perturbed waveforms. The cross-correlation we define as:
ct) = / dt' p(zr, t)po(@r,t' — 1) (3.42)

where p(x,,t') is the full waveform at the receiver and p, the waveform at the
receiver in the absence of a sound-speed perturbation. The travel-time shift, At, is
given by

C(At) = maximum. (3.43)

3.3.1 Methods

We use four different methods to calculate travel times: first-order ray theory, the
Born approximation, direct finite difference calculation of the wavefield, and for the
case of the uniform sphere a spherical harmonic expansion. The ray theory we use is
standard (e.g. Kosovichev & Duvall, 1997). The Born approximation we also apply
in the usual way (e.g. Birch & Kosovichev, 2000). The spherical harmonic expansion,
which we use for the uniform sphere case, is as in Morse & Feshbach (1953). For
the direct finite difference calculation, which we apply to the smooth sphere case,
we use an explicit 2-D code that takes advantage of the cylindrical symmetry of the
problem (Schlottmann, 2000). To obtain travel times from the numerical waveforms

we fit a parabola around the peak of the cross-correlation.
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3.3.2 Results

We applied the techniques described in the previous section to a variety of cases,
for both the uniform sphere and the smooth sound-speed perturbations described in
Section 3.3. Figure 3.4 is a frame from a finite difference calculation of the pressure
field, for a smooth sound-speed perturbation with A = —0.5 and R = 15 Mm.
Waves are created at the source and move outwards, scattering from the sound-
speed perturbation, and then are observed at the receiver. In this example the
direct wave, which goes through the center of the sphere, arrives at the receiver
after the diffracted wave, which goes around the center of the sphere. Notice that
directly on axis the diffracted wave is focused and larger in amplitude than the direct
wave. This is because for this geometry all of the diffracted waves add constructively

at the receiver.

Figure 3.5 shows cross-correlations (Eq. [3.42]) for a variety of uniform and
smooth spheres. We remind the reader that the travel-time perturbation associated
with the sound-speed perturbation is the time lag that maximizes the cross correla-
tion. Each panel summarizes the results for sphere HWHM between 0 and 25 Mm.
For the weakest sound-speed perturbations, A = 40.01, the cross-correlations for
the uniform sphere, top pair of plots, mostly show the small shift in the peak of the
cross-correlation to non-zero time lag, with the time shift accurately described by
the Born approximation calculation (the black line). For spheres with R > 15 Mm

the diffracted wave makes a visible contribution to the cross-correlation.

As the magnitude of the sound-speed perturbation is increased the diffracted
wave becomes more important. For the |A| = 0.05 uniform sound-speed perturba-
tions, shown in the middle pair of plots, the diffracted wave is in places stronger than
the direct wave. The Born approximation travel time, however, remains associated
with the direct wave part of the cross-correlation, most noticeably for A = —0.05
uniform spheres with R > 20 Mm. The third pair of plots is for the cases of the
smooth spheres with |A| = 0.05. Here, unlike the uniform spheres with same value
of A, an isolated diffracted wave is not visible.

We now look in detail at the numerical travel times and how they compare to
the Born and ray approximation travel times. Results for the A = 4+0.01 cases are

summarized in the left panel of Figure 3.6. For these cases the Born approximation
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A =-0.01, Uniform Sphere A =0.01, Uniform Sphere

0 10 20 0 10 20

1000

Figure 3.5: Cross-correlations between the waveform at the receiver and the unper-
turbed waveform for spheres of HWHM R with uniform and smooth sound-speed
perturbations of various amplitudes. The gray-scale denotes the cross-correlation,
with white corresponding to large positive values and black to large negative val-
ues. The black lines are the Born approximation travel times. For each plot the
horizontal axis is sphere HWHM and the vertical axis is time lag. The top pair of
panels is for uniform spheres with |A| = 0.01, the middle pair for uniform spheres
with |A| = 0.05, and the bottom pair for smooth spheres with |A| = 0.05. The left
column contains the negative sound-speed perturbations and the right column the
positive.
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travel time is always within two seconds of the numerical travel time. As sphere
radius increases past the size of the first Fresnel zone, 8.2 Mm, the ray and Born
approximations converge. At small radii the ray approximation overestimates travel
times; this is a result of wave-front healing (Hung et al., 2001).

The right hand panel of Figure 3.6 shows travel times for the A = £0.05 uniform
sphere perturbations as functions of sphere radius. For the fast spheres the results
are qualitatively the same as the A = 0.01 case although the Born approximation
no longer captures the time delay fluctuations for intermediate sphere sizes. The
A = —0.05 case is more complicated. For R < 12 Mm the diffracted wave and
direct wave contributions cannot be separated; the numerical travel times for those
spheres result from a mixture of the two types of waves. As is seen in Figure 3.5, for
R > 12 Mm the cross-correlation exhibits two separate features, one corresponding
to the direct wave and one to the diffracted wave. For the numerical travel time for
A = —0.05, in Figure 3.6, we have plotted the location of the peak corresponding
to the direct wave for R > 12 Mm. The rapid variation of the travel time near
R =12 Mm is a result of interference between the direct and diffracted waves.

In order to consider stronger perturbations, without the complications intro-
duced by a strong diffracted wave, we also compute travel-time shifts for smooth
spheres, see Figure 3.7. The travel times, in this case, do not oscillate with sphere
radius, as they do in the uniform sphere case. This can be seen in the context
of the Born approximation as the smooth sound-speed perturbation averaging the
oscillations in the travel-time kernels. As in the uniform case the ray approxima-
tion substantially overestimates travel times for the small radii spheres. Also as in
the uniform case the Born and first-order ray approximations converge in the large
sphere limit. For large spheres the nonlinear dependence of the numerical travel
time on A is visible. Unlike in the |A| = 0.05 cases, the effect of the diffracted wave
is apparent for the |A| = 0.1 spheres, causing a visible difference between the Born

approximation and the numerical travel times near R = 5 Mm.
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A = +0.01, Uniform Sphere A = £0.05, Uniform Sphere
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Figure 3.6: Travel-times shifts for uniform spheres as functions of sphere radius. The
solid lines are the numerical results from the spherical harmonic expansion method.
The dashed curves are the Born approximation. The dotted lines are the first order
ray approximation. The left panel shows the two cases A = +0.01. The right panel
is for the cases A = 4+0.05. For the case A = —0.05 the numerical time is shown for
the peak in the cross-correlation that is closest to the Born approximation, although
for R > 12 Mm the largest peak in the cross-correlation corresponds to the diffracted
wave rather than the direct.
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Figure 3.7: Travel times for smooth spheres as functions of sphere HWHM. The
solid lines are the numerical results. The dashed curves are the Born approximation
travel times and the dotted lines are the first-order ray approximation. The left
panel shows the two cases A = +0.05. The right panel is for the cases A = +0.1.
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3.4 A Distributed Source Model for Travel Time

Sensitivities !

3.4.1 A General Theory

This section is an attempt to synthesize and extend the current knowledge into a
flexible framework for the computation of the linear sensitivity of travel times to
local inhomogeneities. We start from a physical description of the wave field, includ-
ing wave excitation and damping. We incorporate the details of the measurement
procedure. Two other key ingredients of our approach are the single-scattering Born
approximation and a clear observational definition of travel time, both taken from
the geophysics literature (e.g. Tong et al., 1998; Zhao & Jordan, 1998; Marquering
et al., 1999). The main difference between the geophysics and helioseismology prob-
lems is that helioseismology deals with multiple random wave sources as opposed to
a single isolated source.

The next section, 3.4.2, is an example calculation of travel time kernels for sur-
face gravity waves. The purpose is to demonstrate the application of the general
theory described in this section. We compute travel-time kernels for local pertur-
bations in source strength and damping rate. In our model, these perturbations
are confined to the surface and therefore are computationally convenient as we
obtain two-dimensional kernels. Localized source and damping perturbations are
interesting and not yet well understood. For this example, we also compare these
kernels with kernels calculated in the single-source picture (Birch & Kosovichev,
2000; Jensen et al., 2000), in which the effect of distributed random sources is ap-
proximated by a single causal source at the observation point 1. We show that the
single-source kernels do not reproduce all the features seen in the distributed-source
kernels.

We define the “travel time” for each branch to be the time lag that minimizes
the difference between the measured cross-correlation, ', and a sliding reference
wavelet, C™f. Depending on the choice of reference wavelet the term “travel time”

may be an abuse of language; this issue will be clarified later. The travel time for

L This section is essentially the ApJ paper with L. Gizon (Gizon € Birch, 2002). That paper
was a work of equal collaboration.
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waves going from 1 to 2 is denoted by 7,(1,2) and the travel time for waves going
from 2 to 1 by 7_(1,2). The difference (in the least squares sense) between the

observed cross-correlation and the reference wavelet is

X1(1,2,t) = /Oo dt’ f(xt)[C(1,2,t) — C™(1,2,¢ q:t)]Q. (3.44)
—o0
The window function, f(t'), is a one-sided function (zero for t' negative) used to
separately examine the positive- and negative-time parts of the cross-correlation.
The window f(¢') is used to measure 7., and f(—t') is used to measure 7_. One
possible choice is a window that isolates the first-skip branch of the cross-correlation.
Other window functions could be chosen to, for example, isolate the second bounce

branch of a cross-correlation in the case of acoustic modes.

By definition the travel times 7 are the time lags that minimize X, :
7+(1,2) = argmin{ X (1,2,%) }. (3.45)
¢

Minimizing X is equivalent to fitting C™(#' F t) to C(') with a weighting in time
given by f(%t'), varying the time lag ¢ only. An example of measuring the travel

times 74 from a cross-correlation is shown in Figure 3.8.

The choice of reference wavelet C™(1,2,¢) is left to the observer. For most
applications the reference wavelet needs only be a function of distance A = ||2 — 1||
and time t. As was done in Figure 3.8, one possible choice is to take C™ to look like a
cross-correlation. In this case 7, and 7_ are small and the term “travel time” should
be understood to mean “time lag”. A reference wavelet that resembles a cross-
correlation can be constructed by either averaging the observed cross-correlations
over all possible pairs of points (1,2) for each distance A (see Fig. 1.1), or by
computing a theoretical cross-correlation from a solar model (see § 3.4.2). Another
possible choice is to take C™(1, 2, ) to look like a single wavelet centered about ¢ =
0. In this case 7, and 7_ will essentially represent the time it takes for wavepackets
to travel between the observation points, and the denomination “travel times” for
T4+ is appropriate.

The definition of travel time presented here is analogous to the typical definition

of travel time used in the geophysics literature (e.g. Zhao & Jordan, 1998). In
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Figure 3.8: An example showing how to measure the travel times 7 from a cross-
correlation C(1,2,t). In this figure we choose the reference wavelet C™f (heavy line
in top panel) to be the zero-order cross-correlation, for the distance A = 10 Mm,
from the surface gravity wave example discussed in Section 3.4.2. In general, the
observer is free to choose any reference wavelet. This function, C™, is even in
time. The light line (top panel) shows an example cross-correlation, C, which in
this particular case was computed from a model including a uniform horizontal flow
of 400 m s™! in the direction 1 — 2. To measure the travel times 7. from C we
need to minimize the functions X;. The lower panels show the functions X (t) and
X (t), constructed using equation (3.44). The window function f was chosen to
be the Heaviside step function. For the positive-time branch of C, the best fit is
obtained by shifting C™ toward ¢ = 0 (to the left). The minimum of X () occurs at
a negative time 7., as can be seen in the right bottom panel. For the negative-time
branch of C, the minimum of the function X_(¢) occurs at a positive time 7_ (see
bottom left panel). The locations, 7_ and 7, of the minima of the functions X_ (%)
and X (¢) are, by definition, the measured travel times. In this particular example
the signs 7, < 0 and 7— > 0 make sense as waves travel faster with the flow than
against it.
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time-distance helioseismology Duvall et al. (1997) measure travel times by fitting a
Gaussian wavelet to cross-correlations. This procedure distinguishes between group
and phase travel times, by allowing both the envelope and phase of the wavelet to
vary independently. Our definition is a simplification of this procedure as it contains
only one travel-time parameter per branch. The travel time defined here is neither
a pure group nor phase time; it is, however, perfectly well defined and has already
been used in a time-distance study with real data (Gizon et al., 2000). Without
significant difficulty, the fitting presented here could be extended to include more
parameters, for example amplitude and central frequency, as is done by Duvall et al.
(1997).

Traditionally, mean and difference travel times have been used in place of the
one-way travel times. The mean and difference travel times are obtained from the

one-way travel times by

1
Tmean — §(T+ + T—) ) (346)
Taiff = T4 — T-. (3.47)

The motivation behind using Tmean and 74i¢ is that sound-speed perturbations are
expected to contribute mostly to the mean travel time and flows to the travel-time
difference (e.g. Kosovichev & Duvall, 1997).

The definition of travel-time perturbations described here leaves observers free
to measure without reference to a solar model. We note, however, that in order
for a proper interpretation of measured travel-time perturbations to be made it
is essential for observers to report their choices of reference wavelet C™, window
function f, and filter . A solar model is only necessary for the next step, the
interpretation of travel-time perturbations in terms of local perturbations to a solar

model, to which we now turn.

Interpretation of Travel Times

The goal of time-distance helioseismology is to estimate the internal solar properties
which produce model travel times that best match observed travel times. To achieve

this, we need to know how to compute the travel times for a particular solar model.
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In order to make the inverse problem feasible we also need to linearize the forward

problem around a background state that is close to the Sun.

A background solar model is fully specified by a set of internal properties (density,
pressure, etc.) which we denote by ¢, (r) for short. Standard solar models provide
a reasonable background state. In the background state the cross-correlation and
the travel times are C° and 79 respectively. We then consider small perturbations,
dqq (), to the solar properties. These perturbations could include, for example,
local changes in density, sound speed, or flows. The difference between the resulting

cross-correlation, C, and the background cross-correlation we denote by 6C,
§C(1,2,t) =C(1,2,t) — C°(1,2,1). (3.48)
Likewise, the perturbed travel times 74 are
67+(1,2) = 72(1,2) — 72(1,2). (3.49)

The travel times 74 (1,2) are measured from the cross-correlation C(1,2,¢). The
reference times 79 are the travel times which would be measured if the Sun and the

background model were identical.

As we are considering small changes in the solar model, the correction to the
model cross-correlation, 0C, will also be small. As a result we can linearize the
dependence of the travel-time perturbations é7 on 0C. The algebra is detailed in

Appendix B. The result of this calculation can be written as

574(1,2) = /oo At W (1,2,1) 6C(1,2,1) (3.50)
—0
The functions W, depend on the zero-order cross-correlation C°, the reference
wavelet C™, and the window function f, and are given in equation (B.7). The
sensitivity of 671 to dC' is given by the weight functions W.. We emphasize that
the travel-time perturbations d7. are proportional to dC', which is a first-order
perturbation to the background solar model. We interpret the right-hand side of
equation (3.50) as a model for the difference between the observed travel times and

the theoretical travel times in the background solar model.
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The source of solar oscillations is turbulent convection near the solar surface (e.g.
Stein, 1967). As a result the signal ¢ and the cross-correlation C' are realizations
of a random process. In general, a random variable is fully characterized by its
expectation value and all of its higher-order moments. As a result, to describe a
travel-time perturbation 67 we need its expectation value (ensemble average) as
well as its variance, etc. In this paper we consider only the expectation value. A
calculation of the variance of the travel times would be essential to characterize the
realization noise in travel-time measurements. An accurate estimate of the noise in

travel-time measurements is important for solving the inverse problem.

In this paper we only compute the expectation values of travel-time perturbations
and cross-correlations. This represents a first and necessary step. Notice in addition
that under the assumptions of the Ergodic theorem (e.g. Yaglom, 1962) the cross-
correlations (hence travel times) tend to their expectation values as the observational

time interval increases.

Modeling the Observed Signal

In order to obtain the cross-correlation, C°, and its first-order perturbation, §C,
we need to compute the observable, ¢, defined in equation (1.19), and therefore the
wave velocity v. Linear oscillations are governed by an equation of the form (e.g.
Gough, 1987)

Lv=S. (3.51)

The vector S denotes the source of excitation for the waves. The linear operator
L, acting on v, should encompass all the physics of wave propagation in an inho-
mogeneous stratified medium permeated by flows and magnetic fields. Damping
processes should also be accounted for in £. An explicit expression for the operator
L including steady flows is provided by Lynden-Bell & Ostriker (1967). Bogdan
(2000) includes magnetic field.

We now expand L, v, and S into zero- and first-order contributions, which refer
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to the background solar model and to the lowest-order perturbation to that model:

L = L°4+60, (3.52)
v = v+ v, (3.53)
S = 8°+468. (3.54)

The operator 6L depends on first-order quantities such as local perturbations in
density, sound speed, and damping rate, as well as flows and magnetic field. In
general, one may contemplate time-dependent perturbations. There are, however,
many interesting structures on the Sun (e.g. supergranules, meridional flow, moat
flows) which are approximately time independent on the time scale on which time-
distance measurements are made (at least several hours). As a result, for the sake of
simplicity, we only consider time-independent perturbations. These perturbations,
which we denote by dg,(7) for short, are thus only functions of position = in the
solar interior.

To lowest order, equation (3.51) reduces to
L% =80, (3.55)

In order to solve this equation, we introduce a set of causal Green’s vectors G
defined by
LG (x,t;8,15) = &(8) 6p(x — 8) 6p(t — 1), (3.56)

where the é;(s) are three orthogonal basis vectors at the point s and Jy, is the Dirac
delta function. The vector G*(z,t; s, t;) is the velocity at location & and time ¢
which results from a unit impulsive source in the é; direction at time t; and location
s. Note that the vector G* does not in general point in the direction of é;. Guided

by equation (1.19), we define the zero-order Green’s functions for the observable ¢:
Gi(z,t; 8,t,) = St{é(w) - Gi(z,t; s,ts)} . (3.57)

In terms of §', the unperturbed signal reads:

Oz, t)= [ d Oodtsi (b8, t) S2(s, 1) - 3.58
)= [da [ at Gl tian) Siat) (358)
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The sum is taken over the repeated index 7, as is done for all repeated indexes

throughout this paper.

To the next order of approximation, equation (3.51) gives
LY6v=—6L0"+458. (3.59)

This is the single-scattering Born approximation (e.g. Sakurai, 1995). The first-
order Born approximation has been shown to work for small perturbations (e.g.
Hung et al., 2000; Birch et al., 2001a). We note that equation (3.59) is of the same
form as equation (3.55): the term —dL v°+ 48 appears as a source for the scattered

wave velocity dv. The solution to equation (3.59) is thus
Sv (@, ) = / ds / dt, Gi(x, 1; 5,1.) {~0L0(5,1,) +65(s,1)}..  (3.60)
O] —00

where {-}; denotes the i-th component of the vector inside the curly braces.

By expressing the zero-order velocity v° in terms of the Green’s function and
the source, and using equations (3.60) and 6¢ = F{£- év}, the perturbed signal can

be written as

dp(x,t) = /dr/ dt'/ds/ dts §'(z, t; 7, ) {—6LG (v, 1'; 5, 1)}, 57 (s, 1)
® —00 O] —00

+/ ds/ dts G'(z,t; s, t5) 5Si(s, 1) . (3.61)
O] —0o0

We recall that the operator 0L contains the first-order perturbations to the solar
model, §g, (7). The first term in the above equation contains two Green’s functions;
it represents the contribution to d¢(x,t) that comes from a wave that is created by
the source at location s at time %, is scattered at time ¢’ by the perturbations at
location r, and then propagates to the location . The details of the scattering pro-
cess are encoded in the operator §£. The second term results from the perturbation
to the source function, and involves only a single Green’s function, which propa-
gates waves from the location and time of the source to the observation location
and time. As we now have ¢° and §¢ we can next compute the zero- and first-order

cross-correlations, C° and 6C.
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Temporal Cross-Correlation

We remind the reader that we only want to compute the expectation value of the
cross-correlation. In the rest of this paper, cross-correlations stand for their expec-
tation values. From equation (1.20) and equation (3.58) for ¢° we deduce a general

expression for the zero-order cross-correlation:

1
c°1,2,t) = T/dt’dsdtsds’dt; M (s, ts; 8, ty)

xG'(1,t;8,t) G (2, +t; 8, 1), (3.62)

with
My (s, ts; 8, 1) = B[S0(s, 1) SY(s', 10)] (3.63)

where E[-] denotes the expectation value of the expression in square brackets. For
the sake of readability, we have omitted the limits of integration in equation (3.63).
The matrix M° gives the correlation between any two components of S°, measured
at two possibly different positions.

No assumption has been made about MY to obtain equation (3.62). With the
assumptions of stationarity in time and homogeneity and isotropy in the horizontal
direction, M° only depends on the time difference t; — ., the horizontal distance
between s and s’, and their depths. Further assumptions could be made in order
to simplify the computation of equation (3.62). In the spirit of Woodard (1997) one
might assume that the sources are spatially uncorrelated or are located only at a
particular depth. A better approach might be to obtain the statistical properties
of §° from recent numerical simulations of solar convection (e.g. Stein & Nordlund,
2000) or observations of photospheric convection (e.g. Title et al., 1989; Chou et al.,
1991; Strous et al., 2000). Furthermore, a comparison of models and observations
of the power spectrum of solar oscillations can be used to constrain the depths and
types of sources (e.g. Duvall et al., 1993a).

We now perturb equation (1.20) and take the expectation value to obtain

5C(1,2,1) = %/w dt' E[6p(1,1) ¢°(2,¢' +t) + ¢°(1,¢) 6(2,¢' + )] . (3.64)

-0

The function 6C has two contributions, one from the perturbation to the wave
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operator, 0Cy, and one from the source perturbation, 6Cg :

0C =0C, + 6Cy. (365)

Using the expressions for ¢° and §¢ given by equations (3.58) and (3.61), we
obtain the perturbation to the cross-correlation resulting from a change in the wave

operator L:

1
60C(1,2,t) = T/dr/dt'dt"dsdtsds'dté
O]
x{—0LG" (r,1"; s,15)}, Myj(s,ts; 8, 17)
x [/ (2, +t; 8, 1) §*(1,¢;r,t")
+G7(1,¢; 8, 1)) §* (2, ¢ + ;7 t")]. (3.66)

The above equation, which gives the perturbation to the cross-correlation due to
scattering, has two components, illustrated in Figure 3.9a. The first component
comes from the correlation of the scattered wave at 1 with the direct wave at 2,
ie. d¢p(1,t)4°%(2,% +t), and the second component comes from ¢°(1,¢)d¢(2,t' +1).
Both these components appear in equation (3.66) as the product of three Green’s
functions. From the term d¢(1,%)¢%(2,t' + t) there is one Green’s function for
the wave that goes directly from s’ to 2, which gives ¢°(2). There is a second
Green’s function for the wave that is created at s and travels to r, and the third
Green’s function takes the scattered wave from = to 1, which gives d@(1). The
term @¢°(1,¢)0¢(2,t +t) can be understood by switching the roles of 1 and 2. The
scattering process is described by the operator 6£, which depends on the perturba-
tions d¢, (7). The Green’s function § is used for waves that arrive at an observation
point as it gives the response of ¢ to a source. The Green’s vectors G* are used to
propagate the wave velocity from a source to the scattering point, as the scattered

wave depends on the vector velocity of the incoming wave.

The cross-correlation is also sensitive to changes in the source function. The

first-order perturbation resulting from a small change in the source function can be
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(a) Perturbation from scatterer
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Figure 3.9: A graphical representation of the two types of contributions to the first-
order perturbation to the cross-correlation (eqs [3.66] and [3.67]). Panel (a) is for
scattering from perturbations dg,(7) to the model and panel (b) is for changes §.5
in the source function. Scattering processes contribute to the cross-correlation as
the product of three Green’s functions: one Green’s function to describe the direct
wave from the source to an observation point and two Green’s functions to obtain
the scattered wave at the other observation point, in the Born approximation. The
sensitivity of the cross-correlation to a change in the source function only involves
two Green’s functions, one to propagate waves from the unperturbed source to an
observation point and one to give the response, at the other observation point, to the
change in the source function. Throughout the diagram, as in the text, the Green’s
function for the observable is given by G and the Green’s function for the vector
velocity is G. The dotted line between the source locations, s and s’, indicates that
the two sources are connected through the source covariance matrix M.
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written as (from egs. [3.58] and [3.61])

1
§Cs(1,2,t) = T/dt'dsdtsds’dt; OM;j(s,ts; 8, %)

xG (1,1 8,t5) § (2, + t;8',15), (3.67)
where the perturbation to the source covariance is:
S M;;(s,ts; 8',tL) = E [S)(s,ts) 65;(8', 1) + 6Si(s, ts) S;-)(s', t)] - (3.68)

Figure 3.9b gives a graphical interpretation of equation (3.67). Unlike the pertur-
bation to the cross-correlation due to scattering, equation (3.67) contains only two
Green’s functions. One connects the unperturbed source with the unperturbed sig-
nal at an observation point, while the second relates the source perturbation to the
perturbed signal at the other observation point.

Later in this paper it will be necessary to express the perturbation to the cross-
correlation as a spatial integral over the location, r, of the perturbation to the solar
model. In order to be able to write equation (3.67) for 6Cy in this form, we introduce
the change of variable » = (s + ') /2 and u = s — s’. This change of variable is
also useful because we expect the source covariance M to be small for large u, i.e.
for sources that are far apart. In the limit of very small source correlation length,
M is a function only of 7.

We have shown how to obtain C° and §C from an assumed solar model consisting
of a background model (£° and S°) and small perturbations (6£ and §S). Earlier
we showed how to connect perturbations to the cross-correlation to travel-time per-
turbations. Next we put these pieces together and obtain travel-time kernels, which

give the travel-time perturbations resulting from small changes in the solar model.

Travel-Time Sensitivity Kernels

It is useful for the derivation of travel-time kernels to express the perturbation to the
cross-correlation 6C' as an integral over the location r of the perturbations dg, (7).
In general §£ and §M involve spatial derivatives of the perturbations dg,(7) to the

solar model and so integration by parts on the variable » may be required to obtain,
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from equations (3.65), (3.66), and (3.67) a relationship of the form:

0C(1,2,t) = / dr 0g,(r) C*(1,2,¢;7) . (3.69)
®
The index « refers to the different types of perturbations in the solar model, for
example perturbations to sound speed or flows. The sum over « is over all relevant
types of perturbations. We note that any particular perturbation dq, may appear
in both the operator §£ and the perturbation to the source covariance dM. For
example a flow will both advect waves as well as Doppler shift the sources. For any
particular 6M(dg) it may be helpful to do partial integrations on equation (3.67)
before making the change of variable r = (s+s')/2 described above. In Section 3.4.2,
we will show a detailed example of the derivation of C* for local perturbations to

source strength and damping rate for surface gravity waves.

Earlier in this section we showed how to relate the travel-time perturbations 67
to the perturbation to the cross-correlation §C. Using equation (3.69) for 6C, and

equation (3.50) for 674, we obtain:

07+(1,2) = / dr 0ga(r) /00 dt Wi (1,2,t) C%(1,2,t;7). (3.70)

—0oQ

As we want to define sensitivity kernels in the form
or.(1,2) = [ dr daur) K21, 2i7), (3.71)
®

we make the identification

x
Ko(1,2:7) = / dt Wa(1,2,1) C(1,2, ;7). (3.72)

—00
By definition, K¢ represent the local sensitivity of the travel-time perturbations
074+ to perturbations to the model, dq,. From the above equation we can see that
the kernels depend on both the definition of travel time, through the functions W_,
as well as on the zero-order problem and the form of the first-order perturbations,

through €%. The inputs needed to compute W are the zero-order cross-correlation



3.4. A DISTRIBUTED SOURCE MODEL FOR TRAVEL TIMES 73

C°, and the reference wavelet C™ and window function f(t) used in the travel-
time measurement procedure (eq. [B.7]). The function €* depends on the source
covariance, the Green’s function, the filter, and the forms of the wave operator and
the source function (egs. [3.66] and [3.67]).

We have now shown a general procedure for computing travel-time kernels for
any particular model. In order to demonstrate the utility and feasibility of this
procedure we will, in the next section, derive two-dimensional kernels for surface

gravity waves.

3.4.2 A Surface Gravity Wave Example

In this section we derive the sensitivity of surface gravity wave travel times to
local perturbations to source strength and damping rate. We work in a plane-
parallel model with constant density and gravity. In this model, wave excitation
and attenuation act only at the fluid surface, and the problem can be reduced to a
two-dimensional problem. Our model is a very simplified version of the actual solar
f-mode case, yet incorporates most of the basic physics. We will follow the basic
recipe outlined in Section 3.4.1 for deriving kernels.

The example is written in four parts. First we fully specify the problem: we
derive the equations of motion, encapsulated in the operator £, and describe our
models for the source covariance and wave damping. We also describe the filter &F
which includes an approximation to the SOHO-MDI point spread function. After
specifying the problem we then compute the zero-order solution to the problem:
the Green’s function, power spectrum, and zero-order cross-correlation. With the
Green’s function and cross-correlation in hand, we next derive travel-time kernels for
perturbations in source strength and damping rate. We conclude with a comparison

of distributed-source kernels and kernels obtained in the single-source picture.

Specification of the Problem

We consider a simple plane-parallel medium appropriate to studying waves with
wavelengths small compared to the solar radius. The geometry is shown in Fig-
ure 3.10. The height coordinate is z, measured upward, and a horizontal coordinate

vector is denoted by x. Gravitational acceleration is assumed to be constant, —gZ2,
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u z=0
“L—LL \.’L‘
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p=const.

Figure 3.10: The basic setup for the example. The coordinate z denotes height and
x is a horizontal coordinate vector. The half space z < 0 is filled with an incom-
pressible fluid of density p and the space above is empty. The line-of-sight vector
is £ = Z, i.e. the observer is looking straight down at the surface. Gravitational
acceleration is constant and points in the —2 direction. Surface gravity waves are
excited by a stochastic pressure distribution II applied at the surface, z = 0.

where g = 274 m s=2 is the solar surface value. For z < 0 the fluid has a uniform
constant density p. This assumption simplifies the problem considerably and does
not affect the dispersion relation (w? = gk). In addition, acoustic waves are not
present in this problem because the medium is incompressible. In the steady back-
ground state there is a free surface at z = 0. The background pressure distribution,
P(z), is hydrostatic, with P = —pgz.

In the following subsections, we develop the equations of motion, encapsulated
in the operator £, and describe our models for the source covariance and the wave
damping operator. We also describe the filter F which includes an approximation
to the SOHO-MDI point spread function. The measurement procedure is specified

by choosing the reference wavelet and the window function.

Equations of Motion

We now derive the equations of motion, which we want in the form of equation (3.51).

For an inviscid fluid of constant density, the linearized equations of conservation of
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mass and momentum read

V.o = 0, (3.73)
pop+Vp = 0, (3.74)

where p is the pressure perturbation associated with the waves. Provided that there
exists a time at which the velocity field is irrotational, it will remain irrotational
for all time. We may imagine a medium free of waves as a starting condition and
subsequently switch on the pressure sources at some initial time in the distant past.
As a result we assume that

VXv=0 (3.75)

holds for all times.

In the Sun the wave excitation mechanism is near-surface turbulent convection,
with various types of sources distributed with depth (e.g Nigam & Kosovichev, 1999;
Kumar & Basu, 2000). Here, we excite surface gravity waves by applying a stochastic
pressure source Il at the fluid surface. Thus, the wave pressure perturbation, p,

satisfies the linearized dynamic boundary condition
p—pgs=1II, atz=0, (3.76)

where £ is the vertical displacement, which has time derivative equal to the vertical

velocity at the surface.

In principle, turbulent convection is also responsible for damping f modes (e.g.
Duvall et al., 1998). Turbulent convection can also modify the dispersion relation
(Murawski & Roberts, 1993). Here, however, we use a phenomenological model for
wave attenuation by including a dissipative term pYwv in the momentum equation
at the surface. The operator T is a temporal convolution which reproduces the
observed damping rates; it will be discussed in detail later in this section. At the

surface, the momentum equation thus becomes:
pv+Vp=—-pYv, atz=0. (3.77)

Eliminating p from equations (3.77) and (3.76), the surface boundary conditions
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reduce to the equation
1 .
0,1 — gVEw — 0,V - (Yu) = P 211, (3.78)

where V) is the horizontal gradient and w and w are the horizontal and vertical

components of the wave velocity,
v=u+uw2Z. (3.79)

We note that perturbations at the surface do not affect equations (3.73) and (3.75)
for z < 0. As a result the effect of surface perturbations is contained entirely in
equation (3.78). Therefore the problem is completely specified by equation (3.78)
on the surface and the auxiliary equations VXv = 0 and V -v = 0 for z < 0.
The problem is thus essentially two-dimensional, and equation (3.78) is the relevant

equation to put in the form of equation (3.51). So we have

Lv = 0,0 — gViw—0,Vy- (Tu), (3.80)
s = lyer (3.81)
p

We notice that the source function S is scalar, unlike in the general theory (§ 3.4.1).
Now that we have specified the operator £ and the source function S it remains

only to follow the recipe presented in the theory section.

The first part of the recipe is to write the zero-order problem and the first-
order Born approximation. We consider two different types of perturbations to the
background state: a change in the damping operator, Y, and a change in the source

function, §S. The zero-order problem is
L0 =8, (3.82)
where

L% = 0,4° — gVEuw® 4+ 9,Y°0,u°, (3.83)
1 ..
S0 = —WRIIC. (3.84)
p
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Here, S° is the zero-order source function, £° the zero-order wave operator, and v°
the unperturbed wave velocity. We have used the fact that the zero-order damping

operator T° commutes with spatial derivatives. The first-order approximation gives:

LY6v = —0Lv° + 68, (3.85)
where
—6Lv° = 0,V (0T uY), (3.86)
1 .
§S = ;Vﬁ SII. (3.87)

Here, S is the perturbation to the source function, 0L the perturbation to the
wave operator, and dv the first Born approximation to the wave velocity. Notice
that equation (3.85) has the same operator, L0, on the left-hand side as the zero-
order problem (eq. [3.82]).

Source Covariance

In order to model the zero-order covariance M of the source function S°, which
is necessary to compute the cross-correlation, we introduce the covariance of the

applied surface pressure distribution II°,
p'm®(z, t; @' ') = E[II°(z, t) I°(2', ¢')] (3.88)

which is a physical quantity. In terms of m®, the zero-order source covariance M°

is given by
Mz, t;2' ') = V2V20,0;, m'(z,t;2' 1), (3.89)

where Vi denotes the horizontal Laplacian with respect to the variable . Guided
by the observations of Title et al. (1989) we write m® as a product of spatial and
temporal decaying exponentials. Under the assumption of translation invariance (in

time and space):
l@—a'|/Ls o—|t—t'|/Ts

2w L2 2T,

ef|

m®(z;t; €', ) = a (3.90)
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Here Lg is the correlation length and 7y the correlation time of the lowest-order
turbulent pressure field II°. The constant a is the overall amplitude of m®. The
normalization factors 27 L2 and 27T} are included so that in the limits of Ly — 0

and T; — 0, m® becomes the product of two Dirac delta functions, d,(z — ') and
5D (t - tl).

Title et al. (1989) computed the covariance function of quiet-sun granulation in-
tensity and found exponential dependence on the temporal and spatial separations,
|t —t'| and ||z — «’||, with correlation time 400 s and correlation length 450 km. For
this work, we take 75 = 400 s and Ly = 0. Neglecting the source correlation length,
i.e. treating the sources as spatially uncorrelated, is done for the sake of computa-
tional simplicity; it is not at all a limitation of the theory. The approximation of
zero-correlation length is appropriate because L is smaller than a wavelength. For
the form of m® given by equation (3.90), and the definition of the Fourier transform

appropriate for functions that are translation invariant (eq. [C.4]), we obtain

a

) = P+ WL

as Ly — 0, (3.91)

which in particular does not depend on k for spatially uncorrelated sources. Here,
as in the rest of the paper, k is the horizontal wave vector and w is the angular

frequency.

We now consider source perturbations. As we have already shown, what matters
for the computation of cross-correlations is not the perturbation to the source but

rather the perturbed source covariance, M, which can be obtained from dm through
SM(z,t;2',t") = V2V2 0,0y dm(z,t;x' 1) . (3.92)

Three possible types of perturbations to the source covariance are local changes
in source correlation time, correlation length, and amplitude. For instance, Title
et al. (1989) report different correlation times in quiet Sun and magnetic network.
Magnetic fields affect near-surface convection and thus are expected to introduce
local changes in the source strength as well. Here we consider only perturbations to

the local amplitude, a, of m, i.e. to model regions of increased or decreased f-mode
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emission. We choose

dm(z, t;x' 1) = da(r) m®(x,t; ', 1), (3.93)
a
with .
r= 5(:1: +z'). (3.94)

Here da(r) gives the local change in the amplitude of the source covariance. We
have used the assumption that the source correlation length is small compared to
the length scale of the spatial variation of the amplitude of the source function to

write da as a function of only the central position 7.

Damping

Theoretical descriptions of the damping of f modes by scattering from near-surface
convective turbulence exist (e.g. Duvall et al., 1998), but we elect to use a phe-
nomenological model for the sake of simplicity. It is known from observations that
high-frequency waves are damped more strongly than low-frequency waves (e.g. Du-
vall et al., 1998). As a result we need a frequency-dependent damping rate. The
easiest way to implement general frequency dependence is through a temporal con-
volution (e.g. Dahlen & Tromp, 1998). Thus, we express the zero-order damping
operator, T°, as N

(e, t) = o / dt' TO(t — ') v(a, ¥ (3.95)

™ o0
We have assumed that damping is acting purely locally. A more sophisticated
model would presumably include a spatial convolution in addition to the temporal
convolution. With the Fourier convention given in Appendix C, T° can be written
as
Tov(k,w) = T%w) v(k,w), (3.96)

where I'°(w) is the temporal Fourier transform of T'°(¢). In addition, we see that
the operator 9; + Y, which appears in equation (3.77), becomes multiplication by
—iw + I'(w) in the Fourier domain.

For the sake of simplicity, we choose the function I'°(¢) to be real and even in

time. As a result I'°(w) is real and even. A non-physical consequence of this choice
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is that the damping operator is not causal. We will see, however, that the Green’s
function derived using this damping operator is still causal. A treatment of causal
frequency-dependent damping can be found in Dahlen & Tromp (1998). In order to
damp all frequencies w the function I'’(w) must be positive (this will be discussed
later in this chapter). We will see later in this section that ['*(w) is the full frequency
width at half maximum of the surface gravity wave power. We obtain a good fit to
observed f-mode line widths (Duvall et al., 1998) if we write I'°(w) in the form
[(w) =7

Wy

, (3.97)

with the parameters w,/2m = 3 mHz , v/2r = 100 pHz, and § = 4.4. This fit is
accurate in the range 1.5 mHz < w/27 < 5mHz. The frequency dependence of the
damping rate is strong.

There are two basic types of perturbations to the local damping rate: a change
in the amplitude of the damping rate, v, and a change in the exponent, 5. In this
chapter we only consider the former and write the perturbation to the damping
operator as

()

Y v(x,t) = Tov(x, 1), (3.98)

where 07(x)/v is the local fractional perturbation in the damping rate.

Observational Filter

For this example we take the line-of-sight vector to be vertical and independent of
horizontal position, £ = 2. Then in accordance with equation (1.19) the observable
is

o(x,t) = F{v(z,t) - 2}. (3.99)

In this example we consider only the case where there is no spatial or temporal
window function in the filter &F, i.e. we observe the wavefield over an area A and a
time interval 7" which are both very large. Therefore the filter F can be represented

by multiplication by a function F(k,w) in the Fourier domain,

o(k,w) = F(k,w)w(k,w), (3.100)
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where w = v-2. The function F' includes the instrumental Optical Transfer Function
(OTF), which is the Fourier transform of the point spread function of the telescope
optics, as well as the effect of the finite pixel size of the detector. We use an azimuthal
average of the OTF estimated by Tarbell et al. (1997) for the SOHO-MDI telescope
in its high-resolution mode near disk center. We correct the OTF for the effect of

finite pixel size, €, by multiplying by sinc(ke/2), with € = 0.83 Mm and &k = || k||.

In general, F' also includes the filter used to select the particular waves of interest
in the k-w diagram and to remove low frequency noise from the data. In this example
there is only one ridge in the k-w diagram, corresponding to surface gravity waves.
We choose a filter which is zero for frequencies less than wmi,/27m = 2 mHz and more

than wpayx/2m = 4 mHz, as was done for the data shown in Figure 1.1.

We include an additional factor, R, in the filter to make our unstratified example
look more solar. The function R(k) is the ratio of mode inertia in our model to mode

inertia in a standard stratified solar model:

_ pfi)oo eZkz dz
JZo po(z) € dz

R(k) (3.101)
Here p is the constant density in our model and pg is the density as a function of
height in the solar model. We use the solar model of Christensen-Dalsgaard et al.
(1993) complemented by the chromospheric model of Vernazza et al. (1981) up to
z, = 2 Mm. In the solar model z = 0 is the photosphere. If we had started from the
full stratified solar problem we would presumably obtain a solar-like power spectrum

without this correction factor.

To summarize, we take the filter F' to be:
F(k,w) = OTF(k) R(k) Hea(w — wmpin) Hea(wnax — w), (3.102)

where Hea is the Heaviside step function. The OTF and the k£ dependence of the
full filter, F', are shown in Figure 3.11. We repeat that we have not included the
effect of an observational time window, nor the effect of observing a finite area on
the Sun. Both of these effects could be included, though the filter could no longer

be represented as a simple multiplication in the Fourier domain.
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Figure 3.11: The wavenumber dependence of the filter F' and of the OTF for the
example calculation. The dashed line is the azimuthal average of the OTF esti-
mated by Tarbell et al. (1997) for the SOHO-MDI high-resolution telescope. The
filter F' is the product of the OTF and the mode-mass correction R given by equa-
tion (3.101). Notice that the mode-mass correction suppresses the low-wavenumber
part of the spectrum, which gives better agreement between our unstratified model
and a stratified solar model, for which low wavenumbers modes are difficult to excite.

Measurement of Travel Times

As explained in section 3.4.1, the observer needs to select the reference wavelet C™f
and the window function f in order to make a travel-time measurement. For this

example, we choose C™ to be the zero-order cross-correlation of the model,
C™(1,2,t) = C°(1,2,1), (3.103)
and the window function f to be the Heaviside step function,

f(t) = Hea(t). (3.104)

For this choice of reference wavelet, the zero-order travel times 70 are zero (see
Appendix B). The window function f is acceptable as we have only a single skip

(surface waves). Using equation (B.9), we rewrite the travel-time perturbations d7.
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in terms of the temporal Fourier transforms of W, and §C"
574(1,2) = 47rRe/ dw W (1, 2,0) 6C(1, 2,0), (3.105)
0

where Re selects the real part of the expression. The real and imaginary parts of

W, (w) form a Hilbert transform pair:

—Hilb[wC®(1, 2,w)] F iwC(1, 2, w)
A [ w?|C0(1,2,w")? dw’ ’

Wi(1,2,w) = (3.106)
where Hilb[-] denotes the Hilbert transform (Saff & Snider, 1993). Note that we
used the fact that C°(t) is even, as will be shown later in this section. We now have

an explicit definition of the travel-time perturbations d7, and é7_ for our example.

The mean travel-time perturbation, d7ynean, and the travel-time difference, 074ig,
can be expressed in the form of equation (3.105) with weight functions W, (w)

and Wjs(w) given by

1
Wiean = §(Wi+Wi), (3.107)
Wie = Wi—W*. (3.108)

From equation (3.106), and because C°(w) is real, we see that W} . (w) is real

m
and that Wjg(w) is imaginary. Thus the real part of the perturbation to the cross-
correlation, §C(w), introduces a mean travel-time perturbation. The imaginary part

of 6C(w) causes a travel-time difference.

Zero-Order Solution

Now that the problem has been fully specified, we can compute the Green’s function,
the power spectrum, and the cross-correlation for the zero-order model. We show
that the power spectrum in our example resembles the solar f-mode spectrum. We
find that the unperturbed cross-correlation is the inverse Fourier transform of the

power spectrum.
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Green’s Function

Here we derive the Green’s function appropriate for solving a problem of the form
of equation (3.82). The vector Green’s function, G(z, 2, t; s,t;), is the velocity
response at horizontal coordinate x, height 2z, and time ¢ to an impulsive source in
S at surface location s and time t5. In our example S is scalar, so we need only
one vector Green’s function, and we drop the superscript on the Green’s function,
which appeared in the general theory (eq [3.56]). By definition G solves the surface

boundary condition
LG (x,2,t;8,t5) = Op(x — 8) 6p(t — 1) at z=0, (3.109)

with the additional constraints that G' must be irrotational and divergenceless in
the bulk, as well as vanish as z —+ —oo. The Green’s function G is only a function of
the horizontal spatial separation  — s, the time lag ¢t —t,, and the observation height
z. Using the Fourier convention given by equation (C.4), the Fourier transform of
the Green’s function can be written

(ik + 2) b
(2m)3k [gk — w? — iwI0(w)]’

Gk,w;z) = (3.110)
where k = k /k. We remind the reader that in this example the wave vector k is
horizontal. From the above expression we can see that the horizontal component of
G(k,w; z) is in the direction of k and that the horizontal and vertical components
are of the same magnitude and 7/2 out of phase. The amplitude of the Green’s
function decays exponentially with depth; the same result would apply for a verti-
cally stratified medium (Lamb, 1932). At fixed wavenumber k, the Green’s function
has resonant frequencies w ~ ++/gk — il'°/2 in the limit of small damping. We
recognize the dispersion relation for deep water waves. Since I'’(w) is positive, the
imaginary part of the two poles of the Green’s function is negative. This ensures
that the Green’s function is causal (e.g. Saff & Snider, 1993). For later use, we also

introduce another Green’s function,

G (k,w) = iwk’F(k,w)G,(k,w,z =0), (3.111)
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which gives the vertical velocity at the surface resulting from an impulsive source in

IT1/p. The Green’s function G, is the £ component of G given by equation (3.110).

Power

By definition the power spectrum is the square of the modulus of the Fourier trans-
form of the observable. For convenience, we consider the zero-order power spectrum

per unit area and per unit time:

(2m)°
AT

P(k,w) = E [|¢°(k,w)|] , (3.112)
where A is the area and T the time interval over which the power is computed.

After a few simple manipulations, we find that P is given by
P(k,w) = (2m)° |G" (k, w)[*m®(k,w) . (3.113)

None of the terms in the above equation depend on the direction of k. In particular,
m® = m®(k,w) because the sources are spatially homogeneous and isotropic in the
zero-order problem. In addition the filter F' is a function only of the wavenumber
k and frequency w. Therefore the power spectrum is independent of the direction
of k. The term |§"(k,w)|? specifies the shape of the resonance peaks in the power

spectrum. For w near \/gk we have approximately

P(k,w) ~ kQF:’”O [(w - @)2 + (FO/Q)Q}I . (3.114)

Thus, at fixed wavenumber, the line shape is Lorentzian with full-width at half-

maximum I'° (w).

Figure 3.12 compares the power spectrum for our model, P(k,w), with the power
spectrum for the solar f-mode ridge observed with the SOHO-MDI high-resolution
telescope. The distribution of power with frequency and wavenumber confirms that

there is a good agreement between the model and the observations.
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Figure 3.12: A comparison of observed and model power spectra. The upper-right
figure shows the zero-order power spectrum in our model, P(k,w), defined by equa-
tion (3.113). The coordinates are frequency, w/2m, and dimensionless wavenumber,
kR, where Ry = 696 Mm is the solar radius. In the upper-left figure is the
azimuthal average of the power observed with the SOHO-MDI high-resolution tele-
scope. The f-mode ridge has been isolated by a simple boxcar filter. The lower-left
panel displays the power integrated over wavenumber, as a function of frequency.
The dashed and solid lines refer to the model and the observations respectively.
The lower-right figure shows the power integrated over frequency, as a function of
wavenumber kR;. Again the dashed line refers to the model and the solid line to the
data. In our model the source correlation length and time are Ly = 0 and 75 = 400 s.
The agreement between the model and the observations could be further improved
by considering a non-zero source correlation length, which would reduce the power
at high spatial frequencies.
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Cross-correlation

To obtain the zero-order cross-correlation, we use the definition of C° (eq. [3.62]),
the expression for the source covariance (eq. [3.89]), and the definition of the Fourier

transform to obtain:
00(1,2,t)=// dk/ dw e* A7 Pk w) (3.115)

where A = 2 — 1. For the zero-order problem the cross-correlation is therefore the
inverse Fourier transform of the power spectrum. This is a consequence of the fact
that the problem is translation invariant. Since in our example P does not depend
on the direction of k we can perform the integration over the angle between k& and
A to obtain

Y(1,2,4) = 27 / k dk / dus €= Jo (kA Pk, w) | (3.116)
0 —00

where Jj is the cylindrical Bessel function of order zero. From the above expression
it is clear that the zero-order cross-correlation is only a function of the time lag
t and the spatial separation between 1 and 2, A = ||A||. Notice that the ampli-

tude of the cross-correlation falls off like A~1/2

at large distances as a result of the
asymptotic form of Jo(kA). This factor accounts for the geometrical spreading of
two-dimensional waves, like surface-gravity waves.

From the power spectrum, we can numerically compute the cross-correlation
using equation (3.116). Figure 1.1 provides a comparison between the model cross-
correlation C? (right panel) and an observed, from MDI-SOHO data, cross-correlation
for the f-mode (left panel). The two cross-correlations show the same features, even
at very short distances. The two branches of the cross-correlation correspond to the
propagation of the energy of wave packets at the group speed, v, = g/2w, where
w is the central frequency. For a central frequency of 3 mHz the group speed is
7.3 km s~!. The effect of dispersion is also clearly visible; the oscillating fine struc-
ture has a different slope than the envelope slope, given by the phase speed v, = 2v,.
Low-frequency waves propagate faster than high-frequency waves, because the phase
speed is inversely proportional to w. Note that for distances less than about half

a wavelength (2.5 Mm) the two branches of the cross-correlation are merged. This
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implies that travel-time measurements are difficult in the near field. The effect of
damping is to strongly suppress high-frequency waves at large distances. Figure 3.8
shows a plot of the zero order cross-correlation, C° = C™f, at a distance A = 10 Mm.
As a consequence of the dependence of the phase speed on frequency (dispersion),
the instantaneous frequency of the cross-correlation is seen to increase with time lag
t.

Kernels for Source Strength and Damping Rate

In this section we derive travel-time kernels, K¢ and K7, for perturbations to local
source strength and damping rate respectively. These kernels connect travel-time
perturbations d74 to fractional perturbations to the model:

da(r)

0re(1,2) = / dr Ki(1,2;r)+/ dr M(r) K71 (1,2;7).(3.117)
(4) @ (4) v

Here da(r)/a is the local fractional change in the source strength and é+(r)/v the
fractional change in damping rate. The two-dimensional integrals are taken over all
points r on the surface z = 0, denoted by (A).

In Appendix D we give an explicit derivation of the sensitivity kernels K] and
K¢. We first compute the sensitivity of the cross-correlation to small local changes
in a and v (egs. [D.2], [D.4] and [D.5]). We then relate changes in the cross-
correlation to changes in travel times, through the weight functions Wy (eq. [3.70]).
Because of the assumptions that we have made in this example, the kernels can be
written in terms of separate one-dimensional integrals over horizontal wavenumber.

In Appendix D we show that K¢ are given by
K$(1,2;7) = 47rRe/Ooodw Wi (1, 2,w) m® (W) (AL w)I(Ag,w), (3.118)
where the integral I(d, w) is a function of a distance d and frequency w only:
I(d,w) = (27)° / " kdk Jo(kd)G" (k, w) (3.119)

0

In equation (3.118), A; is the distance from 1 to 7 and A, is the distance from 2
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to . The complex integral I(d,w)/(27)? is the spatial inverse Fourier transform of
the Green’s function §"(k,w).

As shown in Appendix D, the damping kernels K] can also be written as com-

binations of two one-dimensional integrals, II(d, w) and M(d, w):

K1(1,2;7) = 4n(A;-Aj)Re /00 dw Wi(1,2,w)
xm®(w) [I(A1, w)(Ag, w)
+I(Ag, w)IT* (A, w)], (3.120)

where Al is a unit vector in the direction » — 1 and AQ is a unit vector in the
direction » — 2. The explicit forms of I and Il are given in Appendix D. The
function II is complex and involves only one Green’s function, G". The real integral
I involves two Green’s functions, G, and G, and is related to the scattering process
(see Fig. 3.9).

We computed the kernels numerically, with grid spacings of 7 x 107® rad Mm™!
in k£ and 102 mHz in w/2m, which were selected so that the smallest line widths
(1.5 x 1072 rad Mm™*, 1.7 x 102 mHz) would be resolved. We ran a second set of
calculations at twice the above stated resolutions and saw only very minor changes

in the resulting kernels.

Figures 3.13a and 3.13b show the kernels K9%(1,2;r) and K{(1,2;7) for the
distance A = 10 Mm, as functions of horizontal position 7 = (z,y). The observation
points 1 and 2 have coordinates (z1,y1) = (—5,0) Mm and (z2,%2) = (5,0) Mm
respectively. An important observation is that the kernels K¢ and K7 are quite
different; one does not simply have the opposite sign of the other. This means that
a decrease in source strength is not equivalent to an increase in damping rate, as one
might naively expect. In particular, the total integral of the source kernel is zero
while the total integral of the damping kernel is positive, with a value of 5.9 s. A
uniform increase in source strength results only in a change in the overall amplitude
of the power spectrum (and thus in the cross-correlation) and as a result does not
affect the travel time. In contrast, a uniform increase in the damping rate affects
the shape of the power spectrum, and thus causes a travel-time perturbation 67, .

The kernels K17 have largest amplitude in the vicinity of the observation points
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source damping

one way

Figure 3.13: Travel-time sensitivity kernels for perturbations in source strength
and damping rate as functions of position » = (z,y). The left column displays
kernels for source strength, K, and the right column displays kernels for damping
rate, K7. The top row gives the one-way travel-time kernels K97, the middle row
gives the travel-time difference kernels KJ;j, and the bottom row gives the mean
travel-time kernels K27 . The observation points 1 and 2 have the coordinates
(z1,91) = (—5,0) Mm and (x9,y2) = (5,0) Mm respectively, and are denoted by the
black crosses in each panel. The color scale indicates the local value of the kernel,
with blue representing negative values and red positive. The color scale is truncated

at +£1 s Mm~2. The grid spacing is 0.14 Mm.
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1 and 2. Both K7 and K¢ have roughly the same magnitude, of the order a few
s Mm™2. Both of the kernels oscillate spatially; this is a finite wavelength effect.

Hyperbola shaped features (with Ay — A; = const) are present in both K7
and K¢. As Woodard (1997) noted, all of the sources located along a particular
hyperbola (with foci at the observation points) give a similar contribution to the
cross-correlation, which explains the appearance of the kernel K¢. We emphasize
that the kernel K¢(1,2;7) is for the one-way travel time d7(1,2) which relates
to waves moving from 1 to 2. As a result only perturbations to the sources which
produce waves moving from 1 to 2 can introduce a perturbation in 7, (1,2). This
is clear from Figure 3.13a; the kernel K¢ is only significant in the region, x < 0,

which produces waves that arrive at 1 before they arrive at 2.

The damping kernel K7 is more complicated, as it shows ellipses (A + A; =
const) in addition to hyperbolas and results from scattering, unlike the source
strength kernel. The ellipses are due to waves that go through 1, scatter at r,
and are then observed at 2. The hyperbolas correspond to scattered waves which
arrive at 1 before the direct waves arrive at 2. These two distinct processes will be
discussed in more detail in Figure 3.17. Note that the damping kernels K7 change
sign on the circle A, - Ay = 0 which goes through 1 and 2. This is a result of the
details of the scattering of waves by local inhomogeneities in damping rate. The
scattered wave depends on the direction of the incoming wave; back-scattered waves

are in anti-phase with forward-scattered waves.

In this example, because C*f = C° is even in time, §7_(1,2) = 67,.(2,1). As a

result the kernels K_, for the travel-time perturbation d7_, can be obtained from
K_(1,27)=K,(2,1;7). (3.121)

This is not, however, a general rule; it depends on the choice of reference wavelet.
The kernels for the perturbations to the travel-time mean and difference can be

easily obtained from the kernels for the one-way travel times:

1
K*T = (K% + K™, (3.122)

mean 2

K4 = K —K“, (3.123)



92 CHAPTER 3. THEORETICAL INTERPRETATION OF TIME-DISTANCE

The kernels K%, and K are plotted in the remaining panels of Figure 3.13.

mean

The kernels for the mean travel time are symmetric on interchange of 1 and 2
and the travel-time difference kernels are antisymmetric on interchange of 1 and
2. Notice that like the one-way travel-time kernels, the kernels Kyt and K%2, are
largest near the observation points 1 and 2. We note that K§y is roughly of the
opposite sign from K.z, except for inside the circle defined by A A, = 0, where
the sign is the same. A localized perturbation to source strength (damping rate) on
the line y = 0 with = < z; gives an increase (decrease) in the travel-time difference.

In order to show the full range of variation of the kernels we plot, in Figure 3.14,
cuts of the kernels K¢ along the lines y = 0 and = = 0. Figure 3.14a shows that
the source kernel is zero along the line z = 0, while the damping kernel is positive
and maximum at y = 0. The side lobes (the second Fresnel zone) of K] extend
out to 3.5 Mm. The slice along the line y = 0, Figure 3.14b, shows the complicated
behavior of the kernels near the observation points, where they oscillate.

We have studied single-frequency kernels and seen that there is constructive
interference between different frequency components along the line y = 0, —0c0 <
r < xy for K], and the line y = 0,—0c0 < z < z; for K?. In the limit of infinite
bandwidth, the kernels K7 and K¢ reduce to these rays respectively. This is in
contrast with conventional ray theory where the ray is restricted to the line segment
y=0,21 <z < 9.

In the past, travel-time kernels have been calculated in the “single-source pic-
ture” (Birch & Kosovichev, 2000; Jensen et al., 2000). In the following section we
test the single-source method by comparing single-source kernels with the kernels

calculated using a random distributed source model.

The Single Source Picture

The single-source picture consists of placing a single causal source at 1 and observing
the effect of local perturbations on the wavefield observed at 2. The one-way travel-

time perturbation is approximated by the travel-time shift,

7,4t 89(2,1) 6°(2,1)
oo dt [9°(2, 1)

57%(1,2) = , (3.124)
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Figure 3.14: Cuts through the source and damping kernels, K¢ and K7. Panel (a)
shows cuts along the line x = 0 and panel (b) shows cuts along the line y = 0. The

dashed line is for the source kernel K¢ and the solid line is for the damping kernel
K.
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between the unperturbed and perturbed signals at 2 (Birch et al., 2001a). This
new definition of travel time is necessary; in the single-source picture there is no
cross-correlation and thus our earlier definition of travel time can not be used. In
equation (3.124), ¢°(2) and d#(2) are the unperturbed and perturbed wavefields at

2. The wavefield is generated by a causal pressure source placed at 1:
[I(s,t5) = pO(s — 1,1). (3.125)

The function © characterizes the pressure source and will later be used to tune the
source spectrum.

In this section we consider the kernel K7*, derived in the single-source picture,
which gives the sensitivity of the travel-time perturbation d7, to a local fractional
perturbation in the damping rate. The single-source picture cannot easily be used
to derive a kernel for a source perturbation, which does not involve a scattering
process.

By definition the kernel K7™, which we derive in Appendix E, satisfies

575(1,2) = / ar 7

" 5 K7™(1,2;7). (3.126)

The definition of travel time given in equation (3.124) closely resembles the definition
of travel time used in the general theory (eqs [B.6] and [B.9]) if ¢(2, ) looks like the
positive time-lag branch of the zero-order cross-correlation from the random-source
model (§ 3.4.2). This condition implies that the spectrum of the source, O(k,w), is
given by equation (E.8).

Figure 3.15 is a comparison of the single-source kernel K7 with the distributed-
source kernel K7, computed in the previous section. The single-source kernel fails to
reproduce the hyperbola shaped features that are seen in the random-source kernel,
even though the ellipses can be seen in both (with the same order of magnitude and
sign). A single causal source at 1 is not sufficient to generate all of the waves which
are relevant to the problem of computing travel-time kernels (see Fig. 3.17).

Cuts at y = 0 through K7™ and K] are shown in Figure 3.16, again for the
distance A = 10 Mm which was used in all previous plots of kernels. The kernels

agree well for z 2> 0, where the hyperbola shaped features in K] are absent. For
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Figure 3.15: A comparison between single- and distributed-source kernels for damp-
ing rate. The left panel shows the distributed-source kernel for damping, K7 (also
shown in Fig. 3.13b). The right panel is the single-source kernel K™ discussed in
this section and computed using equations (E.5) and (E.6). For the single-source
kernel the source is located at 1 with coordinates (—5,0) Mm. The observation point
2 is located at (0,5) Mm.
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Figure 3.16: Cuts along the line y = 0 through the damping kernels K7 and K]*
shown in Figure 3.15. The dashed line is for the distributed-source kernel and the
solid line is for the single-source kernel.

x < 0 the two kernels are quite different. In particular the single-source kernel is
nearly zero for < —7 Mm, while K] has a negative tail there.

In the limit of infinite bandwidth (ray theory), the single-source kernel K7
would be restricted to the line segment y = 0, 1 < x < x9. This is in contrast with
our earlier finding that the distributed-source kernel K] would reduce to the ray

y=0, —oco <z < 9.
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Source at 1 Anti—causal source at 2

Figure 3.17: A graphical discussion of the single-source picture for computing kernels
for the one-way travel time d7, (1, 2). The left hand panel is the conventional single-
source picture where a causal source is exploded at 1 and the scattered wave is
observed at 2. The scattering point is denoted by . Perturbations located on
curves with constant ||r — 1|| + ||2 — r|| contribute to the scattered field with the
same geometrical delay in travel time, and as a result ellipse shaped features are
seen in the travel-time kernel. A single source at 1 does not, however, produce
all of the waves which are relevant to computing correct travel-time kernels. The
right-hand panel shows an example of a component to the wavefield which is missed
in the single-source picture. An anti-causal source at 2 causes an incoming wave
toward 2 which is then scattered at r and arrives at 1. For » near 1 this gives a
signal that is first observed at 1 and then later at 2, i.e. looks like a wave moving
from 1 to 2. Perturbations located on curves with constant ||r — 1|| — ||2 — r|| ,
i.e. hyperbolas, contribute to the scattered field with the same geometrical delay in
travel time (Woodard, 1997). Were the single-source picture extended to include an
anti-causal source at 2, hyperbola shaped features would be seen in the travel-time
kernels. Note, however, that hyperbolas naturally appear in the distributed-source
kernels K7 (Fig. 3.13a and 3.13b). The hyperbolas with [|[r — 1|| = [|2 — 7| > 0
are not seen as they do not affect the positive-time branch of the cross-correlation
(the scattered wave arrives at 1 after the unperturbed wave arrives at 2).



