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Abstract

The role of meridional circulation in maintaining the dynamo and differential rota-

tion in the Sun is not well understood and is currently under scrutiny. Traditional

flux-transport dynamo models have posited a single-cell meridional circulation with

poleward flow at the photosphere and equatorward flow near the base of the convec-

tion zone. However, recent investigations seem to be revealing a discrepant picture of

meridional circulation which is at least double-celled in the radial direction. In this

scenario it is paramount that we continue to use and develop helioseismology in order

to accurately determine the structure of meridional circulation.

Helioseismology is a powerful tool for studying the Sun. It uses the photospheri-

cally visible aspect of (acoustic, surface-gravity) waves, that propagate and interfere

throughout the Sun to form standing oscillation modes, to probe the subsurface struc-

ture and flows. This work employs time-distance helioseismology which is based on

measuring the travel times of wave packets moving between distinct points on the so-

lar surface. The travel-time shift calculated from the difference in the travel times of

counter-propagating waves between a pair of points on the photosphere yields infor-

mation about flows on the surface and interior of the Sun. In this work time-distance

techniques are applied on artificial and solar velocity images to detect meridional flow

induced travel-time shift signals.

For forward modeling purposes, artificial datacubes are constructed by embed-

ding various meridional circulation models in three-dimensional acoustic wave prop-

agation simulators, which is then analyzed by time-distance techniques. The result-

ing measurements are used to discuss the interpretation of travel-time shifts in the

ray-theoretic or ray approximation. The common-midpoint and the full deep-focus

time-distance techniques are applied on phase-speed filtered simulated velocity data.

The results show that the full deep-focus techniques yield a higher signal-to-noise
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ratio and that travel-time shifts measured from the time-distance analysis of sim-

ulated data, in general, deviate quantitatively from ray-theoretic travel-time shifts.

The study also characterizes the dependence of ray-theoretic travel-time shifts on

different background models.

Recent work has revealed a systematic “center-to-limb” variation in the measured

travel times, which must be corrected to accurately infer meridional flow velocity in

the Sun. It has been proposed that the “center-to-limb” effect can be partly ex-

plained by the asymmetrical nature of solar granulation which imparts a heliocentric

angle dependent phase shift on the oscillation modes. In this work spherical har-

monic transform techniques are applied on Dopplergrams from the Helioseismic and

Magnetic Imager (HMI) instrument aboard the Solar Dynamics Observatory (SDO)

spacecraft, to reconstruct velocity images of a subset of acoustic modes relevant to

meridional flow. Non-standard deep-focus time-distance techniques are applied on the

reconstructed images, and the resulting travel-time shifts are compared to a simple bi-

linear center-to-limb phase-shift function in order to characterize the “center-to-limb”

effect in the solar convection zone.
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Chapter 1

Introduction

This dissertation is about the measurement and interpretation of travel times, or

rather, the non-vanishing difference between the travel times of counter-propagating

solar acoustic waves between a pair of photospheric locations, in the presence of flows,

specifically, meridional flows. In the preceding sentence the interpretation is already

present—the measured quantities, the “travel time” and the “travel time difference”

are due to certain well-defined wave and flow phenomena. In what sense is this an

interpretation? What is it that is being interpreted? It is the measurement that

is being interpreted. It is being interpreted as a “travel time” or a “travel time

difference”, as the case may be. How is this an interpretation? Measurements in

physical science are measurements of a physical quantity; in this case the measured

quantity is the travel time. It would be just that simple if it were merely a matter of

opportunely placed wave detectors and clocks.

In time-distance helioseismology (Duvall et al., 1993; Kosovichev and Duvall,

1997), the measurement method of choice in this dissertation, the situation is compli-

cated by a sequence of operations that is performed on a starting measured quantity—

for example, temporal cross-correlation of Doppler velocity on the photosphere of the

Sun, followed by curve-fitting to obtain the time lag at which the cross-correlation

function peaks. An intermediate measured quantity is this time lag. It has units

of time, but how does it relate to travel time? The time lag is interpreted to be a

measure of the travel time of acoustic wave packets, with a well-defined trajectory,

between the cross-correlated locations on the photosphere. The interpretation goes

further: the time lag and the wave packet travel time are in fact identical (cf. Duvall

et al., 1993; D’Silva and Duvall, 1995; D’Silva, 1996). Further interpretations follow

1



2 CHAPTER 1. INTRODUCTION

from this assumption: the ray-theoretic interpretation, the plane wave interpretation

in the first Born approximation, etc. These subsequent interpretations permit certain

theoretical constructs which are perturbed in well-established mathematical ways to

allow the measurement or inference of the perturbation of interest, in this case, the

flow velocity of meridional circulation cells. This dissertation investigates interpreta-

tion of travel-time shifts in the context of measuring meridional flow velocity in the

solar convection zone by (i) forward modeling time-distance measurements of acous-

tic wave simulations in the ray approximation, and (ii) by studying the systematic

“center-to-limb” phase variations in time-distance measurements of Helioseismic and

Magnetic Imager (HMI) Doppler velocity data.

Meridional circulation (large-scale circulating flows along meridional planes) is

believed to arise in the solar convection zone due to complex nonlinear interactions

between turbulent convection, rotation and magnetism (Rempel, 2006; Miesch and

Toomre, 2009). In mean-field hydrodynamic models (magnetic fields absent), merid-

ional circulation arises with differential rotation due to anisotropic transport of an-

gular momentum and energy resulting from the interaction between rotation and

convective turbulence (Kitchatinov, 2013). In this dissertation the term meridional

circulation is used to denote the complete (single or multiple) circulating structure(s),

whereas meridional flow is used to denote the flow in meridional planes at particular

locations. However, the term meridional flow model may also be read as meridional

circulation model.

Surface meridional flow plays a causal role in surface flux-transport models (Wang

et al., 1989), in the poleward transport of magnetic flux, the concentration of polar

fields, polar field reversal, and the quasi-rigid rotation, despite the differential rota-

tion, of the streams of flux spreading poleward from the activity belts. Meridional

circulation is invoked in flux-transport models of the solar dynamo (flux-transport dy-

namo models, as distinct from surface flux-transport models) to explain the 22-year

solar magnetic activity cycle (Choudhuri et al., 1995). It is one of the transport mech-

anisms, along with dynamo waves, convective turbulent diffusion, turbulent pumping,

and magnetic buoyancy, that is believed to give rise to migrating magnetic structures.

These migrating phenomena include the observed poleward movement of the trailing

part of bipolar magnetic regions (while simultaneously undergoing turbulent diffu-

sive decay), leading to the polarity reversal of the polar/poloidal field at solar-cycle

minima, and also the equatorward migration of active region formation (Spörer’s
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law) during the course of a solar cycle. In Dikpati and Gilman (2006) a single-cell

meridional circulation is described as a “conveyor belt” transporting the magnetic

flux in the solar convection zone. Observations and modeling seem to indicate that

the structure and strength of the meridional flow determine the strength of the Sun’s

polar magnetic field, and the period and intensity of current and future solar cycles

(e.g., Hathaway et al., 2003; Nandy et al., 2011).

A brief survey is provided of the observations of meridional flow structure in Sec-

tion 1.1. This section also highlights the importance of helioseismology (study of

the Sun, especially the interior, using solar oscillation modes) in determining subsur-

face structures and processes (e.g., meridional circulation) at solar depths opaque to

conventional optics. Select simulation results are covered in Section 1.2 to provide

a theoretical reference for the observations. The introduction is concluded with an

outline of this dissertation (Section 1.3).

1.1 Meridional Circulation: Observations

Doppler data and the tracking of discernible features allow the measurement of surface

meridional flow on the Sun. Helioseismology provides an alternative to the surface

measurements, and additionally, has the capability of probing flows below the photo-

sphere. It is noted here that Hathaway et al. (2010) and Hathaway (2012a) have used

cross-correlation analysis, with various time lags, to track the meridional motion of

supergranules as probes of subsurface meridional circulation, based on the assertions

that the larger supergranules are longer-lived, and that the supergranulation phe-

nomenon is as deep as it is wide (Hathaway et al., 2010; Hathaway, 2012b). Whereas

the former assertion is based on observations, the latter is controversial and is con-

trary to time-distance helioseismic findings which seem to indicate that supergranules

are shallow entities with depths of 10 Mm or less (Jackiewicz et al., 2008; Duvall and

Hanasoge, 2013; Duvall et al., 2014).

1.1.1 Surface Observations

The early observations of meridional flow involved two main (non-helioseismic) tech-

niques for determining the surface velocities on the Sun: the tracer or feature-tracking

method and the spectroscopic method. The first method is based on the assumption



4 CHAPTER 1. INTRODUCTION

that the long-lived magnetic structures observed at the solar surface, such as sunspots

(e.g., Howard and Gilman, 1986) and polar filaments (e.g., Topka et al., 1982), play

roughly the same role as tracers in fluid dynamics experiments. The second method

is based on the Doppler effect measured on spectral lines observed at different lo-

cations on the solar disk (e.g., Beckers, 1978; Duvall, 1979; Howard, 1979). These

early measurements varied dramatically: many suggested a poleward flow of 10–20

m/s, but in other measurements amplitudes ranged 1–100 m/s, with complex latitu-

dinal structure comprising poleward and equatorward flows, multiple cells, and large

asymmetries about the equator.

The amplitude of meridional flow at the solar surface is known from observations

to be of the order of 10 m/s as compared with the rotation velocity of 2 km/s, making

it relatively difficult to measure the weaker meridional flow signal. Doppler measure-

ments of the photospheric meridional circulation by, e.g., Hathaway (1996) yielded

a typical poleward flow of about 20 m/s. This mean poleward flow was found to

be nearly symmetric about the equator, peaking at latitudes of about 40◦. Contem-

poraneous estimates of the meridional circulation obtained from cross-correlation of

magnetic features gave an average latitudinal flow which is poleward at low latitudes

and weakly equatorward at high latitudes, with a peak amplitude of about 15 m/s

(e.g., Komm et al., 1993; Snodgrass and Dailey, 1996).

More recently, Švanda et al. (2007) applied a local correlation tracking technique,

which uses large-scale supergranulation patterns from averaged Doppler images as

tracers for the velocity vector determination, to measure surface meridional flows.

Hathaway and Rightmire (2010) measured meridional flow by following the motions

of the small magnetic elements that populate the entire surface of the Sun. Hath-

away et al. (2010) used the notion that supergranules are advected by meridional flow

to measure the latter by performing cross-correlation analysis on Doppler features.

Doppler shifts of the full solar disk obtained over the period 1986–2009 were analyzed

by Ulrich (2010) to determine meridional flow velocity at the solar surface; an equa-

torward flow was detected in the polar regions for three successive solar minima (1986,

1996, 2008). An earlier measurement by Schou (2003) using supergranular waves (Gi-

zon et al., 2003) as tracers in Doppler velocity data, spanning May 24–July 22, 1996

in similar latitude ranges, did not find any evidence of a reversed cell in latitude.

The later measurement techniques estimated the peak surface meridional flow to be

around 10–15 m/s (cf. Figure 1.1; includes time-distance helioseismic measurement of
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Figure 1.1: Surface meridional flow speed obtained by magnetic feature tracking
(green; Hathaway and Rightmire, 2010) and from Doppler shift measurements (or-
ange; Ulrich, 2010), and time-distance helioseismic inference (Zhao et al., 2012) for
a depth of 0–1 Mm before (black dashed) and after (black solid) the removal of the
systematic “center-to-limb” effect. Courtesy: Zhao et al. (2012).

surface meridional flow from Zhao et al., 2012). Roudier et al. (2012) used correlation

tracking of granulation to measure meridional flow velocity; the preliminary results

are consistent with the other measurement techniques.

1.1.2 Global Helioseismic Inferences

Global helioseismology is the study of the structure and dynamics of the solar in-

terior from distortions in the normal solar oscillation modes relative to a reference

solar model. Steady meridional flow does not make first-order perturbations to the

frequencies of helioseismic normal modes. It does, however, Doppler shift the local

wavenumber, thereby distorting the eigenfunctions (e.g., Gough and Hindman, 2010).

Schad et al. (2013) applied a new global helioseismic technique based on the pertur-

bation of eigenfunctions of low- and medium-degree solar p modes due to meridional

flow (cf. Woodard, 2000; Woodard et al., 2013; Schad et al., 2011, 2012) on Michelson

Doppler Imager (MDI) data (aboard the Solar and Heliospheric Observatory or SOHO

spacecraft) resulting in a complex meridional flow structure with multiple cells in the
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Figure 1.2: Meridional flow between 0.82R⊙ and 0.97R⊙. The solar surface is marked
by a dashed semicircle. Dashed-dotted radial lines mark the ±60◦ latitudes. Left: Ra-
dial flow velocity with positive (negative) values corresponding to outward (inward)
directed flows. Right: Latitudinal flow velocity with positive (negative) values corre-
sponding to northward (southward) directed flows. Courtesy: Schad et al. (2013).

radial as well as the latitudinal direction (Figure 1.2). Schad et al. (2013) wrote:

Near the Solar surface, our flow measurements are consistent with mea-
surements from ring-diagram analysis of GONG1 data covering 2001–2009
(Komm et al., 2005; González Hernández et al., 2010), which show a resid-
ual small-scale modulation of the meridional flow in the Solar subsurface.
This modulation is discussed as a meridional component of the torsional
oscillation of the zonal flow that is present throughout the convection
zone (Vorontsov et al., 2002; Howe et al., 2005). However, local helio-
seismic measurements were not able to probe this small-scale meridional
flow component beyond the subsurface layer...Our results reveal that this
subsurface modulation represents only the head of a layer of flow cells
which extends throughout the whole convection zone. Therefore, we sus-
pect a global coupling mechanism between the zonal and the meridional
flow residuals.

1The Global Oscillation Network Group or GONG is a six-station network of velocity imagers lo-
cated around the Earth to obtain nearly continuous observations of solar oscillations for helioseismic
studies.
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1.1.3 Local Helioseismic Inferences

Local helioseismology is the study of the solar surface and interior using the pertur-

bations to the local acoustic wavefield due to local inhomogeneities or flows. The

first helioseismic inferences of meridional flow were carried out with local helioseis-

mic techniques using (high-degree) acoustic modes that are not sensitive to the deep

interior. Giles et al. (1997) were the first to attempt this with time-distance helioseis-

mology, followed by González Hernández et al. (1998), and Schou and Bogart (1998)

using ring-diagram analysis.

Near-Surface Flows

Near the surface the local helioseismic results are generally consistent with Doppler

and tracer measurements, showing poleward flow of about 20 m/s and significant

asymmetry about the equator (e.g., Giles et al., 1997; Chou and Dai, 2001; Haber

et al., 2002; Basu and Antia, 2003; Zhao and Kosovichev, 2004). Haber et al. (2002)

have reported a flow reversal in the northern hemisphere where the circulation be-

comes equatorward at depths of about 3–15 Mm below the photosphere; the ring-

diagram analysis spans six years (1996–2001), with the flow reversal (compare with

surface measurements of Ulrich, 2010) occurring in the latter four (1998–2001). Such

a flow reversal is not evident in the time-distance results of Zhao and Kosovichev

(2004) who presented meridional flows averaged over depths of 3–4.5 Mm and 6–9

Mm. Komm et al. (2013) have determined the meridional flow from near-surface

layers to about 16 Mm using ring-diagram analysis on data from the HMI instrument

aboard the Solar Dynamics Observatory (SDO) spacecraft; the measured average

meridional flow is poleward at most depths and latitudes with a maximum amplitude

of about 20 m/s near 37.5◦ latitude.

Meridional Counterflows2

Since mass does not pile up at the polar regions of the Sun, it is believed that an

equatorward counterflow in both hemispheres must exist somewhere in the interior to

conserve mass flux. Giles et al. (1997) presented time-distance results for the upper

4% of the solar interior and concluded that the meridional flow throughout this region

2Figure 1.3 (left) is adapted by permission from Macmillan Publishers Ltd.: Nature, Giles et al.
(1997), copyright 1997.



8 CHAPTER 1. INTRODUCTION

Figure 1.3: Left: Black streamlines show the schematic structure of single-cell merid-
ional circulation inside the solar convection zone. Courtesy: Giles et al. (1997).
Right: Blue (counter-clockwise cell) and red (clockwise cell) streamlines show the
schematic structure of double-cell meridional circulation inside the convection zone.
The common-midpoint deep-focus time-distance scheme is displayed with black curves
showing some samples of acoustic wave paths. Courtesy: Zhao et al. (2013).

Figure 1.4: Meridional flow profile, obtained by inverting the measured acoustic travel
times. (a) Meridional flow profile, with the positive velocity directed northward. (b)–
(c) The inverted velocity as a function of latitude averaged over different depth ranges.
(d)–(e) The velocity as a function of depth averaged over different latitude ranges.
Courtesy: Zhao et al. (2013).
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was poleward. By imposing a mass-conservation constraint, inversions of the time-

distance measurements on MDI data suggested a single-cell meridional circulation (cf.

left diagram in Figure 1.3) in the convection zone that is equatorward below about

0.8R⊙, with a speed of about 2 m/s at the base of the convection zone (Giles, 2000).

After correcting for a systematic “center-to-limb” effect (Zhao et al., 2012), Zhao

et al. (2013) calculated from HMI data (cf. right diagram in Figure 1.3 and Figure

1.4) that the poleward meridional flow observed on the surface extends to a depth

of approximately 65 Mm (≈ 0.91R⊙). The flow direction, displaying substantial

hemispheric asymmetry, then turns equatorward with a maximum speed of about

10 m/s, until about 0.82R⊙ where the flow becomes poleward again. The inversion

stops at about 0.75R⊙ and ±60◦ latitudes, which allows for the possibility of more

circulation cells in the radial as well as the latitudinal directions. Kholikov et al.

(2014) also found evidence of multi-cell meridional circulation by applying the time-

distance technique on GONG data.

In the context of helioseismic holography, Braun and Birch (2008) asserted that

one of the fundamental difficulties in measuring meridional flow at the base of the

convection zone is due to the poor signal-to-noise ratio of the measurements there for

a flow of about 3 m/s. For comparison, the sound speed at the base of the convection

zone is roughly 230 km/s. Braun and Birch (2008) concluded that the helioseismic

detection of meridional flow near the base of the convection zone may not be possible

using travel-time measurements spanning an interval less than a solar cycle. However,

it may be possible for a flow of 10 m/s (e.g., Gough and Hindman, 2010; Pipin and

Kosovichev, 2011).

1.2 Meridional Circulation: Simulations

It is not the purpose of this section to exhaustively review or critique the theoretical

or simulation work done on large-scale flows in the solar interior—rather, the purpose

is to illustrate some select results which, though oversimplistic, may still be used as a

guide for helioseismic inferences. In the absence of accurate observations, theory is the

only means at the solar physicist’s disposal to determine the properties of the solar

interior; theory may also provide observational strategies. In fact, as will be seen

in Chapter 3, some of the models and simulations encountered in this section can

be used for forward modeling in time-distance helioseismic analysis. Whether future
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observations and inferences will corroborate or refute these theoretical constructs still

remains to be seen. Future inferences will guide theoretical advances by providing

ever greater observational constraints on the structure of meridional circulation. The

dialectical engagement between theory and observation is the basis for the evolution

of scientific knowledge.

Relevant figures are reproduced from the indicated references, and pertinent in-

formation is provided in this section and the figure captions. To obtain more details

and to ascertain whether the assumptions and parametrizations involved are valid for

the solar interior, the reader is referred to the indicated sources and the references

therein.

1.2.1 Mean-Field Hydrodynamical Models

Figure 1.5: This mean-field hydrodynamical model jointly computes the differential
rotation, meridional flow and heat transport in the solar convection zone. Upper pan-
els show the angular velocity isolines (left) and the differential rotation depth profiles
for several latitudes (right). Lower panels show the streamlines of meridional flow
(left) and the radial profile of meridional flow velocity at 45◦ latitude (right). Nega-
tive velocity indicates poleward flow. Courtesy: Kitchatinov and Olemskoy (2011).
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Mean-field hydrodynamical models are essentially derived from the equations of

momentum and energy conservation (Rüdiger, 1989; Küker and Stix, 2001; Stix,

2004). Figure 1.5 shows a mean-field hydrodynamic model (Kitchatinov and Olem-

skoy, 2011) with solar-like differential rotation and single-cell meridional circulation

resulting from the anisotropy of transport of angular momentum and energy due to

the influence of rotation on convective turbulence. Thus far this has been the favored

meridional flow model for a flux-transport dynamo. But 21st century helioseismology

is putting a strain on the status quo.

Figure 1.6 shows a latitudinally stacked double-cell meridional circulation struc-

ture. Dikpati (2014) finds that the steady-state solution of the hydrodynamic model,

which includes Coriolis forces and turbulent Reynolds stresses, is sensitive to the

magnitude of the density decline with radius, yielding a single flow cell with poleward

surface flow for density declines of less than about a factor of 4 within the convec-

tion zone, but two cells, with a reversed circulation in high latitudes, for all higher

density declines, including that for the adiabatically stratified solar convection zone.

Although the Dikpati (2014) model leaves out much physics, the two-cell meridional

Figure 1.6: (a) Parametrized differential rotation contours obtained using a mathe-
matical formula following Dikpati et al. (2002). Based on helioseismic observations,
this is the most realistic case for the Sun. (b) Stream function for meridional flow
driven by Coriolis forces associated with differential rotation profile shown in panel
(a). This simulation has resulted in a latitudinal double-cell circulation, with a domi-
nant primary cell in low and mid-latitudes, and a weaker counter cell at high latitudes,
with the inter-cell boundary near 55◦. Courtesy: Dikpati (2014).
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circulation depicted in Figure 1.6 is consistent with the findings of an equatorward

cell at high latitudes by Haber et al. (2002) and Ulrich (2010). The global helioseismic

results of Schad et al. (2013) also seem to imply that such latitudinally arranged cells

are possible.

The case in Figure 1.73 is the result of the work done before the simultaneous

inclusion of anisotropy of angular momentum and heat transport in mean-field hydro-

dynamics became the vogue, and also before the helioseismically determined interior

rotational dynamics of the Sun became the established paradigm. This result is in-

teresting because the recent time-distance inferences of Zhao et al. (2013) seem to be

endorsing the double-cell meridional circulation pattern that have emerged in the com-

putations of Stix (1987). In this hydrodynamic model, the radially stacked double-cell

circulation has properties that qualitatively match solar observations. However, the

poleward flow at the base of the convection zone cannot result in solar-like dynamo

behavior in the flux-transport paradigm (e.g. Jouve and Brun, 2007; Hazra et al.,

2014).

3Figure 1.7 is reprinted with kind permission from Springer Science and Business Media: Stix
(1987), D. Reidel Publishing Co.

Figure 1.7: Surfaces of constant angular velocity (dashed), and streamlines of merid-
ional circulation for (a) a model with anisotropic viscosity with pole-equator tem-
perature difference of 1 K and flow speed of 1 m/s, and (b) a model with latitude-
dependent heat transport resulting in a pole-equator temperature difference of 0.5–6
K and flow speeds of 15–36 m/s. The anisotropic viscosity and the latitude-dependent
heat transport arise from the influence of rotation upon convection, generating merid-
ional circulation and therewith differential rotation. Courtesy: Stix (1987).
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Figure 1.8: Panel A: (a) Streamlines for two radially stacked counter-clockwise cells of
meridional circulation. (b) vθ as a function of r/R⊙ at 45◦ latitude. (c) Time-latitude
plot of toroidal field at base of convection zone (r = 0.70R⊙). (d) Time-latitude plot
of surface radial field. Panel B: (a) Double-cell meridional circulation. Panel C:
(a) Triple-cell meridional circulation. (b)–(d) in panels B and C same as in Panel
A for appropriate meridional circulation. Panel D: Two complicated meridional flow
models. Panel E: (a) and (b) are same as (c) and (d) in Panels A–C for model in Panel
D(a). Panel F: Same as Panel E, for model in Panel D(b). Panel G: Black filled circles
show variation of cycle period with flow speed of lower cell, while keeping velocities
of other cells in Panel C(a) constant; blue circles show period-speed relationship of
middle cell; red boxes for upper cell. Courtesy: Hazra et al. (2014).
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1.2.2 Flux-Transport Dynamo Models

Flux-transport dynamo models were first outlined in Choudhuri et al. (1995). Dikpati

and Gilman (2009) characterized them as follows:

Flux-transport dynamos are just the so-called α-Ω dynamos4 with merid-
ional circulation. Flux-transport dynamos include three basic processes:
(i) shearing of the poloidal magnetic fields to produce toroidal fields by
the Sun’s differential rotation (the Ω-effect), (ii) regeneration of poloidal
fields by displacing and twisting the toroidal flux tubes by helical motions
(the so-called α-effect), and (iii) advective transport of magnetic flux by
meridional circulation, whereas an α-Ω dynamo involves only the first two.
Meridional circulation acts as a conveyor belt in this class of models.

Figure 1.8 shows the flux-transport dynamo cycles for multi-cell meridional circu-

lation. The results in Hazra et al. (2014) indicate that as long as there is a sufficiently

extended equatorward flow connecting the high-latitude region to the mid- to low-

latitude region at the base of the convection zone, solar-like butterfly diagrams (cf.

http://solarscience.msfc.nasa.gov/SunspotCycle.shtml) can be obtained with

a flux-transport dynamo.

1.2.3 Three-dimensional Global Numerical Simulations

In the mean-field approach the focus is on the large scales; the effects of small-

scale, unresolved turbulence is parametrized. Nonlinear terms in the momentum,

energy and induction equations lead to non-vanishing second order correlation terms

of small-scale quantities that act as drivers for large-scale (mean) flows or as turbulent

induction effects for the large-scale magnetic field. The decomposition into large- and

small-scale (fluctuating) properties and the resulting correlation terms driving large-

scale flows are the strength and the weakness of this approach at the same time.

Also, in most mean-field flux-transport models the flow velocity is prescribed, rather

than solved explicitly. The parametrization and the ad hoc flow velocity decrease the

computational expense by orders of magnitude allowing for simulations covering long

time scales, and for exploring wide parameter ranges. However, the results are heavily

dependent on parametrization of the second order correlation terms that may be ill-

suited, along with the prescribed flow velocities, for solar interiors. For a scathing

criticism of the mean-field approach see Spruit (2011).

4α-Ω dynamos are discussed in, e.g., Parker (1955), Steenbeck et al. (1966), and Rädler (2007).
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Figure 1.9: Top row shows a hydrodynamical simulation whereas the middle and
bottom rows show a MHD simulation of the solar convection zone. The rows show
zonally averaged angular velocity (left), and meridional flow (middle). The middle
and bottom rows also show a toroidal magnetic component (right) at cycle maximum
(t=16 years, middle row) and minimum (t=32 years, bottom row). The meridional
flow vectors (white arrows) are superimposed on the latitudinal mean-flow vθ. The
differential rotation is steady over the duration of the simulation, whereas the merid-
ional flow fluctuates. Courtesy: Racine et al. (2011).
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According to Charbonneau (2010), “[u]ltimately, the solar dynamo problem should

be tackled as a (numerical) solution of the complete set of [magnetohydrodynamic

(MHD)] partial differential equations[, with the appropriate boundary conditions] in

a rotating, stratified spherical domain undergoing thermally-driven turbulent con-

vection in its outer 30% in radius.” However, none of the current numerical models

are able to reproduce sufficiently well the solar differential rotation and meridional

circulation. In particular, the models are not able to reproduce the tachocline (the

transition region between the differentially rotating convection zone and the quasi-

rigidly rotating radiative interior; cf. Spiegel and Zahn, 1992) and the near-surface

shear layer (NSSL: a thin region of increasing angular velocity with depth just be-

neath the solar surface; cf. Corbard and Thompson, 2002), and are still not able to

adequately reproduce the solar activity cycles. Despite the fast developments of com-

puter capabilities, all global simulations are far from realistically modeling the Sun.

In particular, modeling solar convection is a formidable challenge. Abrupt changes in

the stratification give rise to relatively small-scale granulation near the surface and

convective penetration into the stably-stratified radiative interior underlying the con-

vection zone. The range of dynamical scales present is tremendous: from the depth of

the convection zone, 2 × 1010 cm, to the viscous dissipation scale which is estimated

to be of order 1 cm (e.g., Miesch, 2005).

The MHD situation is more complicated than that of pure hydrodynamics. A

dynamically significant magnetic field which varies cyclically, introduces nonlinear

time dependent effects into the system via the Lorentz force capable of influencing

the conducting fluid flow (cf. Charbonneau, 2010). As can be seen in Figure 1.9,

compared to the hydrodynamic case the latitudinal differential rotation is suppressed

in the MHD case, and the meridional circulation is enhanced during the magnetic

cycle maximum (cycle period roughly 30 years). In both the hydrodynamical and

MHD case, the angular velocity profile is solar-like and the meridional flow structure

is multi-celled and messy.

1.3 Dissertation Outline

This dissertation further refines the interpretation of travel-time shifts in the context

of time-distance helioseismic measurement of meridional flow. In fact, travel-time

shifts are measured, and meridional flow velocities are inferred from the travel-time



1.3. DISSERTATION OUTLINE 17

shifts by inversion.

Chapter 1 briefly overviews the observed, or rather, inferred structure of merid-

ional circulation, and the expected structure from a theoretical standpoint. Chapter

2 covers aspects of solar oscillations and time-distance helioseismology relevant for

the material covered in this dissertation. Chapters 3 and 4 contain original research

done by the author and thus constitute the main substance of this dissertation.

Chapter 3 explores forward modeling in the ray approximation with simulations.

For accurate inversion of travel-time shifts to obtain flow velocities, the travel-time

shifts have to be accurately interpreted or forward modeled. The forward modeling

is done in the ray-theoretic approximation, whereby the travel times are interpreted

as the travel times of waves propagating according to the rules of ray geometry, and

non-vanishing travel-time shifts of counter-propagating waves are perturbations due

to Doppler shifts induced by meridional flow. This interpretation is tested against

time-distance analysis of two independent three-dimensional acoustic wave simulation

data (Hanasoge et al., 2006; Hartlep et al., 2013) perturbed by single- and double-cell

meridional flow models. A systematic effort is made for the first time in the context

of meridional flow (for supergranulation cf. Duvall and Hanasoge, 2013; Duvall et al.,

2014) to incorporate some of the physics of the simulations into the ray-theoretic com-

putations. The full deep-focus scheme is used for the first time to measure meridional

flow induced travel-time shifts on phase-speed filtered simulation data. Notwith-

standing, in this work ray theory could not be established as an adequate model for

interpreting meridional flow induced travel-time shifts. Since the sensitivity kernel

(cf. Gizon and Birch, 2005) needed for accurate inversions is derived from a robust

forward model, this work casts doubts (not for the first time; e.g., Bogdan, 1997;

Birch and Gizon, 2007) on the reliability of the traditional ray-theoretic kernels.

Chapter 4 builds on the techniques developed for use in Chapter 3, and applies

them to HMI data. Travel-time shifts are measured for the first time on spherical

harmonic reconstructed and phase-speed filtered HMI data using the full deep-focus

technique. The main target here is the “center-to-limb” effect that contaminates the

measurement of travel-time shifts due to meridional flow. Baldner and Schou (2012)

provided a plausible physical basis for this effect, but it is not yet a firmly estab-

lished theory. A new method is devised, using non-standard time-distance geometry

and a model center-to-limb phase-shift function, to characterize the “center-to-limb”

effect, to test if it is a true heliocentric angle dependent phase function. The test is
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theoretically sound, but is unsuccessful due to the noise level in the travel-time shift

measurements.

Chapter 5 summarizes the dissertation, and concludes with a few remarks on

future directions and strategies.

Appendix A derives the correct expression for the travel-time shift due to radial

flow since Equation (2.43) in Giles (2000) for the aforementioned quantity is incorrect.

According to Giles (2000) if the radial flow is uniform everywhere, then the travel-

time shift due to the radial velocity should be zero, as counter-propagating rays will

experience the same net flow; Equation (2.43) in Giles (2000) does not reflect that

fact. This derivation is connected to the work done in, for example, Duvall and

Hanasoge (2013) and Duvall et al. (2014) to compute the travel-time shifts due to

vertical flows in supergranules.



Chapter 2

Time-Distance Helioseismology

The deep interior of the Sun was one of the least accessible regions to scientific in-

vestigation until about 50 years ago. Early attempts to probe the solar interior were

mainly confined to spectroscopic studies of the surface layers. With the advent of ob-

servations of solar oscillations it became possible to infer the internal structure of the

Sun by using the measured eigenfrequencies of solar oscillation modes—this method

was among the early techniques of helioseismology. These helioseismic techniques ex-

amined the longitude independent global properties of the Sun that were symmetrical

about the equatorial plane. The global helioseismic techniques had limited ability to

study the properties of local regions, or spherically asymmetric effects other than ro-

tation, and had limited sensitivity to complex flows. These limitations were overcome

with local helioseismic techniques that rely on the interaction of traveling acoustic

waves with small perturbations to the background state.

Time-distance helioseismology (aka helioseismic tomography or telechronohelio-

seismology), a powerful local helioseismic technique, was introduced by Duvall et al.

(1993). The basic idea is to measure the time it takes for a wave to travel from one

point on the solar surface to another. Since the excitation of solar acoustic waves

is stochastic, and it is not possible to isolate individual sources, Duvall et al. (1993)

suggested that wave travel times can be measured by computing the temporal cross-

covariance of the signal at a point on the solar surface with the signal at another

point. The rationale behind this idea is that in a local, horizontally invariant region,

the cross-covariance function is the Fourier transform of the solar oscillation power

spectrum. This implies that changes in the local power spectrum due to inhomo-

geneities or flows affects the cross-covariance function.

19
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With time-distance measurements it is possible to infer subsurface properties at a

high spatial resolution (a few megameters can be achieved near the surface; the limit

is set by the smallest available horizontal wavelength of high-frequency f modes).

Detailed three-dimensional maps of vector flows in the upper convection zone have

provided new insights into the structure, evolution, and organization of magnetic

active regions (e.g., Kosovichev et al., 2000; Zhao et al., 2010) and convective flows

(e.g., Jackiewicz et al., 2008; Duvall and Hanasoge, 2013; Duvall et al., 2014). The

time-distance method has been used to measure large-scale zonal and meridional flows

in the solar convection zone (e.g., Giles, 2000; Zhao et al., 2013), and to detect active

regions on the farside of the Sun (Zhao, 2007). This technique has also proven capable

of detecting signatures of emerging sunspot regions in the solar interior before their

appearance at the surface (Ilonidis et al., 2011, 2013).

Since the time-distance technique is used in this dissertation, this chapter reviews

some basic material: Section 2.1 discusses properties of solar acoustic oscillations,

and Section 2.2 details the relevant aspects of travel-time computation.

2.1 Solar Oscillations

Solar oscillations (cf. Figure 2.1) with a period of about 5 minutes were first observed

in 1960 (Leighton, 1960; Leighton et al., 1962) by a spectroheliographic technique at

Mount Wilson Observatory (MWO). Ulrich (1970) and Leibacher and Stein (1971)

explained the observed oscillatory motions by invoking standing acoustic waves in

the solar interior. Several other studies (Deubner, 1975; Rhodes et al., 1977; Claverie

et al., 1979; Duvall and Harvey, 1983) confirmed this interpretation and found a

ridge structure in the power spectra which was consistent with the standing waves

interpretation. Solar oscillations are believed to arise due to excitation by turbulent

convective motions near the surface of the Sun (Goldreich and Keeley, 1977), mainly

in the vicinity of the intergranular lanes (Stein and Norlund, 2001).

The solar surface is in continual motion due to the interference of millions of wave

modes, and due to convective turbulence. The amplitude of a single mode is about

30 cm/s, and the interference of 10 million or more oscillation modes with randomly

distributed phases results in oscillation amplitudes of 0.5–1 km/s or larger in extreme

cases. In the Sun, detected waves that possess diagnostic value are either surface

gravity or acoustic modes. While surface gravity modes are restricted to the surface
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Figure 2.1: MDI single Dopplergram, with a mean solar velocity image averaged over
45 minutes subtracted. The surface motions associated with sound waves traveling
through the Sun’s interior are discernible. The small-scale light and dark regions
represent the upward and downward motions, respectively, of the plasma near the
solar surface. The patterns fade towards the limb because of the primarily radial
displacement of the acoustic waves. Courtesy: SOI/MDI Team.
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layers, acoustic modes penetrate the depths of the solar interior and resurface altered

by the structure and dynamics of the traversed interior. Because the Sun is stratified

such that the sound speed monotonically increases with depth, acoustic waves near

the photosphere that are directed towards the interior, propagate some distance while

refracting away from the center. Eventually they undergo total internal reflection

and return to the surface. Because of the sharp density decline in the near-surface

regions, acoustic wave modes below a certain characteristic “cut-off” frequency are

reflected back toward the solar interior where they remain trapped in a resonant cavity

until they are damped out by convective, radiative and other processes. The typical

timescale of large wavelength modes is about 5-7 days while the smaller wavelengths

are damped out much more quickly and replaced by other waves continually generated

by the overturning convective cells (known as granules) at the solar surface.

2.1.1 Normal Modes of Oscillation

The solar oscillations are reasonably well approximated by the equations of linear

adiabatic oscillations of a spherically symmetric (ignoring the effects of rotation and

magnetic fields) star (e.g., Aerts et al., 2010). Assuming a spherically symmetric

and time-independent equilibrium enables the solution to the equations of adiabatic

stellar oscillations to be separable in the radial and angular coordinates, and in time.

Along with the boundary conditions, they define an eigenvalue problem which has

solutions only at discrete values of frequency or eigenfrequencies. The observed oscil-

lation signal f(r, θ, φ, t) being, roughly, the radial component of the solution, can be

represented as a sum of normal modes (e.g., Kosovichev and Duvall, 1997):

f(r, θ, φ, t) =
∑

n,l

m=l
∑

m=−l

Anlmξnl(r)Ylm(θ, φ) exp[i(ωnlmt+ αnlm)], (2.1)

where the three integers n, l, m are the radial order, angular degree, and azimuthal

order respectively, Anlm is the mode amplitude, ξnl is the radial eigenfunction, Ylm

is the spherical harmonic, ωnlm is the eigenfrequency, and αnlm is the phase of the

mode. The spherical harmonics have the form

Y m
l (θ, φ) = almP

m
l (cos θ) exp(imφ), (2.2)
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where Pm
l is the associated Legendre polynomial, and alm is a normalization factor.

The radial order n corresponds to the number of nodes of the radial eigenfunction,

the angular degree l gives the total number of node circles on the sphere, and the

azimuthal order m indicates how many of these node circles cross the equator. In

a spherical system with no preferred axis of symmetry, the eigenfrequencies do not

depend onm. Since solar rotation defines a particular axis of symmetry, the oscillation

frequencies show a weak dependence on m.

It follows from the above that the surface manifestation of solar oscillations can be

decomposed into a sum of spherical harmonics for each instant of observation—this

is also the basis for spherical harmonic reconstruction (Section 4.5). The resulting

eigenfrequencies ωnlm of the solar oscillations are measured from the resonant peaks

in the power spectrum (cf. Figure 2.2), and used as a diagnostic of the solar interior.

In Figure 2.2 the acoustic power is concentrated in ridges in wavenumber-frequency

or k-ω space, with maximal amplitude around 3 mHz. The first ridge (radial order

Figure 2.2: Cut at ky = 0 through an average power spectrum of MDI Doppler velocity
data as a function of frequency and kxR⊙. The horizontal dashed line indicates the
acoustic cut-off frequency. The power below 1.5 mHz is due to convective phenomena
such as granulation and supergranulation. Courtesy: Gizon et al. (2010).
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n = 0) at low frequencies is due to the fundamental or f modes or surface gravity

waves. All other ridges correspond to pressure or p modes or acoustic waves. The

existence of discrete ridges with n > 0 reflects the fact that p modes are trapped in

the radial direction. The power above 5.3 mHz is attenuated; this marks the acoustic

cut-off frequency above which the acoustic waves escape into the solar atmosphere.

The frequency-width of a ridge is inversely proportional to the mode lifetime.

2.1.2 Properties of Acoustic Modes1

As discussed above, the acoustic modes are uniquely identified by the spherical har-

monic degree l, azimuthal order m, and radial order n. For a non-rotating star the

modes are degenerate in m. An asymptotic description of the equations of adiabatic

stellar oscillations can be obtained by approximating the modes locally by plane sound

waves satisfying the dispersion relation:

ω2 = c2|k|2, (2.3)

where ω is the frequency, c the sound speed, and k is the vector wavenumber. When

the ideal gas law is satisfied, the sound speed is given by

c2 =
Γ1kBT

µmu

, (2.4)

where Γ1 is the first adiabatic exponent, kB is Boltzmann’s constant, mu is the atomic

mass unit, and µ is the mean molecular weight which is determined solely by the

composition.

Lower Turning Point

According to Equation (2.4) the sound speed is essentially determined by T/µ. Be-

cause of the increase in sound speed with depth (due to temperature rising with

depth), waves that are propagating toward the interior refract continually until they

undergo total internal reflection at some depth and eventually return to the surface.

At the point of total internal reflection, also known as the lower turning point (and in

the context of common-midpoint time-distance technique, the focal-depth; cf. Section

1All the equations and derivations in this section are essentially reproduced from Aerts et al.
(2010).
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2.2.3), the wave is propagating essentially horizontally, i.e., its radial component is

zero. To determine the location of the lower turning point k is decomposed into a

radial (krr̂) and a horizontal (kh) component:

k = krr̂ + kh. (2.5)

Equations (2.3) and (2.5) yield

k2
r + k2

h =
ω2

c2
, (2.6)

where kh = |kh| is the horizontal wavenumber:

kh(r) =

√

l(l + 1)

r
, (2.7)

which is obtained from the solution for the angular component of the equations of

adiabatic stellar oscillations. At the lower turning point r = rt, kr = 0 since the wave

is propagating horizontally, and the sound speed is equal to the horizontal phase

speed of the mode: c(rt) = ω/kh(rt), or

c(rt)

rt
=

ω
√

l(l + 1)
. (2.8)

Equation (2.8) provides the means to calculate the penetration depth of each wave

mode. It also allows the determination of the frequency and wavenumber (or spherical

harmonic degree l) of waves that can reach a given depth.

Equation (2.8) implies that oscillation modes with large l are confined within

relatively shallow cavities below the surface, while the lower l modes propagate deeper.

For a given l 6= 0, the depth of penetration increases with frequency and also with

radial order n. All modes with a similar horizontal phase speed (a straight line through

the origin in Figure 2.2) have a similar lower turning point and probe essentially the

same layers of the Sun (the rationale behind phase-speed filtering; cf. Section 2.2.1).

As various modes are trapped in different regions of the solar interior, they sample

the thermodynamic properties of the entrapping resonant cavity. Thus the oscillation

frequencies of different modes reflect different parts of the Sun, and permit a detailed

inversion for the interior properties as a function of position. Figure 2.3 shows a

schematic diagram of propagating acoustic waves in the solar interior.
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Figure 2.3: Propagation of the rays of sound in a cross-section of the solar interior.
The acoustic paths are bent by the increase in sound speed with depth until they
reach the lower turning point (indicated by the dotted circles) where they undergo
total internal reflection. The acoustic waves are reflected at the surface by the sharp
drop in density. The rays shown corresponding to modes of frequency 3000 µHz and
degrees (in order of increasing penetration depth) l = 75 (red), 25 (olive green), 20
(dark green) and 2 (blue); the black line passing through the center schematically
illustrates the behavior of a radial mode (l = 0). Courtesy: SOI/MDI Team.

Upper Turning Point

The acoustic cut-off frequency in the near-surface layers of the convection zone deter-

mines the upper reflective boundary of the solar acoustic waves. The expression for

this quantity depends on the background solar model and the oscillation equations.

In this work the more commonly used expressions for the acoustic cut-off frequency

are reproduced (e.g., Deubner and Gough, 1984; Aerts et al., 2010).
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The generalized acoustic cut-off frequency is given by

ω2
ac =

c2

4H2

(

1 − 2
dH

dr

)

, (2.9)

where H is the density scale height:

H−1 = −d ln ρ

dr
. (2.10)

In the case of an isothermal atmosphere H = Hp is constant, where Hp is the pressure

scale height defined as

H−1
p = −d ln p

dr
, (2.11)

and the generalized cut-off frequency simplifies to the isothermal acoustic cut-off

frequency:

ωac =
c

2Hp

. (2.12)

Physically, this corresponds to the reflection of the waves into the solar interior

where the acoustic wavelength becomes comparable to the local density or pressure

scale height, as the case may be. Modes with frequencies exceeding the atmospheric

value of the acoustic cut-off frequency are only partially trapped and mostly escape

into the atmospheric layers.

2.2 Computing Travel Times

This section is not intended to be a comprehensive review or critique of time-distance

techniques; rather, it is an overview of the techniques applied in this dissertation to

compute travel times and travel-time shifts. The curious reader is referred to the

excellent review papers that exist on the subject, e.g., Gizon and Birch (2005), Gizon

et al. (2010), Kosovichev (2011), and the references therein.

2.2.1 Phase-Speed Filtering

The rationale for phase-speed filtering is that waves with similar horizontal phase

speeds follow approximately the same trajectory in the solar interior. More impor-

tantly, for the purposes of this dissertation, the waves access similar depths; this per-

mits the possibility of extracting information about meridional flows at those depths
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from the observed travel times of the “iso-phase-speed” waves. Phase-speed filters

enable the selection of wave packets with a specific phase speed containing relevant

information, filtering out irrelevant information or “noise”, thus increasing the signal-

to-noise ratio of the temporal cross-covariance functions, and consequently, of the

travel-time maps.

In the plane-parallel or Cartesian geometry, phase-speed filtering amounts to a

multiplication in the Fourier or k-ω domain (e.g., Couvidat and Birch, 2006):

φ̃(k, ω) = F (k, ω; ∆)f̃(k, ω), (2.13)

where k is the horizontal wave vector, k = |k|, ω is the angular frequency, and f̃ is

the Fourier transform of the signal in Equation (2.1), representing say, the line-of-

sight Doppler velocity data. In spherical geometry, spherical harmonic transforms are

involved.

The phase-speed filters F generally have the Gaussian form:

F (k, ω; ∆) = exp

{

− [ω/k − v(∆)]2

2δv2

}

, (2.14)

where v(∆) is the phase speed at the lower turning point of a wave with single-skip

distance ∆, and δv is the full width at half maximum (FWHM) of the filter. The

FWHM δv of the phase-speed filters used in this dissertation were chosen empirically.

Various filter widths were experimented with, and it was found that for a reasonably

wide range of filter widths the time-distance computations of the travel-time shifts

due to meridional flow yielded similar results within error bars. This is to be expected

from theoretical considerations: meridional flow signals are relatively unchanging in

time and homogeneous in horizontal space compared to the acoustic modes, causing

the signal to be relatively independent of filter width in frequency and horizontal

wavenumber (or l). This is certainly not true for supergranulation (cf. Duvall and

Hanasoge, 2013).

The author picked the following filter width scheme:

δv = 10rt, (2.15)

where δv is in m/s, and rt is the lower turning point (measured from the solar center

in Mm) of waves with a given phase speed. Under this scheme, the phase-speed
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Figure 2.4: Top left panel shows power spectrum of unfiltered acoustic wave simula-
tion data (Hartlep et al., 2013) with embedded meridional flow (Rempel, 2006) as a
function of frequency and spherical harmonic degree l. Top right panel shows power
spectrum of a phase-speed filter centered at skip distance ∆ = 22.8◦ or solar radius
0.86R⊙ with a FWHM of 7◦ in skip distance or 0.05R⊙ in solar radius. Bottom panel
shows power spectrum of filtered acoustic wave simulation data resulting from the
product of the power spectra in the top panels.
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filter width narrows with increasing phase speed or increasing focal-depth. Thus, the

increased noise level in the measurements at larger focal-depths is compensated by the

decrease in filter width. The constant in Equation (2.15) was chosen empirically so

that the narrowest filter did not exclude too much signal, and the broadest filter was

not too permissive. This filtering scheme was compared to another with a constant

width in l regardless of the phase speed, and the results of the filtering by both

schemes were consistent within error bars. Though important, these results are not

directly relevant to this dissertation and are not presented here. They will be part of

future work where the author attempts a more systematic filter design.

Some results of phase-speed filtering of simulation and solar data used in this

dissertation are presented in Figures 2.4 and 2.5 respectively. Figure 2.4 shows the

effect of phase-speed filtering on the power spectra of the acoustic wave simulation

(Hartlep et al., 2013) with embedded meridional flow (Rempel, 2006), and Figure 2.5

compares the north-south travel-time shifts from time-distance analysis of 10 days of

unfiltered and phase-speed filtered HMI data.

Figure 2.5: Plots of north-south travel-time shifts (δτns) obtained from time-distance
analysis of HMI data (10 days in May 2010) with quadrant 5-pairs deep-focus geom-
etry, as a function of latitude, for the phase-speed filtered (red) and unfiltered case
(blue), at focal depths of 0.98R⊙ (left) and 0.90R⊙ (right).
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2.2.2 Cross-Covariance Function

The wave distortions can be measured as perturbations of wave travel times, which

can be used as a diagnostic for perturbations or inhomogeneities along the wave

travel path. However, because of the stochastic nature of solar waves it is impossible

to track individual wave fronts or identify distinct wave sources. Instead, a cross-

covariance function is used that provides a statistical measure of the wave distortion

(e.g., Kosovichev and Duvall, 1997; Giles, 2000; Gizon et al., 2010):

ψ(r1, r2, τ) =

∫ T

0

φ(r1, t)φ
∗(r2, t+ τ)dt, (2.16)

where φ is the inverse Fourier transform of the filtered (Fourier-domain) signal in

Equation (2.13), the two points r1 and r2 are coordinates on the solar surface, T

is the total duration of observations. The time delay or time lag τ measures the

Figure 2.6: (a) Time-distance diagram for MDI medium-l data as a function of
angular-separation distance and time lag. Positive values are white; negative val-
ues are black. The observation duration is 144 days starting in May 1996. (b) Ray
paths for acoustic wave packets computed for solar Model S (Christensen-Dalsgaard
et al., 1996). In (a) and (b), the blue lines correspond to single-skip ray paths, the
red lines to two-skip ray paths, and the green lines to three-skip ray paths. Courtesy:
Gizon et al. (2010).
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amount that one signal is temporally shifted relative to the other. Figure 2.6(a)

shows a cross-covariance function (time-distance diagram) measured from 144 days

of MDI medium-l data. It provides a way to measure the wave travel time between

two surface locations.

Ray paths reasonably approximate the propagation of wave energy if the wave-

length is assumed to be much smaller than the length scales associated with the

variations in the background solar model. Figure 2.6(b) shows ray paths computed

from a standard solar model (see also Figure 2.3). The ridges in the time-distance

diagram in Figure 2.6(a) correspond to different paths that the wave packet takes

between pairs of observation points. For example, the blue line corresponds to single-

skip arrivals (i.e., waves that visit their lower turning points once between the two

observation points). The fine structure of the ridges reflects the band-limited nature

of the power spectrum. Since most of the wave power is concentrated in the 3 mHz

range, the cross-covariance function shows fine structure with a period of about 5

minutes. The other ridges seen in the time-distance diagram correspond to multiple

skips. As can be seen in the ray paths in Figure 2.6(b), the depth of the lower turning

point increases with the distance the ray travels in a single skip. Figure 2.7 shows

the relationship to be almost linear, so that either quantity can be used as a proxy

for the other when plotting travel-time shifts, at least within the convection zone of

the Sun.

Figure 2.7: Plot of the nearly linear relationship between the single-skip distance
or angular-separation distance and the lower turning point for acoustic rays with a
frequency of 3.1 mHz. Courtesy: Giles (2000).
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2.2.3 Deep-Focus Geometry

Duvall (1995) discussed for the first time the application of the deep-focusing scheme

in time-distance analysis of deep subsurface structures. In Duvall and Kosovichev

(2001) this scheme was carried out by cross-correlating points that are located on

opposite sides of a circle with the map point as the center, to measure sound-speed

perturbations below active regions. Duvall (2003) divided up the circle into quadrants

oriented in the cardinal directions, to measure subsurface flows in those directions by

cross-correlating diametrically opposite points in opposite quadrants (cf. Figures 2.8

and 2.9). In Figure 2.8, diametrically opposite points in the arcs A and A′ are cross-

correlated in time, and then again in arcs A′ and A—the order of the cross-correlation

is important for the determination of flows in opposite directions. The positive and

negative time-lag branches also give information about opposite flow directions. The

reader is referred to Figure 2.8 and the caption therein to understand how points

in the various arcs are cross-correlated. Figure 2.9 nicely illustrates the quadrant

deep-focus geometry with respect to the spherical Sun.

The following nomenclature is adopted in this work: if there are N pairs of arcs,

where N must be an odd positive integer, the configuration is referred to as the

N-pairs deep-focus geometry. The simplest case, the 1-pair geometry is just the

common-midpoint case. In full deep-focus geometry, the rays intersect at the lower

turning point of the common-midpoint ray. This point is called the focal-depth, the

depth of observation of the perturbation of interest, e.g., meridional flow. Thus, not

only the waves that have the same lower turning point as the focal-depth contribute

to the travel time signal, but potentially all waves with ray paths intersecting at the

focal-depth can contribute to the travel-time signal, greatly improving the signal-to-

noise ratio. A limit may be set to the number of ray paths to include in time-distance

analysis of meridional flow by the consideration that ray paths that are closer to being

radial at the focal depth are less sensitive to meridional flows, and hence contribute

less to the meridional flow induced travel-time shift.

The cross-covariance function computed between two spatial points is in general

very noisy. Spatial averaging is applied to improve the signal-to-noise ratio. This

is done by averaging the cross-covariance functions of the individual pairs of points

over the arcs. For the common-midpoint case this is simply accomplished for there

is only one pair of arcs and a single separation distance to consider; so one ends

up with two cross-covariance functions (after the spatial averaging) that constitute
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Figure 2.8: A simple example of the deep-focus geometry to illustrate the common-
midpoint and full deep-focus schemes. Top: Radial view with subsurface ray paths.
The point where the rays intersect is the focal-depth, the depth where the perturbation
of interest is being measured. Bottom: Surface view in the north-south (left) and
east-west (right) orientations. The figures also illustrate the fact that the common-
midpoint deep-focus geometry (black; not including the surface which is also in black
in the top figure) is a special case of the full deep-focus geometry (the red and the
black). The full deep-focus geometry has 3 pairs of arcs, and is thus referred to
as the 3-pairs deep-focus geometry (or N -pairs as the case may be, where N is an
odd number). The sector angles are unspecified, but for the quadrant geometry
they are 90◦. Referring to bottom left scheme: diametrically opposite points or
pixels in the arcs [black(up)-black(down), A-A′, B-B′, black(down)-black(up), A′-A,
B′-B] are cross-correlated. The first three give information about southward flow
at t > 0 and northward flow at t < 0, and just the reverse for the second three.
The cross-covariances A-A′ and B-B′ can be averaged together to improve the signal-
to-noise since they are not only oriented in the same direction (southward for t >
0, northward for t < 0), they also comprise pixels in opposite arcs with the same
separation distance. So on and so forth for the other pairs of arcs. The positive
and negative time-lag branches are kept separate until all the spatial averaging has
been carried out, at which point they are fit with Gabor wavelet functions and the
extracted travel times differenced (Section 2.2.4).
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Figure 2.9: Top: A realistic example of a full deep-focusing scheme applied to a line-
of-sight HMI Dopplergram. Bottom: Projections in the horizontal and radial planes
of a deep-focusing scheme with a focal-depth of 0.96R⊙. Courtesy: Hanasoge et al.
(2012).
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the positive and negative time-lag branches which are then fit with Gabor wavelet

functions and the extracted travel times differenced as described in Section 2.2.4.

For the more complicated full deep-focus case, there are several pairs of arcs each at

different separation distances. The cross-covariances of the different distances cannot

be averaged directly. A model travel-time curve is used to estimate the travel time

of the mean of the different distances. Then the different cross-covariance functions

at the different distances are shifted by the difference between the estimated travel

time for the different distances and the estimated travel time for the mean distance.

The shifted cross-covariance functions are then averaged together. This shifting and

averaging operation is illustrated in Figure 2.10 for surface gravity f modes and for

the surface-focusing scheme (cf. Duvall and Kosovichev, 2001), but these operations

can also be carried out on p-mode data with the full deep-focus technique.

Figure 2.10: Left: Cross-covariance functions Cew(x,∆, t) for f modes, measured at
pixel position x and for distances in the range 5.1 Mm < ∆ < 11 Mm, using a
surface-focusing technique, obtained from 8 hours of full-disk MDI data. Middle:
Cross-covariance functions are shifted along a line of constant phase for averaging
over the specified range of ∆. Right: Average cross-covariance Cew(x, t) calculated
from shifted cross-covariances in middle panel. This type of shifting and averaging
is routinely carried out on cross-covariances calculated from p-mode data using the
deep-focusing technique. Courtesy: Hindman et al. (2004).
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2.2.4 Gabor-Wavelet Fitting

From the cross-covariance function it is possible to make estimates of the acoustic

travel times between pairs of locations on the solar surface. In this dissertation the

Gabor-wavelet fitting method is used for travel-time measurements.

The Gabor-wavelet function has the form (cf. Kosovichev and Duvall, 1997; Koso-

vichev, 2011; Giles, 2000):

G±(τ) = A cos[ω0(τ − τ±)] exp

[

−δω
2

4
(τ − τg)

2

]

. (2.17)

Figure 2.11: A time-distance diagram with typical cross-covariances is displayed. In
the upper plot the cross-covariance amplitude is displayed as a function of time lag τ
and skip distance ∆. The lower plot shows the cross-covariance function (solid line)
in the positive time-lag branch, for skip distance ∆ = 24.1◦ along the cut indicated
in the upper plot. The lower plot also shows the Gabor-wavelet fit G+(τ) (dashed
line). Courtesy: Giles (2000).
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G+(τ) and G−(τ) are fit to the positive and negative time-lag branches, respectively

(Figure 2.11). The fit parameters are the amplitude A, the central frequency ω0, the

frequency bandwidth δω, the group travel time τg, and the phase travel times of the

positive and the negative branches τ+ and τ−, respectively. The phase travel times are

significantly less noisy than the group travel times, and therefore, it is customary to

use the phase travel time measurements, although the group travel time is the truer

measure of travel time of a wave packet. The other fit parameters can potentially

provide pertinent information when acoustic waves interact with magnetic fields, such

as in the vicinity of active regions.

The travel-time differences or travel-time shifts δτdiff = τ+−τ− are mostly sensitive

to flows while the mean travel times δτmean = (τ−+τ+)/2 are sensitive to sound-speed

perturbations. Since this dissertation is concerned with flows, only the travel-time

shifts are relevant.

2.2.5 Ray-Theoretic Forward Model

The wavefield in a given region of the solar surface is affected by the properties of

that region, which include the subsurface layers down to the depth of penetration

determined by the lower turning point of the waves. By analyzing the properties

of such local waves it is possible to infer the local three-dimensional structures and

flows beneath the solar surface. A basic difficulty with time-distance helioseismology,

which has not yet been fully solved, is the treatment of the forward problem, i.e.,

the calculation of the wave field and the resulting observables for a given subsurface

structure and flow. As a result, the inferences made through time-distance analysis

are somewhat difficult to interpret, in terms of their resolution and the extent to

which they reflect the true properties of the solar interior.

The ray-theoretic forward model or the ray approximation, in which the wave-

length is small compared to the other length scales in the problem (e.g., the scale

heights of the reference model, and the length scales of the perturbations), has been

used extensively in time-distance helioseismology (e.g., Kosovichev, 1996; Giles, 2000;

Hartlep et al., 2013; Zhao et al., 2013; Duvall and Hanasoge, 2013; Duvall et al., 2014)

to compute travel-time sensitivity kernels and travel-time shifts, in spite of known de-

ficiencies (e.g., Bogdan, 1997; Birch and Gizon, 2007).

It was shown by (Kosovichev and Duvall, 1997), assuming that the travel times
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are only sensitive to perturbations along the ray path, to first-order approximation

the travel-time difference due to flow velocity v, and the mean of the reciprocal travel

time perturbations due to structural inhomogeneities are given by

δτdiff = −2

∫

Γ0

v · n̂
c2

ds, (2.18)

δτmean = −
∫

Γ0

[

δc

c

k

ω
+
δωac

ωac

ω2
ac

c2ω2

ω

k
+

1

2

(

c2A
c2

− (k · cA)2

k2c2

)

k

ω

]

ds, (2.19)

respectively, where c is the adiabatic sound speed, n̂ is a unit vector tangent to

the ray path, s is the distance along the ray, ωac is the acoustic cut-off frequency,

cA = B/
√

4πρ is the Alfvén velocity, B is the magnetic field, and ρ is the plasma

density. The integration is performed along the unperturbed ray path Γ0 according

to Fermat’s principle (cf. Gough, 1993). Since this dissertation is solely concerned

with the measurement of flows, only travel-time differences or shifts due to flows will

be of relevance in the rest of this work.



Chapter 3

Forward Modeling with Ray

Theory and Simulations

Inferring meridional flow velocity from travel times measured on the photosphere,

i.e., the inverse problem, is a difficult affair given that the solar convection zone is a

hotbed of complex turbulent magnetohydrodynamic processes. The difficulty lies in

interpreting the time lags calculated from cross-correlating pixels of Doppler velocity

datacubes without an accurate model of the relevant processes in the solar interior

that are manifested in the images. Conversely, it is hoped that the model will be

obtained, or at least constrained, by this very cross-correlation technique of time-

distance helioseismology. The way out of this circularity is to hypothesize a model,

such as, the time lags correspond to travel times of propagating acoustic waves that are

affected in certain predictable and preferably linear ways by other phenomena, such

as, magnetic fields, plasma flows, etc. in the solar convection zone. Incidentally, these

latter phenomena may be nonlinearly coupled, potentially making it difficult, if not

impossible, to disentangle them with travel-time measurements. The theoretic values

are eventually compared with the observed values, and the residue between them, if

significant, is accounted for by introducing additional complexity or phenomena or

systematic errors in the current model, or even by substituting alternate models. This

process is carried out until reasonable agreement is obtained between the theoretic

and the observed values. In the face of such unwieldy prospects, it is often expedient

to postulate simple relationships and to experiment with simple objects, thus allowing

for the assessment of the basic theory underlying a measurement technique without

getting lost in the intricacies.

40
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In this work the correspondence between cross-correlation time delays and wave

travel times, and their modification by meridional flow is modeled by ray theory,

which is then tested against time lags calculated from three-dimensional numerical

simulations of acoustic wave propagation in a spherical domain with embedded ax-

isymmetric meridional flow (Section 3.1). The numerical simulation is an oversimpli-

fied non-magnetic model of the interaction between solar oscillations and meridional

flow which allows for a convenient way to validate the correspondence between the

time lags or time-distance measurements and the ray-theoretic travel times of acoustic

waves in the presence of meridional flow. More accurately, the ray-theoretic travel-

time differences or travel-time shifts of counter-propagating waves in the presence of

meridional flow are compared with the differences between the positive and negative

cross-correlation time lags, or time-lag shifts, in an effort to validate the time-distance

helioseismic technique, without drowning in the turbulent magnetohydrodynamic de-

tails of the solar convection zone. Thus, the forward problem is formulated, wherein

the meridional flow velocity is known beforehand and is used to determine the travel-

time shift via ray theory (Section 3.2), which is then compared to the travel-time

shift computed by time-distance (cross-correlation) analysis of simulated “observa-

tions” containing information about the same meridional flow (Section 3.3).

3.1 Acoustic Wave Propagation Simulations

Two different implementations of three-dimensional numerical simulations of acoustic

wave propagation in a spherical domain are used in order to objectively evaluate ray

theory as a model for interpreting travel-time shifts due to meridional flow. They are

described in Hanasoge et al. (2006) (henceforth referred to as HLD06) and Hartlep

et al. (2013) (henceforth referred to as HZK13) respectively, and their power spec-

tra are shown in Figure 3.1. Both HLD06 and HZK13 solve the three-dimensional

Euler equations of fluid motion in a spherical geometry, linearized around a spheri-

cally symmetric and stationary background state characterized by density, pressure

or sound speed, mass flows, and acceleration due to gravity. In both cases the wave

propagation is assumed to be adiabatic, and the source of wave excitation is random

which peaks about a couple of hundred kilometers below the upper boundary. Also,

in both cases absorbing buffer layers are implemented at the boundaries to effect

non-reflecting boundary conditions.
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Figure 3.1: Power spectra (vertical axis: frequency in mHz; horizontal axis: spherical
harmonic degree l) of simulated acoustic wave propagation in spherical geometry with
single-cell R06 (Rempel, 2006) meridional flow (max. flow speed = 500 m/s). Top:
HZK13 (Hartlep et al., 2013); Bottom: HLD06 (Hanasoge et al., 2006). The HLD06
spectra extends in spherical harmonic degree to a maximum of l = 255, but is not
shown in figure to keep the same scale as the HZK13 spectra which only extends to
a maximum of l = 170. Also apparent is the lower acoustic cut-off frequency in the
HZK13 spectra (reduced power above about 3.7 mHz).
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There are, however, important differences. Both HLD06 and HZK13 employ

Model S (Christensen-Dalsgaard et al., 1996) as the background solar model (for the

most part), which is convectively unstable in the near-surface layers of the convec-

tion zone. But they take different approaches to achieve convective stability: HLD06

ensures stability in the outer convective envelope by replacing the near-surface layers

(above 0.98R⊙) by an alternative empirical description that satisfies the requirements

of hydrostatic consistency and convective stability, and also preserves the reflective

property of the solar atmosphere, whereas HZK13 sets the entropy gradient, or the

Brunt-Väisälä frequency, to zero everywhere in the computational domain to make

the linearized Euler equations convectively stable. Two consequences follow from

the latter approach: the acoustic cut-off frequency is slightly reduced (cf. Figure

3.1), and no separate energy equation needs to be solved. Other differences include:

HLD06 has a lower boundary at 0.2R⊙, HZK13 does not; HLD06 introduces a radi-

ally directed dipole source in the equation of momentum, HZK13 introduces a source

that is random in time and horizontal space in the equation of continuity to mimic

the excitation of acoustic perturbations; HLD06 resolves spherical harmonic degrees

from 20 to 255, HZK13 resolves spherical harmonic degrees from 0 to 170. For further

details on each of these implementations, especially the computational aspects, the

reader is referred to Hanasoge et al. (2006), Hanasoge and Duvall (2007), Hartlep

et al. (2008), and Hartlep et al. (2013).

3.2 Ray-Theoretic Analysis and Results

In order to characterize the ray-theoretic travel-time shifts, it is necessary to check

the sensitivity of the computed values to changes in time-distance geometry, rele-

vant parameters (e.g., acoustic cut-off frequency, Brunt-Väisälä frequency) or back-

ground states (e.g., background solar model, meridional flow model). In the following,

the deep-focus time-distance geometry, the meridional flow model, seismic parame-

ters such as the acoustic cut-off frequency and the Brunt-Väisälä frequency, and the

background solar model are varied to determine the ramifications for ray-theoretic

travel-time shifts.

The ray-theoretic travel-time shift due to flow velocity v is discussed in Section
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2.2.5, and Equation (2.18) is reproduced here for the reader’s convenience:

δτ = −2

∫

Γ0

v · n̂
c2

ds, (3.1)

where c is the sound speed, Γ0 is the unperturbed (absence of flow) ray path, n̂

is a unit vector tangent to the ray path, and s is the distance along the ray. The

ray generation and integrations along the ray path in spherical geometry to com-

pute travel-time shifts are performed using code developed and discussed by Giles

(2000). This code was extended by T. L. Duvall, Jr. to integrate ray paths in quad-

rant/annulus surface-focus/deep-focus geometries for three-dimensional flow models

and sound-speed perturbation models. The code is further extended by the author

to include various definitions of acoustic cut-off frequency, different background solar

models, and generating and integrating ray paths in Cartesian geometry.

3.2.1 Meridional Flow Model

Three different meridional flow models are chosen for differences in flow structure,

such as, flow velocity gradients, double-cell vs. single-cell structure, to study the

effect of these structural differences on travel-time shifts. These models are depicted

in Figures 3.2–3.4 with the maximum flow speed adjusted to 15 m/s. The flow model

in Figure 3.2 is a single-cell meridional flow resulting from the combined mean-field

hydrodynamic and dynamo equations in Rempel (2006) (henceforth R06). The model

in Figure 3.3 is another single-cell meridional flow model generated using Equations

(58–61) in van Ballegooijen and Choudhuri (1988) (henceforth BC88). Figure 3.4

shows a radial double-cell meridional flow model generated using the stream function

given in Section 3.2.1 of Jouve and Brun (2007) (henceforth JB07). Both the single-

cell models have the stagnation point at about 0.8R⊙. The double-cell model has the

shallower stagnation point at about 0.91R⊙, and the deeper one at about 0.72R⊙.

Ray-theoretic computations of travel-time shifts on these meridional flow mod-

els are carried out with the common-midpoint deep-focusing technique, using the

isothermal acoustic cut-off frequency (cf. Section 2.1.2 or 3.2.3) and Model S as

the background solar model. The results of these computations, the north-south or

meridional travel-time shifts (δτns), are shown as a function of focal depth (r/R⊙) at

45◦S latitude in Figure 3.5.
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Figure 3.2: Left: Single-cell meridional flow model (R06) resulting from combined
mean-field hydrodynamic and dynamo equations in Rempel (2006). Blue dashed
line marks the base of the convection zone. Right: Colatitudinal (vθ) and radial (vr)
components of meridional flow in left panel at select latitudes (30◦S: blue; 10◦S: green;
45◦N: red) and radii (0.7R: blue; 0.8R: green; 0.99R: red) as functions of depth (r/R,
R = R⊙) and latitude. The maximum flow speed is set to 15 m/s.
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Figure 3.3: Left: Single-cell meridional flow model (BC88) generated using Equations
(58–61) in van Ballegooijen and Choudhuri (1988). Blue dashed line marks the base
of the convection zone. Right: Colatitudinal (vθ) and radial (vr) components of
meridional flow in left panel at select latitudes (30◦S: blue; 10◦S: green; 45◦N: red)
and radii (0.7R: blue; 0.8R: green; 0.99R: red) as functions of depth (r/R, R = R⊙)
and latitude. The maximum flow speed is set to 15 m/s.
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Figure 3.4: Left: Double-cell (in radius) meridional flow model (JB07) generated
using the stream function given in Section 3.2.1 of Jouve and Brun (2007). Right:
Colatitudinal (vθ) and radial (vr) components of meridional flow in left panel at select
latitudes (30◦S: blue; 10◦S: green; 45◦N: red) and radii (0.7R: blue; 0.8R: green;
0.99R: red) as functions of depth and latitude. Max. flow speed is set to 15 m/s.
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Figure 3.5: Ray-theoretic meridional travel-time shift (δτns), in seconds, as a func-
tion of focal depth (r/Rsun) at 45◦S latitude, computed with the common-midpoint
geometry. Ray paths are computed using the isothermal acoustic cut-off frequency
(ωac = c/2Hp) and background solar Model S for different meridional flow models
(max. flow speed = 13.5 m/s): single-cell R06 (red circles); single-cell BC88 (green
squares); radial double-cell JB07 (blue diamonds).
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3.2.2 Deep-Focus Geometry

The deep-focus geometry used in this work is discussed in Section 2.2.3. Various ge-

ometries are tested in the ray approximation: common-midpoint deep-focus, 3-pairs

deep-focus, 5-pairs deep-focus, 9-pairs deep-focus, and 19-pairs deep-focus. The ray

paths are calculated using the isothermal acoustic cut-off frequency and the back-

ground Model S, with the Brunt-Väisälä frequency set to zero in the dispersion equa-

tion used to generate the ray paths. The results of the meridional travel-time shift

calculations for the various deep-focus geometries are shown in Figure 3.6.

Figure 3.6: Ray-theoretic meridional travel-time shift (δτns) as a function of focal
depth (r/Rsun) for single-cell R06 flow model (max. flow speed = 13.5 m/s) at 45◦S
latitude. Ray paths are computed using the isothermal acoustic cut-off frequency
(ωac = c/2Hp) and the background Model S, with the Brunt-Väisälä frequency set to
zero, for different quadrant geometries: common-midpoint (green circle); 3-pairs deep-
focus (blue plus); 5-pairs deep-focus (red square); 9-pairs deep-focus (black diamond);
19-pairs deep-focus (cyan triangle). Inset expands the near-surface region.
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3.2.3 Acoustic Cut-off Frequency

The acoustic cut-off frequency in near-surface layers of the convection zone determines

the upper reflective boundary of the solar acoustic waves. The expression for this

quantity depends on the background solar model and the oscillation equations. In

this work the more common expressions for the acoustic cut-off frequency are used

(e.g., Deubner and Gough, 1984; Aerts et al., 2010), and although this is discussed in

Section 2.1.2, the formulas are reproduced here for the reader’s convenience.

The generalized acoustic cut-off frequency is given by

ω2
ac =

c2

4H2

(

1 − 2
dH

dr

)

, (3.2)

where H is the density scale height:

H−1 = −d ln ρ

dr
. (3.3)

In the case of an isothermal atmosphere H = Hp is constant, where Hp is the pressure

scale height defined as

H−1
p = −d ln p

dr
, (3.4)

and the generalized acoustic cut-off frequency reduces to the isothermal acoustic cut-

off frequency:

ωac =
c

2Hp

. (3.5)

To show the relevance of the acoustic cut-off frequency, the local dispersion equa-

tion used in the computation of ray paths is reproduced here (e.g., Deubner and

Gough, 1984; Gough, 1993; D’Silva and Duvall, 1995):

k2
r =

1

c2
(ω2 − ω2

ac) − k2
h

(

1 − N2

ω2

)

, (3.6)

where kr is the radial wavenumber, kh =
√

l(l + 1)/r is the horizontal wavenumber

with the spherical harmonic degree l, and N is the Brunt-Väisälä frequency given by

(e.g., D’Silva and Duvall, 1995; Giles, 2000; Aerts et al., 2010)

N2 = g

(

1

Γ1

d ln p

dr
− d ln ρ

dr

)

, (3.7)
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where Γ1 = (∂ ln p/∂ ln ρ)s is the adiabatic index, the derivative taken at constant

specific entropy s, and g is the acceleration due to gravity.

The effect of using the different cut-off frequencies for ray path computation on

the meridional travel-time shifts is examined in Figure 3.7. Background Model S is

used to calculate the ray paths, and the travel-time shifts are computed with the

common-midpoint geometry.

Figure 3.7: Ray-theoretic meridional travel-time shift (δt), in seconds, as a function
of focal depth (r/Rsun) for single-cell R06 flow model (max. flow speed = 13.5 m/s)
at 45◦S latitude, computed with the common-midpoint geometry. Ray paths are
computed using the background Model S for different definitions of the acoustic cut-
off frequencies: isothermal acoustic cut-off frequency (ωac = c/2Hp; blue curve), and

generalized acoustic cut-off frequency (ωac = c/2H
√

1 − 2dH/dr; red curve). The
bump in the red curve (see inset) is due to a subtle change in dρ/dr at the base of
the convection zone in Model S affecting the dH/dr ∝ (d2ρ/dr2)ρ− 3(dρ/dr)−2 term
in ωac.
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3.2.4 Convective Stability

As discussed in Section 3.1, the different simulation codes have different approaches to

ensuring convective stability. Both implementations use Model S as the background

solar model for the most part. But whereas HLD06 modifies Model S in the outer

convective layers above 0.98R⊙, HZK13 sets the Brunt-Väisälä frequency to zero,

thus making the linearized Euler equations convectively stable. To make an effective

comparison between ray-theoretic travel-time shifts of the flow models and time-

distance measurement of travel-time shifts of the HLD06 and HZK13 simulations,

Figure 3.8: Ray-theoretic meridional travel-time shift (δτns) as a function of focal
depth (r/Rsun) for single-cell R06 flow (max. flow speed = 13.5 m/s) at 45◦S latitude,
computed with the common-midpoint geometry. Ray paths are computed using the
isothermal acoustic cut-off frequency for different cases: Model S (blue diamond);
HLD06 (red square) where Model S is modified in the outer convective layers (above
0.98R⊙); HZK13 (green circle) where the Brunt-Väisälä frequency is set to zero in the
dispersion equation used to calculate the ray paths. Inset expands the near-surface
region.
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these modifications need to be incorporated into the computation of ray paths.

The relevance of the Brunt-Väisälä frequency (N) can be seen in Equation (3.6)

which is the local dispersion relation determining the ray paths. The impact on the

meridional travel-time shifts due to the modification of the background solar model

in the case of HLD06, and of the dispersion relation in the case of HZK13 are shown

and compared to the regular case (N 6= 0) with Model S as the background model,

for the single-cell R06 meridional flow and the double-cell JB07 meridional flow, in

Figures 3.8 and 3.9 respectively. The ray paths are computed using the isothermal

cut-off frequency and the travel-time shifts are computed with the common-midpoint

geometry.

Figure 3.9: Ray-theoretic meridional travel-time shift (δτns) as a function of focal
depth for double-cell JB07 flow model (max. flow speed = 13.5 m/s) at 45◦S lati-
tude, computed with the common-midpoint geometry. Ray paths are computed using
the isothermal acoustic cut-off frequency for: Model S (blue diamond); HLD06 (red
square) ; HZK13 (green circle). Inset expands the near-surface region.
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3.2.5 Discussion

The ray-theoretic north-south travel-time shifts for the different meridional flow mod-

els (Figure 3.5) show certain distinctive features in relation to flow velocity gradients

and stagnation depths. The higher flow gradient of single-cell BC88 flow model com-

pared to the single-cell R06 flow model results in a lower travel-time shift in the former

in the bulk of the convection zone, even though the maximum flow velocity at the

surface is the same for both models. This makes sense in the light of Equation (3.1),

since the flow velocity is integrated along the ray path, and the smaller velocities

make smaller contributions to the net travel-time shift. The meridional travel-time

shift due to the double-cell JB07 flow model exhibits a sharper decline than both the

single-cell models due to the shallower stagnation point. However, the near-surface

travel-time shift is in between the single-cell travel-time shifts, since the JB07 flow

model has a near-surface flow velocity gradient that is also in between those of both

the single-cell models. In this connection Figure 3.10 represents work done by the

author in the early stages of his research work, where the depth of the single-cell

Figure 3.10: Ray-theoretic meridional travel-time shift (δt) at 45◦S latitude as a
function of skip distance (∆), computed with common-midpoint geometry for various
total depths (indicated in the legend), or alternatively stagnation depths, of the single-
cell BC88 meridional flow model. Ray paths are computed using the isothermal
acoustic cut-off frequency and background Model S.
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BC88 flow model is varied to examine the corresponding change in the travel-time

shift. The travel-time shifts are plotted as a function of skip distance (∆) which has

a nearly linear relationship with the focal depth (≈ ∆/π, measured from the surface;

cf. Giles et al., 1997, also discussed in Section 2.2.2) of a single-skip ray path in the

bulk of the convection zone. Thus the skip distance may be used as a proxy for focal

depth in the convection zone, the smaller skip-distances denoting smaller depths, etc.

Evidently, the shallower the stagnation depth, the steeper the decline in the merid-

ional travel-time shift. This is, potentially, an important diagnostic for determining

the structure of meridional flow.

Figure 3.6 shows a steady decrease in the travel-time shift values with the inclu-

sion of more rays intersecting the focal depth (which amounts to the same thing as

including more pairs of arcs). This is due to the fact that the larger ray paths expe-

rience smaller travel-time shifts, and the net travel-time shift for the full deep-focus

geometry is calculated by averaging the travel-time shifts for all the ray paths con-

stituting the deep-focus geometry. This causes the mean travel-time shift to reduce

in value for a particular focal depth as longer ray paths intersecting the focal depth

are included.

Figure 3.7 suggests that substituting the generalized acoustic cut-off frequency for

the isothermal acoustic cut-off makes a significant difference only at the surface and

the base of the convection zone, since these are the locations where these quantities

significantly differ from each other. For the bulk of the convection zone, it makes

little difference to the computation of ray paths. In fact, Jefferies et al. (1994) sug-

gested that due to the derivatives present in Equation (3.2), the generalized cut-off

frequency exhibits rapid variation near the surface, and since the JWKB approxima-

tion necessary for ray theory loses validity where the underlying equilibrium state

varies rapidly in depth, a simpler expression for the acoustic cut-off frequency is the

preferred option for calculating acoustic travel times. It was, however, brought to

the author’s attention independently by A. G. Kosovichev and K. V. Parchevsky

(private communication) that the expression for the cut-off frequency derived from

the HZK13 linearized Euler equations is different from the conventional ones—this

is the mathematical reason behind the lower acoustic cut-off frequency mentioned in

Section 3.1 and visible in Figure 3.1. It is unknown how the inclusion of the HZK13

cut-off frequency will alter the ray-theoretic results.

The generalized cut-off frequency also exhibits strange behavior near the base of
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the convection zone due to the presence of an inflection point in the density gradi-

ent there in solar Model S, which causes d2ρ/dr2 included in the expression for the

generalized cut-off frequency to exhibit a bump, thus affecting the ray paths and the

associated travel-time shifts in funny ways as displayed in the inset in Figure 3.7.

Finally, incorporating the HLD06 and HZK13 convective stability modifications

into the ray-theoretic computations result in non-negligible changes (compared to the

discrepancies and error bars in Figures 3.15–3.17) in the convection zone (cf. Figures

3.8 and 3.9). The Model S and HZK13 results are very similar. Care must especially

be taken when dealing with predominantly surface phenomena, e.g., possibly super-

granulation. Figure 3.111 shows the remarkable agreement achieved between HLD06

simulation and ray-theory due to the incorporation of the HLD06 convectively stable

1Figure 3.11 is reprinted with kind permission from Springer Science and Business Media: Solar
Physics, Duvall and Hanasoge (2013), and Duvall et al. (2014).

Figure 3.11: Comparison of center-annulus travel-time shifts (δtoi) computed from the
HLD06 simulation with embedded flow perturbations (blue circles) with ray-theoretic
travel-time shifts with the same flow perturbations (red line). The flow perturbation
consists of Gaussian features with vertical flow (peak flow = 6.3 m/s) centered at
a depth of z0 = 2.30 Mm with σz = 0.82 Mm and with horizontal σh = 5.1 Mm.
500 of these features are placed at random locations at depth z0. Top (Duvall and
Hanasoge, 2013): Ray theory with background solar model, Model S; Bottom (Duvall
et al., 2014): Ray theory with convectively stable background model HLD06.



3.3. TIME-DISTANCE ANALYSIS AND RESULTS 55

background model in the ray-theoretic computations (cf. Duvall and Hanasoge, 2013;

Duvall et al., 2014). This was made possible due to the extension of the existing

ray-path generation code by the author, to include the HLD06 convectively stable

background model. The embedded flow perturbation in this case was 500 randomly

located Gaussian features with vertical flow centered at a depth of z0 = 2.30 Mm

with σz = 0.82 Mm and with horizontal σh = 5.1 Mm, all of them located at a depth

of z0 = 2.30 Mm. In this case the modification of the background solar model mat-

tered for the ray-theoretic computations because the phenomena of interest lay in the

region where the stability modifications were made (above 0.98R⊙).

3.3 Time-Distance Analysis and Results

The meridional flow models (R06, BC88, JB07) discussed in Section 3.2.1 are in-

terpolated to the HLD06 and HZK13 simulator grids and then incorporated into the

respective simulators as the background flow (no rotation or zonal flow was included).

To improve the signal-to-noise ratio of the travel-time shift measurements, and to re-

duce the simulation run time, T. L. Duvall, Jr. (private communication) suggested

that the meridional flow speed amplitude should be amplified while staying within

the linear regime of low Mach number, i.e., vθ/c ≪ 1. Following his suggestion, the

maximum (surface) flow speed of all the models embedded into the simulators is am-

plified to 500 m/s. Due to the linear relationship between the travel-time shift and

the flow velocity (cf. Equation (3.1)), the computed travel-time shifts can be simply

scaled down to represent more realistic meridional flow speeds.

The resulting simulation data extends over all longitudes and latitudes on 768×384

and 512 × 256 grid points for the HLD06 and HZK13 case, respectively. The dat-

acubes obtained are images of radial velocity (approximating line-of-sight projection

of oscillatory motion) of various temporal extent, ranging from 9–20 hours, depend-

ing on simulation run time. These simulation datacubes are phase-speed filtered as

described in Section 2.2.1. Subsequently, the datacubes are analyzed with the deep-

focus time-distance technique to obtain north-south or meridional travel-time shifts

which, after being scaled down to reflect a more realistic flow speed amplitude of

13.5 m/s, are compared with ray-theoretic travel-time shifts due to meridional flow

with the same amplitude. In the following sections, various deep-focus geometries

are investigated and different meridional flow models are analyzed, in an effort to
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formulate a robust forward modeling procedure and to determine the efficacy of ray

theory as a model for interpreting travel-time shifts computed by the time-distance

technique. All the basic time-distance subroutines used in this part of the analysis

were developed by T. L. Duvall, Jr. The author’s original contribution lay in com-

bining and applying these subroutines to make the first full deep-focus time-distance

measurements of meridional flow induced travel-time shifts on phase-speed filtered

simulated (and solar; cf. Chapter 4) velocity data, at depth ranges equivalent to the

solar convection zone.

3.3.1 Common-Midpoint vs. Full Deep-Focus Technique

Various deep-focus time-distance techniques (common-midpoint, 5-pairs, 9-pairs) are

applied on 19 hours of phase-speed filtered (cf. Section 2.2.1) HZK13 simulation

data with embedded single-cell R06 meridional flow. For all latitude-longitude map-

points (except the ones near the perimeter of the image made inaccessible due to the

spatial extent of the deep-focus geometry), temporal cross-covariances are calculated

175 minutes forward and backward in time lag, for diametrically opposite pixels of

the appropriate arcs within the north-south quadrants as described in Section 2.2.3.

Then the cross-covariances are averaged over the quadrant and over the pairs of arcs,

also as discussed in Section 2.2.3.

In order to obtain error bars the datacube is divided into five equal longitudinal

strips of 72◦ in width. The cross-covariances are averaged over each of the longitudinal

strips and then fit with the Gabor-wavelet function (Section 2.2.4) given by

G±(τ) = A cos[ω0(τ − τ±)] exp

[

−δω
2

4
(τ − τg)

2

]

, (3.8)

to obtain the phase travel time where the cross-covariance function peaks, in both the

positive and negative time-lag branches (τ±) . The difference between the travel times

(δτns = τ+ − τ−) so obtained is the north-south travel-time shift (distinct from and

yet equated to the ray-theoretic north-south travel-time shift) due to meridional flow.

The travel-time shifts obtained from each longitudinal strip are then combined to

obtain the mean north-south travel-time shift and the standard error of the mean. No

further averaging is done over depth or latitude. The resulting meridional travel-time

shifts as a function of latitude and the associated error bars for the common-midpoint,

5-pairs, and 9-pairs geometry are shown in Figures 3.12, 3.13 and 3.14 respectively.
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Figure 3.12: Meridional travel-time shift (δτns) (scaled down to reflect max. flow
speed of 13.5 m/s), as a function of latitude at various focal depths: 0.94R (black),
0.90R (blue), 0.80R (magenta), 0.70R (red), where R = R⊙ = Rsun. Common-
midpoint technique is applied on 19 hours of phase-speed filtered HZK13 simulation
data with embedded single-cell R06 flow model. Error bars show excursions of twice
the standard error of the mean.

Figure 3.13: Same as in Figure 3.12 except 5-pairs deep-focus technique is applied.
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Figure 3.14: Same as in Figure 3.12 except 9-pairs deep-focus technique is applied.

3.3.2 Meridional Travel-Time Shifts

The three flows models (R06, BC88, JB07) are embedded in the HLD06 and HZK13

simulators (the HZK13 simulator was not available for the BC88 flow model) to pro-

duce datacubes of various durations depending on simulation run time (HLD06/R06:

9 hours; HZK13/R06: 19 hours; HLD06/BC88: 15 hours; HLD06/JB07: 16 hours;

HZK13/JB07: 20 hours). The datacubes are time-distance analyzed (cf. Section

3.3.1). Realization noise due to source excitations is removed (except for HZK13/R06

simulation) by simulating without flow perturbation, but with the same source exci-

tations, and then subtracting the resultant north-south travel-time shifts to obtain

noise-corrected results (Hanasoge et al., 2007). Time-distance analysis to obtain

travel-time shifts from the “quiet” simulations is carried out for exactly the same

time intervals as their flow-embedded counterparts and following the exact same pro-

cedure. Since the simulations are slightly asymmetric in the northern and southern

hemispheres, the travel-time shifts for each latitude in the northern and southern

hemispheres are averaged. The north and south averaged travel-time shift is plotted

as a function of focal depth at select latitudes in Figures 3.15 (HLD06+HZK13/R06),

3.16 (HLD06/BC88) and 3.17 (HLD06+HZK13/JB07), along with the ray-theoretic

(Model S, convectively stable HZK13 and HLD06) travel-time shift.
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Figure 3.15: Meridional travel-time shift (δτ), in seconds (scaled down to reflect max.
flow speed of 13.5 m/s), as a function of focal depth (r/Rsun), calculated using 5-pairs
deep-focus geometry at 30◦ (top panel) and 45◦ (bottom panel) latitudes (N and S
averaged) for the single-cell R06 meridional flow model. Each panel shows time-
distance results for HLD06 (red squares), HZK13 (blue squares) simulation data, and
ray-theoretic travel-time shifts (Model S: black; HZK13: magenta; HLD06: green
crosses). Realization noise is subtracted from HLD06 simulation only. Error bars
show excursions of twice the standard error of the mean.
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Figure 3.16: Meridional travel-time shift (δτ), in seconds (scaled down to reflect max.
flow speed of 13.5 m/s), as a function of focal depth (r/Rsun), calculated using 5-pairs
deep-focus geometry at 30◦ (top panel) and 45◦ (bottom panel) latitudes (N and S
averaged) for the single-cell BC88 meridional flow model. Each panel shows time-
distance results for HLD06 simulation data (red squares) and ray-theoretic travel-
time shifts (Model S: black; HZK13: magenta; HLD06: green crosses). Realization
noise is subtracted from HLD06 simulation data. HZK13 simulator was not available
for this case. Error bars show excursions of twice the standard error of the mean.
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Figure 3.17: Meridional travel-time shift (δτ), in seconds (scaled down to reflect max.
flow speed of 13.5 m/s), as a function of focal depth (r/Rsun), calculated using 5-pairs
deep-focus geometry at 30◦ (top panel) and 45◦ (bottom panel) latitudes (N and S
averaged) for the double-cell JB07 meridional flow model. Each panel shows time-
distance results for HLD06 (red squares), HZK13 (blue squares) simulation data, and
ray-theoretic travel-time shifts (Model S: black; HZK13: magenta; HLD06: green
crosses). Realization noise is subtracted from simulation data. Error bars show
excursions of twice the standard error of the mean.
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3.3.3 Discussion

Time-distance computations with different deep-focus techniques (cf. Figures 3.12–

3.14) indicate that including more pairs of arcs in the computations result in a cleaner

travel-time shift signal at all focal depths. However, the cleaner signal comes at the

expense of greater computation time, and also loss of information at higher latitudes

due to the utilization of more of the image space to calculate the cross-covariance

function. So a trade-off must be made between improved signal-to-noise ratio on

the one hand, and both computational expense and loss of information on the other.

In the case considered in this work, while 5-pairs deep-focus technique considerably

improves the signal compared to the common-midpoint deep-focus case, 9-pairs deep-

focus technique does not improve upon the result of the 5-pairs deep-focus case enough

to warrant the higher computational expense and the loss of information at the higher

latitudes.

The relatively low value of the north-south travel-time shift of the HZK13 simu-

lation at 0.98R⊙ in Figures 3.15 and 3.17 is due to the lower resolution of the HZK13

simulation grid (0.703125◦ × 0.703125◦, as opposed to 0.46875◦ × 0.48675◦ for the

HLD06 simulator), and therefore unreliable. Other than that, the results shown in

Figures 3.15–3.17 are not very well understood, especially in the unfortunate ab-

sence of HZK13 simulation data with single-cell BC88 meridional flow. While there

is qualitative agreement between ray theory, the HLD06 simulation and the HZK13

simulation, quantitative agreement varies with the meridional flow model.

The applicability of ray theory to time-distance helioseismology has been called

into question where the spatial variation of the perturbation is comparable to the

acoustic wavelength (Bogdan, 1997), and this is certainly the case for the meridional

flow models under consideration, in certain parts of the convection zone. Why then

is there such remarkable agreement in Figure 3.15 between the ray-theoretic travel-

time shifts and the time-distance computation of travel-time shifts from HLD06 and

HZK13 simulation data in the deep convection zone? What is special about the R06

meridional flow model? Could this be a fluke? A comparison of the flow velocity scale

heights (e.g., −(∂ ln vθ/∂r)
−1) with the acoustic wavelength did not reveal anything

distinctive about any of the meridional flow models. Given the result in Figure 3.15,

it is baffling as to why there is such substantial disagreement for the double-cell JB07

meridional flow model (Figure 3.17), between the HZK13 and HLD06 simulations

and ray theory. One possible reason is the greater complexity of the double-cell
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meridional flow. There may be issues such as ray theory not being sensitive to the

increased vorticity present in the more complex meridional flows. However, without

the HZK13 simulation with the single-cell BC88 meridional flow it is not possible

to argue either for or against that reason. Also, this is certainly not the case with

the HLD06 simulation as reflected in Figures 3.16 and 3.17 which shows roughly the

same deviation from ray theory. Another possibility is that the different approaches to

convective stability resulting in very different power spectra for the two simulations,

give rise to quantitative differences in the perturbations to the acoustic modes and

wavefields due to the meridional flow. This avenue is worth exploring in some detail.

Some preliminary work on frequency filtering the power spectra of the simulation data

did not yield any useful insights as either the travel-time shifts remain unchanged, or

become too noisy due to insufficient power in the modes.

At this point the author concludes that without an in-depth analysis of the dif-

ferential equations involved in the modeling and comparing them term by term, and

that without an examination of the computational aspects of each of the simulators, a

firm conclusion is unattainable. These theoretical and computational pursuits, though

undoubtedly stimulating, are beyond the scope of this dissertation. Thus, without

a robust forward model the reliability of time-distance helioseismic measurements of

meridional flow in the deep convection zone cannot be adequately established. A

weak case may, however, be made that if the uncertainties in the solar measurements

exceed the discrepancies (≈ 100 ms), for all practical purposes, the discrepancies may

be considered academic. Nevertheless, it is encouraging to see in Figures 3.15–3.17

that the different convective stabilization procedures adopted in ray theory produce

results that are in closer agreement (albeit slight) with the respective convectively

stable simulation data. Perhaps the inclusion of the appropriate acoustic cut-off fre-

quencies in ray theory as discussed in Section 3.2.5 will yield more consistent results,

at least between ray theory and time-distance analysis of simulations.



Chapter 4

Computing Travel Times with

HMI Data

In order to achieve the goal of determining the structure of meridional circulation in

the solar convection zone, the techniques developed and discussed in this dissertation

thus far, need to move beyond simplistic toy problems to real-life scenarios, i.e., solar

data. Solar data or images, unlike simulated data discussed in Chapter 3, are not

created with equations implemented in numerical algorithms. Instead, real image-

data are acquired by sophisticated instruments on ground or in space, and then

subjected to a chain of processing algorithms (the data pipeline) that convert the

raw images into usable data products that are analyzable by specific methods, in this

case, time-distance helioseismology. The data product depends on the needs of the

end user who may obtain it at various stages of the data pipeline. For instance, in this

work the author uses the time series of spherical harmonic coefficients obtained from

the spherical harmonic decomposition algorithm of the HMI global helioseismology

pipeline (cf. Sections 4.1–4.2; also Larson and Schou, 2011).

The techniques developed and the forward models validated while addressing toy

problems are intended for application to the results of time-distance analysis of solar

velocity data; to derive sensitivity kernels which can be used in inverse problems

to infer the physical quantities of interest (e.g., meridional flow velocity). However,

there are systematic errors (e.g., the “center-to-limb” effect) that need to be taken

into account in the modeling for accurate interpretation and inversion of the time-

distance measurements or travel times. In this dissertation the author stops short

64
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of inverting the travel times, and instead focuses on characterizing the “center-to-

limb” effect (Zhao et al., 2012, 2013) which has hampered adequate interpretation of

travel times obtained from solar images. Section 4.3 outlines a method to confirm or

disconfirm the interpretation of the “center-to-limb” effect put forward by Baldner

and Schou (2012).

4.1 Helioseismic and Magnetic Imager

A detailed treatment of the Helioseismic and Magnetic Imager (HMI) instrument and

investigation may be obtained from Scherrer et al. (2012), Schou et al. (2012) and the

references therein. A brief introduction and overview is provided for completeness’

sake, since the Dopplergrams provided by the HMI instrument are the author’s pri-

mary means of investigating travel times due to meridional flow in the solar convection

zone, with possible contamination by systematic errors, such as the finite light travel

time effect (Duvall and Hanasoge, 2009), and the more recently published “center-

to-limb” effect, and other yet undiscovered anomalies. In Section 4.3 the author uses

longitude-latitude velocity images that are partial (up to spherical harmonic degree

of l = 300) spherical harmonic reconstructions of remapped HMI Dopplergrams, to

examine the logical and physical consequences of a “true” center-to-limb effect.

4.1.1 Introduction

The Helioseismic and Magnetic Imager (HMI) investigation (Scherrer et al., 2012;

Schou et al., 2012) is part of the 5-year NASA Solar Dynamics Observatory (SDO)

mission—the first space-based mission of the NASA Living With a Star (LWS) pro-

gram. The HMI investigation is jointly conducted by the W. W. Hansen Experimental

Physics Laboratory (HEPL) at Stanford University, the Lockheed Martin Solar and

Astrophysics Laboratory (LMSAL), the High Altitude Observatory (HAO), and oth-

ers. The HMI instrument was developed and built by LMSAL in collaboration with

Stanford University as part of the Stanford Lockheed Institute for Space Research

(SLSIR). It is one of the instruments aboard the SDO spacecraft that was launched

on February 11, 2010 and placed in geosynchronous orbit at an altitude of 36,000 km.
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Figure 4.1: Left: HMI Optics Package; Right: Cartoon of SDO spacecraft with the
HMI instrument. Courtesy: SDO/HMI Team.

The objective of SDO is to make advances in our ability to understand and pre-

dict solar events that influence the near-terrestrial space environment. The cyclic

emergence and evolution of active magnetic regions on the solar photosphere drive

the solar variability that induces phenomena significant for the terrestrial space envi-

ronment. According to the abstract in Scherrer et al. (2012) the HMI instrument “is

designed to study convection-zone dynamics and the solar dynamo, the origin and evo-

lution of sunspots, active regions, and complexes of activity, the sources and drivers

of solar magnetic activity and disturbances, links between the internal processes and

dynamics of the corona and heliosphere, and precursors of solar disturbances for

space-weather forecasts.” As part of investigating the convection-zone dynamics and

the solar dynamo, Scherrer et al. (2012) emphasized that

Precise knowledge of meridional circulation in the convection zone is cru-
cial for understanding the long-term variability of the Sun...To understand
the global dynamics we must follow the evolution of the flow. HMI will en-
able the measurement of the meridional circulation to significantly higher
latitudes...and will generate continuous data for detailed, 3D maps of the
evolving patterns of meridional circulation providing information about
how flows transport and interact with magnetic fields throughout the so-
lar cycle.

Scherrer et al. (2012) also wrote:

To support these objectives...[t]he HMI instrument makes measurements
[in the Fe I absorption line centered at wavelength 6173 Å] of the motion
of the solar photosphere to study solar oscillations and measurements of
the polarization in a spectral line to study all components of the photo-
spheric magnetic field. The HMI instrument is an enhanced version of the
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Michelson Doppler Imager (MDI) instrument which is part of the Solar
and Heliospheric Observatory (SOHO: Scherrer et al., 1995). HMI has sig-
nificant heritage from MDI with modifications to allow higher resolution,
higher cadence, and the addition of a second camera to provide additional
polarization measurements without interfering with the filtergram cadence
needed for helioseismology.

4.1.2 HMI Instrument1

As described in Schou et al. (2012) “[t]he [HMI] instrument consists of a front-window

filter, a telescope, a set of waveplates for polarimetry, an image-stabilization system,

a blocking filter, a five-stage Lyot filter with one tunable element, two wide-field

tunable Michelson interferometers, a pair of 40962 pixel cameras with independent

shutters, and associated electronics. Each camera takes a full-disk image roughly

every 3.75 seconds” which according to Scherrer et al. (2012) allows HMI to provide

“stabilized one-arcsecond resolution full-disk Doppler velocity, line-of-sight magnetic

flux, and continuum proxy images every 45 seconds...The solar image nearly fills the

4096 × 4096 pixel CCD camera allowing 0.5 arcsecond per pixel.”

The HMI Optics Package (cf. Figures 4.1 and 4.2) in brief (Schou et al., 2012):

The front window is a 50 Å FWHM bandpass filter, the main purpose of which is to

limit the heat input to the instrument. The main telescope is a two-element refracting

telescope with a 140 mm clear aperture, giving an image with a nominal diffraction

limit (λ/D) of 0.91 arcsecond. For the purpose of polarimetry, the polarization se-

lectors rotate two of the three available quartz waveplates to convert the desired

incoming polarization into a fixed linear polarization. The HMI image-stabilization

system is a closed-loop system with a tip-tilt mirror to remove jitter measured at a

primary image within HMI. The blocking filter is a three-period, all-dielectric, inter-

ference filter with a FWHM bandpass of 8 Å; its purpose is to reject the unwanted

orders of the Lyot and Michelson filters, and to limit the heat input. The wide-field,

temperature-compensated Lyot filter adds a fifth tuned element to the four-element

MDI design (Scherrer et al., 1995) in order to accommodate the wide range in ra-

dial velocity due to the geosynchronous orbit of SDO. The two wide-field, tunable,

solid Michelson interferometers have clear apertures of 32 mm, and 172 mÅ and 86

1Figures 4.2 and 4.3 are reprinted with kind permission from Springer Science and Business
Media: Solar Physics, Schou et al. (2012).
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Figure 4.2: Schematic of the HMI optical layout with the various optical elements
labeled, some of which are described in the text. Courtesy: Schou et al. (2012).

Figure 4.3: Six wavelength tuning positions are shown in different colors with respect
to the Fe I solar absorption spectral line (black line) at disk center and at rest.
Courtesy: Schou et al. (2012).
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mÅ FWHM pass bands, respectively; tuning is accomplished by rotating a combina-

tion of a half-wave plate, a polarizer, and a half-wave plate. Thus, the HMI filter

system consists of the front window, a blocking filter, a Lyot filter with a single tun-

able element, and two tunable Michelson interferometers. The filter system enables

narrow-band filtergrams to be made across the Fe I 6173 Å spectral line (Figure 4.3)

by the simultaneous tuning of the Lyot filter and the two Michelson interferometers.

The filter system has a combined FWHM bandpass of 76 mÅ with a tunable range

of 690 mÅ. HMI contains two identical CCD detectors, with a 40962 (12 µm) pixel

format. During operation, a programmable number of CCD rows are first shifted

rapidly to eliminate any accumulated charge, the shifting is halted while the shutter

is opened, and the CCD is read out at a rate of 2 Mpixels/s.

A separate HMI Electronics Box (cf. Figure 4.1) contains the power supplies,

control electronics, and data-processing electronics. The data from the CCDs are

downlinked without any processing other than hardware compression and encoding

carried out within the electronics box. All of the images are downlinked for processing

at the Joint Science Operations Center (JSOC) at Stanford University.

4.1.3 HMI Data Products2

The basic science observables (cf. Figure 4.4) are full-disk Doppler velocity (Doppler-

grams), Fe I line width, line depth, continuum intensity (intensitygrams), line-of-sight

magnetic flux (magnetograms), and vector magnetic field (vector magnetograms).

The line-of-sight observables (Couvidat et al., 2012) are available at full spatial res-

olution at 45-second cadence, and are computed on the ground using 12 filtergrams:

images taken at 6 different wavelengths in the Fe I 6173 Å absorption line (Fig-

ure 4.3) and 2 polarizations (left-circular and right-circular polarizations). Images

of observables sampled and averaged at various resolutions and cadences, sub-image

samples tracked with solar rotation, time series of spherical harmonic coefficients,

subsurface flow maps, farside activity maps, and other derived data products are

produced in the processing pipeline (Figure 4.4), and made available on a regular

basis or on request. The data product of interest for this work are the time series of

spherical harmonic coefficients obtained by the spherical harmonic decomposition of

Dopplergrams remapped onto a longitude-sin(latitude) grid.

2Figure 4.4 is reprinted with kind permission from Springer Science and Business Media: Solar
Physics, Scherrer et al. (2012).
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Figure 4.4: Schematic flow diagram for the HMI processing pipeline. The observables
and other data products are calculated from the filtergrams and made available to
the community. Derived higher-level data products such as full-disk velocity maps
are to be used as data for science investigations. Courtesy: Scherrer et al. (2012).

4.2 Spherical Harmonic Reconstruction

4.2.1 Introduction

The time series of spherical harmonic coefficients mentioned in Section 4.1.3 are ob-

tained as an intermediate data product of the HMI global helioseismology data anal-

ysis pipeline (cf. Figure 4.4) described in Larson and Schou (2011). The Carrington-

inclination corrected Dopplergrams are first apodized in fractional solar radius and

then remapped to a longitude-sin(latitude) grid. Subsequently, each image is decom-

posed into its spherical harmonic components of degree l and azimuthal order m.

The fact that the entire surface of the Sun is not visible, and the consequent mode

leakage and leakage matrices are of no relevance in this dissertation. Time series of

the complex spherical harmonic coefficients are constructed which are retiled into 72-

day chunks for each l and −l ≤ m ≤ l. Bad data points are identified and rejected:

images which were taken with the image-stabilization system turned off are discarded
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and a median filter is applied to reject outliers. For the purposes of detrending, dis-

continuities in the data are located, and then detrending is performed by polynomial

subtraction, followed by gapfilling using an autoregressive algorithm. Several oper-

ations are performed in the pipeline to eventually obtain mode parameters that can

be inverted for sound speed and differential rotation, but these are not relevant for

this work. The author’s work in this chapter begins with the 72-day time series of

gapfilled and detrended spherical harmonic coefficients.

There are at least three persuasive reasons for using spherical harmonic recon-

structed velocity images for time-distance analysis, the first being that the spherical

harmonic time series are readily available data products of the HMI pipeline. Sec-

ondly, low resolution images (up to spherical harmonic degree l = 300) appropriate

for the detection of meridional flow may be reconstructed without introducing ran-

dom errors due to the sub-sampling and/or smoothing of higher resolution images

(assuming that the decomposition and the subsequent reconstruction introduces neg-

ligible noise). Thirdly, phase-speed filtering the Fourier transform of the coefficients

of a suitably chosen time interval saves computation time. This feature, however,

was not implemented in this work; rather the phase-speed filtering was done after the

spherical harmonic reconstruction—an inefficiency to be eliminated in future work.

The spherical harmonic reconstruction of velocity images V (θ, φ, t) is given by

(e.g., Kholikov et al., 2014)

V (θ, φ, t) =
lmax
∑

l=0

m=l
∑

m=0

Cm
l (t)Pm

l (sin θ)eimφ, (4.1)

where Cm
l (t) is the coefficient time series, Pm

l is the associated Legendre polynomials,

θ denotes latitude, and φ longitude. The code to implement this was developed

by S. Kholikov to reconstruct velocity images from spherical harmonic time series

(Burtseva et al., 2008; Kholikov et al., 2014) produced by the GONG pipeline (Hill

et al., 2003). The author extended this code with help from S. Kholikov, T. P.

Larson, T. L. Duvall, Jr., and P. H. Scherrer to work with the spherical harmonic

time series produced by the MDI and HMI pipeline, to generate reconstructed images

in the longitude-sin(latitude) grid in addition to the longitude-latitude grid. The code

was also modified to reconstruct images that track at the constant equatorial rate in

addition to the differential rate.
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4.2.2 Reconstruction Code Validation

The spherical harmonic reconstruction code was tested on retiled 1-day coefficient

time series at 60 second cadence, that had not yet been detrended or gapfilled, gen-

erated from untracked vector-weighted medium-l MDI Dopplergrams regridded onto

longitude-sin(latitude) coordinates. The reconstruction was found to be entirely sat-

isfactory (Figure 4.5). The medium-l MDI velocity images were chosen because their

low resolution enabled the quick generation of pre-decomposition images, quick re-

construction, and easy visual inspection and comparison.
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Figure 4.5: MDI velocity images on a 593 × 398 longitude-sin(latitude) grid with
pixel size 0.3◦ × 0.005 taken at 2003.10.29 00:00:00 (left) and 2010.08.03 00:00:00
(right). Top: Input to the spherical harmonic decomposition algorithm with lmax =
600 obtained from T. P. Larson. Root mean square (RMS) velocity of available data
in the image: 109.18 m/s (left); 92.92 m/s (right). Middle: Spherical harmonic
reconstructed image with lmax = 300. RMS velocity: 108.79 m/s (left); 92.60 m/s
(right). Bottom: Residue between top and bottom images. RMS velocity: 9.09 m/s
(left); 7.75 m/s (right). The unit on the colorbar is m/s.
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4.2.3 HMI Data Reconstruction

For time-distance analysis, Carrington inclination corrected HMI data spanning May

1, 2010–March 3, 2013 is reconstructed from 1-day long spherical harmonic time

series (retiled from 72-day detrended gapfilled chunks available from the HMI global

helioseismology pipeline) up to l = 300. The images are reconstructed on a 298×298

longitude-latitude grid (pixel size: 0.6◦ × 0.6◦) at a 45 second cadence, that track at

the equatorial rotation rate. The whole data set, spanning almost 3 years, consists of

daily datacubes. The duration of a day implies an azimuthal motion of about 13.33◦

(≈ 360◦/27 days) which ensures that, with the available data at midday (middle of

the time interval) centered in the image, there is enough data in the central portion

of each image sample for robust time-distance measurements. The duration of a day

also attempts to alleviate the effects of differential rotation (there is only a 4◦ relative

azimuthal motion between the pole and the equator). A sample of a reconstructed

HMI velocity image taken at midday on May 6, 2010 is displayed in Figure 4.6.
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Figure 4.6: Sample of reconstructed HMI velocity image on a 298 × 298 longitude-
latitude grid with pixel size 0.6◦× 0.6◦ taken at midday on May 6, 2010. The unit on
the colorbar is m/s. The image is part of a datacube that is reconstructed from 1-day
long spherical harmonic time series (retiled from 72-day detrended gapfilled chunks
available from the HMI global helioseismology pipeline) up to spherical harmonic
degree l = 300. RMS velocity of available data in the image is 114.24 m/s.
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4.3 The “Center-to-Limb” Effect

For the accurate interpretation of any measurement, it is necessary to remove sys-

tematic errors from it. But this is easier said than done, as models must be found for

the systematic errors. Mathematical models without a physical basis may suffice if

the correction leads to measurements of the primary phenomenon under investigation

that are consistent with established models and/or other independent measurements.

In the absence of established models, however, the difficulty is compounded as the

problem must now be addressed on two, perhaps, multiple fronts: accounting for

the primary phenomenon, as well as the systematic errors. A physical accounting of

the systematic errors often leads to the discovery of flaws in the instrument design,

of unforeseen factors interfering with the experimental setup, of inadequacies of the

established models, and more rarely, of new phenomena. Simplifying assumptions

are routinely made, such as, the measurement can be neatly partitioned into a sig-

nal and an additive non-random “noise”. This approach has endured remarkably

well with a proven track record. Nonetheless, complexity and nonlinearity abound in

multiplicative profusion. Additionally, to err is human.

4.3.1 Background

Between 2012 and 2013 several consequential papers were published pertaining to

helioseismic measurement of meridional flow. Zhao et al. (2012) measured travel-

time shifts at near-surface layer focal depths (< 14 Mm) from four HMI observables

(Doppler velocity, continuum intensity, line-core intensity, and line depth) and the

1600 Å chromospheric data from Atmospheric Imaging Assembly (AIA) instrument

aboard SDO. Not only were there non-negligible differences in the north-south or

meridional travel-time shifts between the various observables, there was also a sig-

nificant travel-time shift signal coming from the east-west direction, even after the

removal of travel-time signals due to differential rotation (Figure 4.7). However, when

the east-west signal was subtracted from the north-south signal, the meridional travel-

time shifts computed from all the observables and instruments seemed to agree with

one another. This also resulted in a roughly 10 m/s reduction in the inferred merid-

ional flow speed, which is in closer agreement with the results obtained by magnetic

feature tracking (Hathaway and Rightmire, 2010) and surface Doppler measurements

(Ulrich, 2010). Such a broad level of agreement, at least in the near-surface layers of
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the Sun, between different observables and instruments achieved by this “correction”

seems to indicate that a mathematical means has been discovered to deal with the

systematic error that is the east-west travel-time shift signal, or what is now known

as the “center-to-limb” effect.

Figure 4.7: Top: Depth-averaged (indicated on top) curves of north-south travel-time
shift (δτns) as a function of latitude, obtained from different HMI observables (Doppler
velocity: black; continuum intensity: green; line core: red; line depth: blue). Middle:
Depth-averaged curves of west-east travel-time shift (δτwe). Bottom: Differences of
δτns and δτwe. Courtesy: Zhao et al. (2012).

This work was followed up by a paper by Baldner and Schou (2012) in which they

attempted to provide a physical basis for the correction by computing phase delays

from a complex eigenfunction extracted from a numerical simulation of convection,

and comparing them with phase shifts to theoretical eigenfunctions with an imposed

vertical flow. The idea is that under normal conditions, standing acoustic waves
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should have a constant phase with height; however, Baldner and Schou (2012) suggest

the possibility that

a phase variation arises from the large asymmetry between the upflows
and downflows in the convection near the solar surface. In particular, the
broad upflows and narrow downflows give rise to net vertical flows when
horizontally averaged over length scales much smaller than the acoustic
modes. As was shown by Gough and Hindman (2010) in the context of
meridional flows, a flow introduces a phase shift in acoustic modes—one
would expect the vertical convective flows in the Sun to introduce a phase
shift with height in the solar atmosphere.

Since the observing height near the solar limb is higher up in the atmosphere compared

to the disk center, a net vertical flow imparts an additive phase shift on the modes as

Figure 4.8: (a) Acoustic travel-time shifts (δτSN) extracted from HMI (black) and
MDI (red) data after the “center-to-limb” correction, together with δτSN calculated
with ray theory (green) from the velocity inverted from the HMI measurements. (b)
Same as (a) but without the correction. Courtesy: Zhao et al. (2013).
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a function of observing height and thus heliocentric angle. This justifies the corrective

procedure adopted in Zhao et al. (2012).

Zhao et al. (2013) used the “center-to-limb” correction to infer meridional flows

down to a radius of 0.75R⊙ using HMI and MDI data. They used ray-approximation

sensitivity kernels to invert the corrected travel-time shifts (Figure 4.8). The inversion

results are shown in Figure 1.4. A poleward flow of 15 m/s extends from the surface

to a depth of approximately 65 Mm (0.91R⊙). Below this, the flow direction turns

equatorward with a maximum speed of about 10 m/s. Farther beneath, at about

0.82R⊙ the flow once again turns poleward. This suggests at least a double-cell

structure, radially stacked, with significant hemispheric asymmetry. Later on Schad

et al. (2013) published their results on global helioseismic inferences of meridional

flow using MDI data, which seemed to indicate multi-cell meridional circulation, not

only in the radial direction, but also in the latitudinal direction (cf. Figure 1.2).

4.3.2 Constant Chord-length Geometry

In Zhao et al. (2012, 2013), the time-distance analysis is confined to a narrow strip

(15–20◦) along the central meridian or the equator (cf. Figure 4.9), and 30◦ common-

midpoint sector geometry is used to calculate δτns and δτwe, respectively. This was

done presumably to isolate the “center-to-limb” effect from contamination due to the

difference in the coordinate geometry in the north-south direction (longitudinal great-

circles) compared to the east-west direction (latitudinal circles)—the idea being that

sufficiently narrow strips along the central meridian and equator have roughly the

same geometry. Also, restricting the time-distance measurements to narrow strips

along the central meridian and the equator prevents diluting contributions to the

center-to-limb variation from near-limb meridians—in a true heliocentric angle de-

pendent center-to-limb effect, measurement along meridians that are closer to the

limb are less sensitive to center-to-limb phase variations. Nevertheless, in the case

of large separation angles or skip distances, even the 30◦ arcs used in Zhao et al.

(2013) extend far beyond the 20◦ strip, thus introducing contaminations the innova-

tion sought to avoid in the first place.

At first cross-correlating a single pair of pixels instead of a whole arc of them,

oriented along the meridians (e.g., Giles et al., 1997), or the latitudes within the 20◦

strip (cf. Figure 4.9) seemed appealing since that completely eliminated the possibility
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Figure 4.9: Geometry of time-distance analysis used in Zhao et al. (2012, 2013) and
in this work. Shown are the strips along the central meridian, 45◦ longitude, and
the equator where time-distance analysis is confined. Also shown are the north-south
(red) and east-west (blue) deep-focus geometries. The B0-angle is 15◦.

of excursions outside the strips, besides being computationally much faster than the

quadrant technique. But a few preliminary experiments deemed the method too noisy.

A compromise was struck where a small, user-specified number of pixels along the arcs

with a given skip distance is cross-correlated. This method too is computationally

faster than the quadrant geometry due to the reduced number of pixels involved in

the cross-correlations, especially at large skip distances. T. L. Duvall, Jr. made the

necessary modifications to the existing time-distance code. Subsequent tests showed

a significantly improved signal-to-noise over the single-pair method. The signal-to-

noise, as expected, was worse compared to the standard quadrant technique (cf.

Figure 4.11).

At this point it was realized that if the number of pixels were kept constant and

were located at appropriate azimuthal separations along the arc for any sufficiently

large skip distance, the chord-length of the arc could be kept constant regardless of

the skip distance. Thus, whereas the sector angle remains constant and the chord-

length changes in proportion to the skip distance in the standard sector geometry, in

the constant chord-length (CCL) technique the chord-length stays constant and the

sector angle changes in inverse proportion to the skip distance or separation angle
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Figure 4.10: Comparison of two common-midpoint geometries with constant chord-
length. The arcs of the larger (planar radius R1 and half-angle θ1) and smaller (planar
radius R2 and half-angle θ2) separation distance have the same chord-length (2d). If
the smaller annulus were located on the surface of a sphere of radius R1, it would
subtend a half-angle of θ3 to the center of the sphere, in a plane bisecting the annulus.

(cf. Figure 4.10). This ensures that the azimuthal extent of the arc stays the same

regardless of the skip distance or focal depth and confines the arcs within the strips

except at very high latitudes.

In Figure 4.10, where two common-midpoint geometries with different planar radii

are displayed, it can be seen that the condition for constant chord-length is satisfied

if

d = R2 sin θ2 = R1 sin θ1, (4.2)

where 2d is the chord-length, 2R1 and 2θ1 are the planar (in the plane of the circle)

separation distance (or diameter) and sector angle, respectively, of a larger common-

midpoint annulus (red in Figure 4.10), and 2R2 and 2θ2 are the planar separation

distance and sector angle, respectively, of a smaller common-midpoint annulus (green

in Figure 4.10). Equation (4.2) may be formulated in a more useful form, in terms of

the angular separation distance 2θ3 of the smaller common-midpoint annulus on the

surface of a sphere of radius R1:

sin θ2 =
sin θ1
R2/R1

=
sin θ1
sin θ3

, (4.3)
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This establishes a relationship between the half-angles (θ1, θ2) of two common-

midpoint geometries with arcs that have the same chord-length (2d), and the (half)

separation angle (θ3) of the smaller common-midpoint annulus on the surface of a

sphere with a diameter (2R1) that equals the planar separation distance or planar

diameter of the larger common-midpoint annulus. Now if θ1 and θ2 are “small”, the

relation θ ≈ sin θ may be used to approximate Equation (4.3) as

θ2 ≈
θ1

sin θ3
. (4.4)

Equation (4.4) will obviously break down in cases where the chord-length and the

planar diameter of the smaller common-midpoint geometry become comparable.

If R1 = R⊙ then 2θ3 = ∆, where ∆ is the skip distance (separation angle on the

surface of the Sun) of the smaller common-midpoint geometry, and Equation (4.4)

becomes

θ2 ≈
θ⊙

sin(∆/2)
, (4.5)

where 2θ⊙ is the sector angle of a common-midpoint annulus that coincides with

circumference of the Sun, that satisfies the constant chord-length condition with the

smaller common-midpoint geometry.

For a small number of pixels, and for a sufficiently large skip distance ∆, the

azimuthal separation between the pixels that satisfies the constant chord-length con-

dition with a pixel sized arc with radius R⊙ can be calculated thus:

azimuthal separation ≈ mapscale or pixel size in degrees

sin(∆/2)
. (4.6)

In other words, the azimuthal separation calculated using Equation (4.6), along an

arc with common-midpoint skip distance ∆, has roughly the same chord-length as a

pixel-size azimuthal separation on an arc with radius R⊙. Thus, the user-specified

number of pixels along the arc roughly specifies the chord-length of the arc (strictly

speaking, the arc-length) and keeps it constant across various skip distances. For a

full deep-focus geometry, ∆ can be chosen to be the angular separation distance of the

largest annulus, thus satisfying the CCL condition for the largest arc of a particular

geometry for different focal depths.

Every new technology must be calibrated against an established one (cf. Figure

4.11). One of the predictions made of the new technique was increased noise levels
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Figure 4.11: Constant chord-length (CCL) 17-pairs deep-focus geometry (red) with
9 pixels on each arc, tested on 9 hours of HLD06/R06 simulation data against 5-
pairs quadrant deep-focus geometry (blue). δτns shown is averaged over 45◦ N and
S longitudes. No further averaging is done over latitude or depth. The data point
at 0.98R⊙ for the CCL case was an outlier and discarded. Top: Without noise
subtraction. Bottom: With noise subtraction.
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due to fewer pixels used to calculate the cross-covariances, and thus fewer samples of

cross-covariances being averaged. The other concern was how the decreasing sector

angle with increasing common-midpoint skip distance (or focal depth) would affect

the travel-time shift values relative to the standard sector geometry. The prediction

was that the narrower sectors of the CCL technique at the larger skip distances would

become less sensitive to the non-north-south contributions to the meridional flow mea-

surements, leading to a slight increase in the value of the travel-time shifts relative to

the standard geometry. Testing with all the simulations discussed in Chapter 3 con-

firmed the former prediction. However, the travel-time shift values calculated using

the standard and non-standard techniques were found to be virtually indistinguish-

able within error bars and in the absence of realization noise (except at the smallest

distances due to a combination of inadequate resolution and failure of the CCL con-

dition). Figure 4.11 shows the comparison results for the worst-case scenario, since

the HLD06/R06 simulation spans only 9 hours—the shortest duration of all the simu-

lation datacubes mentioned in Chapter 3. Both the noise unsubtracted (Figure 4.11,

top) and subtracted (Figure 4.11, bottom) results (δτns in the northern and southern

hemispheres are averaged together) are displayed to indicate the relative noise levels

and the relative signal levels (in the absence of realization noise) of the measurements.

4.3.3 Time-Distance Analysis and Results

The heliocentric angle of a location on the solar disk is the angle subtended by an

arc between that location and the center of the solar disk to the center of the Sun. A

true center-to-limb effect on an observable is dependent only on the heliocentric angle.

The center-to-limb effect on an observable is maximized in a direction perpendicular

to the lines of constant heliocentric angle (cf. Figure 4.17) and nullified along the

isolines of heliocentric angle. For instance, some radially varying phenomenon within

the Sun will be observed at different heights in the solar atmosphere when measured

at different heliocentric angles on the solar disk, and result in a center-to-limb effect.

When measurements of this observable are made along lines perpendicular to lines

of constant heliocentric angle, for example any diameter of the disk, the observed

height differential is maximized with the consequent maximization of the center-to-

limb effect on the observable of interest. Along isolines of heliocentric angle, the

observed height is the same, and therefore, no center-to-limb effect is observed in
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measurements along the isolines.

As a consequence, an observable measured along longitudes other than the central

meridian, and latitudes other than the equator are less susceptible to the center-to-

limb effect. Measurements made along ±90◦ longitudes will not see any center-to-limb

effect, with increasing center-to-limb variation observed as target longitudes approach

the central meridian (cf. Figure 4.18). For a more quantitative analysis the reader is

referred to Section 4.3.5.

The above considerations are applied systematically to the time-distance analysis

of HMI data spanning May 1, 2010–March 3, 2013, to ascertain if the “center-to-limb”

effect discussed in Section 4.3.1 is a bonafide center-to-limb effect. The datacube is

reconstructed from spherical harmonic time series as described in Section 4.2.3 and

then phase-speed filtered (Section 2.2.1). δτns are computed along the central meridian

and ±45◦ longitudes, and δτwe are computed along the equator and ±45◦ latitudes

within a 20◦ strip (cf. Figure 4.9). ±60◦ longitudes would have been better for the

analysis, but they are too close to the edges of the available data in the reconstructed

images due to the cropping and apodization procedure carried out in the HMI data

pipeline. Higher latitudes were not considered due to the lack of sufficient number

of uncorrelated data points. The time-distance analysis is carried out with the CCL

technique discussed in Section 4.3.2 in the 17-pairs deep-focus geometry on each daily

datacube. After averaging the cross-covariance functions as discussed in Section 2.2.3,

they are then averaged over the 20◦ strip around the latitude or longitude of choice. To

further improve the signal-to-noise ratio, the cross-covariance functions are averaged

over non-overlapping periods of 30 days. These are then fit with Gabor-wavelet

functions and differenced (cf. Section 2.2.4) to obtain travel-time shifts for each 30-

day interval. These travel-time shifts are combined over the entire 2.92-year span to

yield the mean travel-time shifts and the standard errors of the mean. Travel-time

shifts due to differential rotation are removed from δτwe. The author had to develop

a pipeline code to perform these data-intensive computations.

Figure 4.12 compares the plots of δτns along the central meridian and δτwe along the

equator as functions of latitude and longitude respectively, for focal depths of 0.96R⊙,

0.92R⊙, 0.86R⊙, and 0.80R⊙. Figure 4.13 shows the corrected and uncorrected δτsn

along the central meridian as a function of focal depth for latitude ranges 25–35◦

and 40–50◦ north and south. The corrected δτsn is calculated by simply subtracting

δτew along the equator, also shown in Figure 4.13, from the uncorrected δτsn along
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Figure 4.12: North-south (δτns, blue) and west-east (δτwe, red) travel-time shift as
a function of latitude and longitude respectively, at focal depths: 0.96R⊙ (top left),
0.92R⊙ (top right), 0.86R⊙ (bottom left), and 0.80R⊙ (bottom right). Computations
are done on HMI data spanning May 1, 2010–March 3, 2013. The mean travel-time
shift due to differential rotation between ±10◦ latitudes is removed from δτwe.

the central meridian, as prescribed by Zhao et al. (2012, 2013). See also Figure 3 of

Kholikov et al. (2014). Since there are no clear criteria for subtracting δτwe or −δτew,

δτew is antisymmetrized before performing the correction. The SN/EW convention

is adopted in Figure 4.13 as in Zhao et al. (2013) and Kholikov et al. (2014) instead

of the NS/WE convention in the other figures, so that the travel-time shifts in the

northern hemisphere and western hemisphere are positive.
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Figure 4.13: Top two panels show corrected (top) and uncorrected (middle) δτsn as
a function of focal depth (r/Rsun), averaged over latitude ranges (left) 25◦–35◦ and
(right) 40◦–50◦. Bottom panel: δτew correction, averaged over longitude ranges (left)
25◦–35◦ and (right) 40◦–50◦. Computations are done on HMI data spanning May 1,
2010–March 3, 2013. The top panel shows error bars of ±σ for visual clarity, whereas
the other panels show error bars of ±2σ, where σ is the standard error of mean. Note
the different scale of the top panel.
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Figure 4.14 compares the plots of δτns along the central meridian and ±45◦ longi-

tudes as functions of latitude, and Figure 4.15 compares the plots of δτwe along the

equator and ±45◦ latitudes as functions of longitude, for the same focal depths as in

Figure 4.12.

−60 −40 −20 0 20 40 60
−6

−4

−2

0

2

4

6

latitude (deg)

δτ
ns

 (
se

c)

 

 

Central Meridian
−45o  longitude
+45o longitude

0.96R
sun

−60 −40 −20 0 20 40 60
−6

−4

−2

0

2

4

6

latitude (deg)

δτ
ns

 (
se

c)

 

 

0.92R
sun

−60 −40 −20 0 20 40 60
−6

−4

−2

0

2

4

6

latitude (deg)

δτ
ns

 (
se

c)

 

 

0.86R
sun

−60 −40 −20 0 20 40 60
−6

−4

−2

0

2

4

6

latitude (deg)

δτ
ns

 (
se

c)

 

 

0.80R
sun

Figure 4.14: North-south travel-time shift (δτns) as a function of latitude at the central
meridian (blue), -45◦ (green), and +45◦ (magenta) longitudes, at focal depths: 0.96R⊙

(top left), 0.92R⊙ (top right), 0.86R⊙ (bottom left), and 0.80R⊙ (bottom right).
Computations are done on HMI data spanning May 1, 2010–March 3, 2013.
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Figure 4.15: West-east travel-time shift (δτwe) as a function of longitude at the equator
(blue), -45◦ (green), and +45◦ (magenta) latitudes, at focal depths: 0.96R⊙ (top left),
0.92R⊙ (top right), 0.86R⊙ (bottom left), and 0.80R⊙ (bottom right). Computations
are done on HMI data spanning May 1, 2010–March 3, 2013.

4.3.4 Discussion

The results in Section 4.3.3 are intriguing. This is the very first time that the full

deep-focus time-distance technique is applied on spherical harmonic reconstructed and

phase-speed filtered HMI velocity data to measure meridional flow induced travel-time

shifts. It also marks the first use of the newly-devised CCL technique for time-distance

computations. It is encouraging that these techniques yielded results consistent with

the time-distance measurements of Zhao et al. (2012, 2013) and Kholikov et al. (2014).

Figure 4.12 shows that at smaller focal depths, δτns exceeds δτwe in amplitude,
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while at larger focal depths the two become indistinguishable within error bars. This

suggests that the meridional flow signal dominates at the smaller focal depths and

the “center-to-limb” signal dominates at the larger focal depths. The former is to be

expected from theoretical considerations, since the sensitivity of propagating acoustic

waves to flows would diminish with depth due to the increase in the sound speed;

the latter would require an explanation like the one provided by Baldner and Schou

(2012): a phase difference that is proportional to the observed height difference, and

therefore proportional to the heliocentric angle difference. There may, however, be

other reasons for a heliocentric angle dependent phase.

Figure 4.13 shows what has by now become “standard” practice: the correction of

the south-north travel-time shifts by subtracting out the east-west travel-time shifts

or the “center-to-limb” variation. The amplitudes of the corrected travel-time shifts

are of the same order of magnitude as those in Zhao et al. (2013) and Kholikov et al.

(2014), and similar features are discernible, such as the generally decreasing values

with depth and the humps at larger depths, even the changing sign near the base

of the convection zone (cf. Kholikov et al., 2014). The asymmetry in the corrected

south-north travel-time shifts between the two hemispheres is discernible. Also shown

in Figure 4.13 is the east-west travel-time shift or the “center-to-limb” variation; it

is almost linear with focal depth.

Figures 4.14 and 4.15 show that within error bars, δτns along the central meridian

and ±45◦ longitudes are indistinguishable (except may be at the higher latitudes),

and δτwe along the equator and ±45◦ latitudes are indistinguishable (except may be at

the higher longitudes). Does this mean that the “center-to-limb” effect is not a true

center-to-limb effect, or are the measurements too noisy to make that determination?

Early on, the author had calculated north-south travel-time shifts (δτns) from HMI

data spanning May 6–July 8, 2010 with quadrant 5-pairs deep-focus geometry. At that

time the available spherical harmonic coefficient time series had been generated from

HMI Dopplergrams that had not been corrected for Carrington inclination. Figure

4.16 compares these δτns values with those computed using the CCL 17-pairs deep-

focus technique. The closeness of the two results are reassuring, despite the greater

noise levels of the CCL technique. Most of the deviations between the two fall within

each other’s error bars, but the deviations appear to be systematic: they increase

with increasing focal depth, and the quadrant δτns deviates toward lower amplitudes,

noticeably at the higher latitudes. Is this merely random noise or could this be a
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Figure 4.16: Meridional travel-time shift (δτns) as a function of latitude with quadrant
5-pairs and CCL 17-pairs deep-focus geometry, at focal depths: 0.96R⊙ (top left),
0.92R⊙ (top right), 0.86R⊙ (bottom left), and 0.80R⊙ (bottom right). Computations
with standard quadrant geometry (blue), averaged over all available longitudes, are
done on HMI data without the Carrington inclination correction, spanning May 6–
July 8, 2010. Computations with non-standard CCL geometry (red), averaged over
20◦ along CM, are done on Carrington inclination corrected HMI data spanning May
1, 2010–March 3, 2013.

manifestation of the center-to-limb effect, or rather a diminution of it in the quadrant

case due to the near-limb contributions from averaging over all longitudes? The

Carrington inclination correction may also be partially responsible for the differences.

The size of the error bars precludes a definite conclusion.
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4.3.5 Postscript: Center-to-Limb Phase Shift

Interpretation of data requires guidance from theory. In this section a simple the-

oretical model is constructed for the center-to-limb effect and compared with the

“center-to-limb” effect apparent in the HMI data analyzed in this work.

It is postulated that the “center-to-limb” effect is due to a phase difference or phase

shift experienced by propagating acoustic waves due to a radially varying phenomenon

which imparts a radially and monotonically changing additive phase shift. Since

the acoustic waves are observed at the “surface” of the Sun, and different heights

in the solar atmosphere constitute the solar surface at different heliocentric angles

(the observed height being the deepest at the disk center and becoming increasingly

shallow with increasing heliocentric angle), in the absence of all other phenomena

(e.g., flows, magnetic fields) the relative change in the phase shift between any two

locations on the solar disk is a function of the heliocentric angles (θ1, θ2) of those

locations. This relative phase shift manifests as a travel-time difference or travel-

time shift δτ(θ1, θ2) in a wave propagating between these two locations. For a pair of

locations (θ1, θ2) with angular separation ∆, the travel time for a wave propagating

from location with heliocentric angle θ1 to heliocentric angle θ2 is given by

τ+ = τ(∆) + δτ(θ1, θ2)/2, (4.7)

and for a counter-propagating wave by

τ− = τ(∆) + δτ(θ2, θ1)/2 = τ(∆) − δτ(θ1, θ2)/2, (4.8)

where τ(∆) is the travel time of the wave in the absence of any perturbation. The

travel-time shift between the counter-propagating waves is thus obtained:

τ+ − τ− = τ(∆) + δτ(θ1, θ2)/2 − τ(∆) + δτ(θ1, θ2)/2 = δτ(θ1, θ2). (4.9)

The result in Equation (4.9) is the reason why the factor of 1/2 is introduced into

the phase shift δτ(θ1, θ2) in Equations (4.7) and (4.8). It divides out the factor of 2

in the phase shift that would have otherwise appeared in Equation (4.9).

Referencing Figure 4.17, the lines of constant heliocentric angle coincide with the

lines of constant center-to-limb phase shift, as per the definition of the center-to-limb

variation. This implies that the phase shift between any two points on two given
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isolines is invariant with respect to the path traversed between the two points. Thus

for the separation angle shown in Figure 4.17 along the 45◦ line of longitude, the

phase shift is identical with the phase shift of the separation angle marked out on the

equator and the central meridian by the same two isolines. Therefore, if δτ(θ1, θ2) is

fully specified on the equator or the central meridian, it is fully specified everywhere

on the disk. It follows from this, that δτ(θ1, θ2) can be determined along the 45◦

longitude, or any other longitude for that matter, for a restricted range of (θ1, θ2).
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Equator

Lines of constant heliocentric angle

Figure 4.17: Geometry of heliocentric angle dependent center-to-limb phase shift.
Indicated are the lines of constant heliocentric angle (also lines of constant center-
to-limb phase shift), equator, central meridian, and 45◦ longitude. Two lines of
constant heliocentric angle (with, e.g., heliocentric angles θ1 and θ2) are highlighted
in red (with, e.g, center-to-limb phase shifts δτ(0, θ1) and δτ(0, θ2), respectively) to
show the relationship between the separation distance and central latitude with a
particular phase shift (δτ(θ1, θ2) = δτ(0, θ1) − δτ(0, θ2)) on 45◦ longitude, and the
separation distance and central longitude (latitude) with the same phase shift on the
equator (central meridian). The separation distances are marked with big red dots.
Note that in this figure the center of the visible solar disk is tipped downward by
an angle of 15◦ for visual clarity and perspective. So the actual line of sight of the
observer is inclined downward by 15◦ from the normal to the plane of this page.
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However, from the data analysis what is obtained is the phase shift function,

δτ(∆, φ) or δτ(df , φ), in terms of the separation angle ∆ (or common-midpoint skip

distance or focal depth df) between a pair of heliocentric angles, and longitude φ.

Thus, from a given equatorial phase shift function or center-to-limb travel-time shift

function or east-west travel-time shift δτew(∆, φ), the center-to-limb phase shift func-

tion δτsn(∆
′, ψ) projected along any longitude, can be fully determined, ψ being the

latitude on the longitude of interest. The separation angles ∆′, along any given lon-

gitude, between heliocentric-angle pairs (θ1, θ2), map uniquely to separation angles

∆ = |θ1 − θ2| between the same heliocentric-angle pairs on the equator at a longitude

of φ = (θ1 + θ2)/2. This makes it possible to map δτew(∆, φ) to δτsn(∆
′, ψ) along

any longitude. In this work this mapping is done onto the 45◦ longitude. Higher lon-

gitudes, though preferable, were not available due to the cropping and apodization

scheme of the HMI global helioseismology pipeline.

Figure 4.18 shows the model center-to-limb phase shift function, and the projection

of the center-to-limb phase shift function at various longitudes. In the interest of

time, the author constructed a “quick and dirty” model by eyeballing the relevant

measured travel-time shifts in Figures 4.12 (the north-south travel-time shifts at the
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Figure 4.18: Center-to-limb phase shift model. Left panel shows the linear variation
of the center-to-limb phase shift function δτ(df , φ) with longitude (for the equator) or
latitude (for the central meridian), for the different separation angles or focal depths
df (0.96Rsun: blue; 0.92Rsun: green; 0.86Rsun: magenta; 0.80Rsun: black). Right
panel shows the projection of the center-to-limb phase shift function as a function of
latitude on various longitudes: 0◦ (black), 45◦ (red), 60◦ (blue), 90◦ (green).



4.3. THE “CENTER-TO-LIMB” EFFECT 93

larger focal depths) and 4.13 (the east-west travel-time shifts). The model is kept

simple by adopting a bilinear phase shift or travel-time shift variation with longitude

and with the focal depth. This model closely resembles the relevant plots in Figures

4.12 and 4.13. In future work accurate models will be constructed by appropriate

fitting of the aforementioned plots.

As expected in the model (as per the discussion in Section 4.3.4), the projection

of the center-to-limb phase shift function shows decreasing values with increasing

longitudes. However, as shown in Figure 4.19, the deviation in the data is not clearly

discernible at ±45◦ longitudes, at the current noise levels. Therefore, it is not possible

to confirm or disconfirm whether the “center-to-limb” effect corresponds to a true

center-to-limb phase shift function. ±60◦ longitudes may provide a better test for the

“center-to-limb” variation, provided that travel-time shifts with adequate signal-to-

noise can be extracted at those high longitudes. With HMI the expectations remain

rather high. In a few years, with longer time series, a resolution may yet be possible.
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Figure 4.19: The model center-to-limb phase shift function at central meridian (black)
and the projection at 45◦ longitude (red) are compared with the “center-to-limb”
variation seen in the north-south travel-time shifts calculated from HMI velocity data
at a focal depth of 0.86Rsun on the central meridian (blue) and ±45◦ longitudes (−
green; + magenta).



Chapter 5

Concluding Remarks

This chapter concludes this dissertation with a summary of the research contributions,

and a perspective on the near future. The author will refrain from speculating on

distant possibilities, and stick to an appraisal of strategies possible with the current

state of knowledge.

5.1 Summary

This dissertation is concerned with the measurement and interpretation of travel-time

shifts in the context of time-distance helioseismic measurement of meridional flow. To

that end, this dissertation examines forward modeling in the ray approximation and

the “center-to-limb” variation in the travel-time measurements of solar velocity data.

For accurate inversion of travel-time shifts to obtain flow velocities, the travel-time

shifts have to be accurately interpreted or forward modeled. The forward modeling

is done in the ray-theoretic approximation, whereby the travel times are interpreted

as the travel times of waves propagating according to the rules of ray geometry, and

non-vanishing travel-time shifts of counter-propagating waves result from oppositely

Doppler shifted waves in the presence meridional flow. In this work, the ray-theoretic

travel times in the presence of different meridional flow models are compared with

travel times derived from time-distance analysis of two independent three-dimensional

acoustic wave simulation data perturbed by the same meridional flow models. The

full deep-focus scheme is used for the first time to measure meridional flow induced

travel-time shifts on phase-speed filtered simulation data. A systematic effort is made

for the first time in the context of meridional flow to incorporate some of the physics

94
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of the simulations into the ray-theoretic computations. The investigation could not

establish the adequacy of ray theory for interpreting meridional flow induced travel-

time shifts. Since the sensitivity kernel needed for accurate inversions is derived from

a robust forward model, the work in this dissertation cautions against an unchary

acceptance of the inversion results using ray kernels.

Spherical harmonic coefficient time series (up to degree l = 300) from the HMI

global helioseismology pipeline are used to reconstruct 2 years and 11 months of solar

velocity datacube. A new constant chord-length deep-focus technique is devised to

make more effective use of the method of confining the time-distance measurements

along the central meridian and equator to a narrow strip. The δτns and δτwe mea-

surements with this new technique also show the “center-to-limb” effect. Baldner

and Schou (2012) provide a plausible physical explanation for this effect: convective

turbulence near the solar surface results in an observed height dependent, and there-

fore a heliocentric angle dependent phase shift. This heliocentric angle dependence

is tested in this dissertation by making time-distance measurements on narrow strips

along the ±45◦ longitudes and the ±45◦ latitudes and comparing the results to a

model center-to-limb phase shift function. The expectation is that these regions of

the observed solar disk will be less sensitive to a heliocentric angle dependent center-

to-limb variation. The test is unsuccessful due to the inadequate signal-to-noise ratio

of the travel-time shift measurements. However, the methods devised here point the

way to new and more effective tests. In the future the “strip” method may also be

used to study meridional flow variation with longitude.

5.2 Strategies

It would be stating the obvious that more work needs to be done. Perhaps, that is the

whole point of pursuing a doctorate and writing a dissertation: to have one’s work

cut out. Interpretation is an especially difficult task where errors can translate into

significantly different meanings. In the case of measuring travel-time shifts the errors

can lead to attributing different physical bases to the systematic errors, deciphering

reversed flow at different latitudes or depths leading to a different count in the number

of meridional circulation cells, and other undesirable effects.

A recapitulation of the problematic issues in this work may provide a point of

departure: noise in the signal, inadequate kernels derived from ray theory, systematic
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errors such as the “center-to-limb” effect, incomplete knowledge of physics of the Sun.

5.2.1 Noisy Travel Times

For starters, is there anything else that can be done to improve the signal-to-noise ratio

of the measured travel-time shifts, other than phase-speed filtering, applying full deep-

focus geometry, analyzing very long time series, and building superior instruments

and computers of the future? According to Kholikov and Hill (2014) there is: high-m

filtering. Their results show that filtering out the higher m acoustic modes yields

cleaner cross-covariance functions for time-distance measurements in the north-south

direction, especially at the higher latitudes.

Furthermore, one can calculate Gizon-Birch travel times (Gizon and Birch, 2004)

which is robust with respect to noisy cross-covariances, instead of extracting travel

times with a Gabor-wavelet fit. However, if one were to continue using Gabor

wavelets, it was high time that this technology was upgraded to its latest version

(Nigam et al., 2007). The new formula to estimate travel times generalizes the Gabor

wavelet by taking into account the phase-speed filter, and also the horizontal com-

ponent of the oscillation displacement signal, in addition to the radial component

(the only component considered previously). The new formula also depends on the

location of the two photospheric points being cross-correlated.

The noise covariance matrix for travel times is an important ingredient for for-

ward modeling to estimate the noise characteristics of travel times, and ought to

be calculated as outlined in Gizon and Birch (2004) but modified for the full deep-

focus geometry. Knowledge of the noise covariance matrix is also required for the

assignment of error bars to the inversion results.

5.2.2 From Rays to Waves

In Chapter 3, ray theory fell roughly 100 ms short of expectations. However, since

the acoustic cut-off frequency is a model dependent “characteristic” quantity, the

expectation that one ray theory will fit all is misguided. And here, as in all scientific

endeavors, a “fit” will need to be qualified in no uncertain terms. Even if it were

possible to derive ray theories for different simulations, one would still need to derive

a solar ray theory that reflects the relevant solar physics. As solar physicists continue

their studies with increasingly sophisticated tools, it is hoped that the simulations
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will become more realistic and solar-like making it possible to derive a solar-like ray

theory. This could then be used to derive the most realistic ray kernels that will lead

to errors smaller than all the other preceding ray kernels.

Shallow plane geometry finite-wavelength kernels employing various approxima-

tions already exist. The approaches that have included wave effects are the Born

approximation (Birch and Kosovichev, 2000), the Rytov approximation (Jensen and

Pijpers, 2003), and the Fresnel zone approximation (Jensen et al., 2000). But these

are not useful for perturbations at large depths where the acoustic modes become

sensitive to the sphericity of the Sun. Still, it is worth mentioning that Birch and

Gizon (2007) found a case involving f modes, where the ray kernel was a factor of two

larger than the Born-approximation kernel, if only to demonstrate that differences

do exist between the ray and wave “interpretation” of travel times. Bogdan (1997)

showed that the energy density of a wave packet (comprising low radial order modes)

was substantial away from the ray path, i.e., the wave packets travels along a “ray

bundle”. Thus perturbations located away from the ray path will influence travel

times, resulting in a sensitivity kernel that has more dimensions than a ray kernel.

This suggests that the next logical step in improving the accuracy of forward modeling

involving deep meridional flows would be to derive a finite-wavelength kernel in the

spherical geometry—a rather exacting task, as indicated by the single unpublished

paper on the topic by Schlottmann and Kosovichev (2011) on arXiv. Since 2103 the

author has heard of several people working on the problem, but has not found any

publications other than the one mentioned.

5.2.3 Systematic Errors

Some systematic errors are easily avoided such as B0-angle issues (due to the incli-

nation of the solar equatorial plane with respect to the ecliptic; e.g., Howard and

Harvey, 1970; Giles, 2000) by calculating averages over an integral number of years or

by confining the computations to a time interval close to when the B0-angle is zero.

That is because the interpretation is clear and well established.

Other systematic errors such as the finite light travel time effect ought to exist but

do not show up in the data-analysis, and the “center-to-limb” effect has a magnitude

equal to the former effect but with the opposite sign (Duvall and Hanasoge, 2009).

When this latter effect is “corrected” by subtracting δτwe along the equator from δτns
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along the central meridian, travel-time shifts measured in different observables and

different instruments agree with one another (Zhao et al., 2012), and δτns exhibits

behavior consistent with meridional circulation obeying the constraint of mass-flux

conservation (Zhao et al., 2013). This broad level of consistency is taken as a sign

that the correct “correction” procedure was applied, and Baldner and Schou (2012)

attempted to construct a physical model that justifies the correction. This dissertation

describes a method to test the validity of the mathematical model implied by the

physical model of Baldner and Schou (2012). The results of the test are inconclusive

due to the noise level of the measured signal.

Assuming for the moment that the mathematical model of the “correction” is

correct regardless of the physical model, it is quite clear that the “correction” itself

can undergo further correction. It was mentioned in Section 4.3.2 that the reason for

confining the measurements and the longitudinal averaging to a narrow strip along

the central meridian and the equator is that the coordinate geometry is different in

the north-south and west-east directions. This presumably results in systematic dif-

ferences, other than meridional flow, between δτns and δτwe for measurements near

the limb where the respective geometries attain the maximal relative difference, thus

introducing another kind of systematic error in the “corrected” travel-time shift. This

can be prevented if the latitude-longitude coordinate system is rotated with respect

to the solar disk in the plane of the disk. Thus before calculating δτwe, the coordinate

system is rotated so that the equator becomes the central meridian in the new coor-

dinate system. The δτwe calculated in the new coordinate system is then subtracted

from δτns calculated in the old coordinate system. In this way, there would be no need

for confining strips and δτns can be corrected over the whole solar disk and averaged

over all available longitudes resulting in increased signal-to-noise ratio and minimal

systematic errors. Being able to rotate the coordinate system with respect to the solar

disk will have the added benefit of permitting measurements of the “center-to-limb”

effect along various angles with respect to the equator, i.e., along various diameters of

the solar disk. These measurements will provide another test of the geometrical prop-

erties of the “center-to-limb” effect. The rotation of the coordinate system may be

implemented as part of the spherical harmonic reconstruction algorithm such that the

reconstructed images have the rotated coordinate system with phase-speed filtering

carried out on the “rotated” coefficients.

Out of the discussion concerning the rotation of the coordinate system, a new
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time-distance technique was born. The new method seeks to circumvent all center-

to-limb variations by cross-correlating pixels along lines of constant heliocentric angle.

T. L. Duvall, Jr. modified the spherical harmonic reconstruction code (cf. Section

4.2) to reconstruct images in a polar grid rather than a latitude-longitude grid, with

the solar disk center at the center of the image. Three advantages follow from the new

time-distance technique: it can test whether the “center-to-limb” effect in the solar

data is a true center-to-limb phase variation; it can be modified to cross-correlate

in directions perpendicular to the isolines, and thus enable a look at the “center-to-

limb” effect along different diameters of the solar disk; it can naturally separate zonal

(rotational) flows from meridional flows. This method is still in the works and the

initial results show promise.

5.2.4 Inverse Problem

One cannot conclude a dissertation involving time-distance helioseismology without a

few words on the inverse problem. While travel-time shift is an important diagnostic

of meridional flow, what is desired in the end is flow velocity. Notwithstanding the

importance of forward modeling, inversion techniques (cf. Gizon and Birch, 2005) are

an integral part of the time-distance arsenal for obtaining three-dimensional maps of

various physical quantities, in this case meridional flow velocity, in the solar interior.

For sure, inversion results are as certain as the forward model used to derive the

sensitivity kernel, but parallel efforts must be expended in the mutually beneficial

development of forward models and inversion techniques. For an update on recent

developments in inversion for local helioseismology the reader is referred to Jackiewicz

et al. (2012).

Regardless of the sophistication achieved in inversion computations, helioseismol-

ogists still await a finite-wavelength kernel in spherical coordinates (cf. Section 5.2.2).

This kernel will also need to account for the various filters and the full deep-focus

geometry. The incorporation of the new kernel into a feasible inversion algorithm

may prove to be non-trivial.

5.2.5 Interpretation Revisited

Between 1998 and 2001, S. D’Silva published three letters in The Astrophysical Jour-

nal, cautioning against playing fast and loose with the notion of travel time. In
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time-distance computations the position of the peak of the envelope, or the position

of one of the phase peaks, of a cross-covariance function is identified as the travel

time of a wave packet between two spatially separated locations on the Sun. D’Silva

(1998a) asserted that the peaks of the envelopes obtained by assuming that the en-

velope of the sum of the functions is the sum of the envelopes can lead to erroneous

travel times. He then derived the conditions under which the envelope of a sum can be

approximated to the sum of the individual envelopes so that the errors are minimal.

In D’Silva (1998b) “dispersion” is shown to adversely affect the computations of

travel times of solar acoustic wave packets. Here “dispersion” is a dispersion in travel

times experienced by a wave packet when the arrival times are not constant across

the wave packet spectrum. When travel time is a nonlinear function of frequency,

D’Silva (1998b) showed that as the width of the Gaussian spectrum is increased the

envelope of the cross-covariance function can increasingly deviate from a Gaussian,

and the envelope peak and phase peaks can shift, introducing additional challenges

in computing travel times.

When individual cross-covariance functions are spatially averaged to improve the

signal-to-noise ratio, it is tacitly assumed that the travel time of the averaged function

is the average of the individual travel times. D’Silva (2001) showed that the phase

travel time of the averaged signal is not equal to the average of the phase travel times.

Instead, it is a solution to a nonlinear equation that depends on the amplitudes of

the individual cross-covariance functions, which defeats the purpose of averaging.

The author has not seen any papers since the publication of these letters, that

investigate the claims therein, to either confirm them or to dismiss them as negligible

effects in the analysis of solar data. What other systematic errors could be lurking in

time-distance computations due to these effects? To let these warnings go unheeded

would be extremely poor strategy.



Appendix A

Colatitudinal and Radial

Travel-Time Shifts

This appendix is presented because Equation (2.43) in Giles (2000) for the travel-

time shift due to radial flow, or the radial travel-time shift, is incorrect. This may be

assessed from the fact that if the radial flow is uniform everywhere, then the travel-

time shift due to the radial velocity should be zero, as counter-propagating rays will

experience the same net flow; Equation (2.43) in Giles (2000) does not reflect that

fact. The correct expression is derived below.

The travel-time shift between counter-propagating rays in the presence of flow is

given by (Kosovichev, 1996)

δτ = −2

∫

Γ0

v · ds
c2

, (A.1)

where v is the flow velocity, c is the sound speed, Γ0 is the unperturbed ray path,

and s is the displacement vector along the ray. For the purpose of this derivation,

the ray path Γ0 is bisected at the turning point, and the preceding half of the ray

path is labeled Γ1 and the following half is labeled Γ2. Thus, Equation (A.1) can be

rewritten as

δτ = −2

∫

Γ1

v · ds
c2

− 2

∫

Γ2

v · ds
c2

, (A.2)

and the differential displacement vector may now be written as

ds =

{

−dr + rdθ for ray path Γ1

dr + rdθ for ray path Γ2

(A.3)
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Inserting Equation (A.3) into (A.2) one obtains

δτ = −2

∫

Γ1

v · (−dr + rdθ)

c2
− 2

∫

Γ2

v · (dr + rdθ)

c2
, (A.4)

which after gathering the common differentials becomes

δτ = 2

(
∫

Γ1

v · dr
c2

−
∫

Γ2

v · dr
c2

)

− 2

∫

Γ0

(v · dθ)r

c2
. (A.5)

Decomposing the flow velocity into its colatitudinal and radial components:

v = vθ + vr, (A.6)

and inserting into Equation (A.5), using vθ · dr = vr · dθ = 0, one obtains

δτ = δτr + δτθ = 2

(
∫

Γ1

vr · dr
c2

−
∫

Γ2

vr · dr
c2

)

− 2

∫

Γ0

(vθ · dθ)r

c2
, (A.7)

where the colatitudinal travel-time shift (δτθ) and the radial travel-time shift (δτr)

are as follows:

δτθ = −2

∫

Γ0

(vθ · dθ)r

c2
, (A.8)

δτr = 2

(
∫

Γ1

vr · dr
c2

−
∫

Γ2

vr · dr
c2

)

. (A.9)
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Rüdiger, G.: 1989, Differential Rotation and Stellar Convection: Sun and Solar-type

Stars, The Fluid Mechanics of Astrophysics and Geophysics, Gordon and Breach

Science Publishers

Schad, A., Timmer, J., and Roth, M.: 2011, Astrophys. J. 734, 97

Schad, A., Timmer, J., and Roth, M.: 2012, Astron. Nachr. 333, 991

Schad, A., Timmer, J., and Roth, M.: 2013, Astrophys. J., Lett. 778, L38

Scherrer, P., Bogart, R. S., Bush, R. I., Hoeksema, J. T., Kosovichev, A. G., Schou,

J., Rosenberg, W., Springer, L., Tarbell, T. D., Title, A., et al.: 1995, Sol. Phys.

162, 129

Scherrer, P. H., Schou, J., Bush, R. I., Kosovichev, A. G., Bogart, R. S., Hoeksema,

J. T., Liu, Y., Duvall, T. L., Zhao, J., Title, A. M., Schrijver, C. J., Tarbell, T. D.,

and Tomczyk, S.: 2012, Sol. Phys. 275, 207

Schlottmann, R. B. and Kosovichev, A. G.: 2011, arXiv:1105.4619v2 [astro-ph.SR]

Schou, J.: 2003, Astrophys. J., Lett. 596, L259

Schou, J. and Bogart, R. S.: 1998, Astrophys. J., Lett. 504, L131

Schou, J., Scherrer, P. H., Bush, R. I., Wachter, R., Couvidat, S., Rabello-Soares,

M. C., Bogart, R. S., Hoeksema, J. T., Liu, Y., Duvall, T. L., et al.: 2012, Sol.

Phys. 275, 229

Snodgrass, H. B. and Dailey, S. B.: 1996, Sol. Phys. 163, 21

Spiegel, E. A. and Zahn, J.-P.: 1992, Astron. Astrophys. 265, 106



110 BIBLIOGRAPHY

Spruit, H. C.: 2011, in The Sun, the Solar Wind, and the Heliosphere, IAGA Special

Sopron Book Series, pp 39–49, Springer
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