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Abstract

In order to better understand the origin and variability of stellar magnetic fields it is
necessary to understand mass flows inside stars. With time-distance helioseismology
local flows can be inferred in the Sun by measuring the time it takes for seismic
waves to propagate between any two points on the solar surface. This dissertation
contains new observations of solar plasma flows and a model for the interpretation
of time-distance data. It also discusses the prospects for stellar seismology.

First, we present new observations of the solar velocity field in the upper convec-
tion zone. Using surface-gravity waves, we discover that supergranulation exhibits
wave-like properties, undergoing oscillations with periods of 6-9 days. This points
to a mechanism involving traveling-wave convection and explains the observations
of anomalously fast rotation of the supergranulation pattern. Near the solar surface
we detect a large-scale 50 m/s flow converging toward active regions. Deeper inside
the convection zone, we detect, using acoustic waves, bands of slower and faster
meridional motion with a period of eleven years.

Second, we present a new and physically motivated general framework for calcu-
lations of the sensitivity of travel times to small local perturbations to a solar model,
taking into account the fact that the sources of solar oscillations are spatially dis-
tributed. We employ the first Born approximation to model scattering from local
inhomogeneities and we use a clear and practical definition of travel-time perturba-
tion which allows a connection between observations and theory. After developing
the general theory we compute the sensitivity of surface-gravity-wave travel times
to local perturbations in the wave excitation and damping rates. We show that the
simple single-source picture, employed in most time-distance analyses, is not correct
as it does not reproduce all of the features seen in the distributed-source sensitivity

kernels.



Last, we show that future observations of stellar pulsations will provide us with
the possibility of determining the angular velocity of a Sun-like star and the inclina-
tion angle between the direction of the rotation axis and the line of sight. Measuring
the inclination angle is useful to determine the true masses of extra-solar planets

detected from the radial velocity shifts of their central star.
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Chapter 1

Introduction

1.1 Perspective

The most important unsolved problem in stellar physics concerns the origin and
variability of magnetic fields. Solar variability is most easily seen in the 11-year
periodicity of the number of sunspots and their migration in latitude as the cycle
develops, the butterfly diagram. The magnetic field polarity reverses within sunspots
groups each 11-yr to produce the 22-yr Hale magnetic cycle. Flares and coronal
mass ejections are violent magnetic eruptions that occur mostly during periods of
maximum activity and can affect space weather and geomagnetic activity. On longer
time scales, solar magnetic activity and irradiance variations must have profound

implications for the Earth climate.

The general belief is that a dynamo process operating in the solar convection
zone is the origin of the solar magnetic cycle. This process whereby poloidal and
toroidal magnetic fields generate and maintain each other invokes differential ro-
tation, magnetic buoyancy and cyclonic convection. The toroidal field is driven
by rotational shear at the base of the convection zone, while a large-scale poloidal
field is generated from the toroidal field by helical turbulence as it rises through
the convection zone. Since the dynamo is a dynamical process, it is important to
understand mass flows in the solar interior, such as rotation and convective flows.
Motion in meridional planes may also play an important role in redistributing the

fields into the observed patterns.



2 CHAPTER 1. INTRODUCTION

Helioseismology is a tool to learn about the internal structure and dynamics of
the Sun. Global helioseimology uses the eigenfrequencies of the global modes of
acoustic oscillations to infer rotation and sound speed versus latitude and depth.
New techniques of local helioseismology aim to produce three dimensional maps of
the flows, temperature inhomogeneities, and possibly magnetic field, inside the Sun.
In chapter 2 we use a local technique, known as time-distance helioseismology, to
reveal new properties of near-surface horizontal flows and their connection to sur-
face magnetic activity. Chapter 3 is an attempt to develop a firm theoretical basis
for the interpretation of time-distance data, which is needed to lead time-distance
helioseismology to its full potential, in particular at the smallest spatial scales. As-
teroseismology, i.e. global helioseimology on stars other than the Sun, will soon
become an important tool to study stellar activity cycles. As several asteroseis-
mology space missions are planned, chapter 4 discusses some of the prospects for

detecting rotation in distant stars and other stellar parameters.

1.2 Global Helioseismology

The five-minute solar oscillations were first discovered by Leighton et al. (1962)
and interpreted as standing acoustic waves by Ulrich (1970). Deubner (1975) then
confirmed that the power in the oscillations is concentrated at discrete frequencies
for any given horizontal wavenumber, as predicted by Ulrich’s theory. The driv-
ing mechanism of the global oscillations of the Sun is believed to be near-surface
turbulent convection (e.g. Stein & Nordlund, 2001). The purpose of global helioseis-
mology is to observe and invert the frequencies of the normal modes to infer solar
internal properties. Today, millions of global modes have been identified.

The small oscillations of a sphere are represented by a linear superposition of
eigenmodes, each characterized by a set of three indices: the radial order, n, the
spherical harmonic degree, [, and the azimuthal order, m. For instance, the radial

perturbation of the fluid displacement can be written

(r,0,¢,t) =) Z Qnim Eu(r) Y™ (0, 9) e nimt (1.1)

n,l m=—1
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where r is the radius, 6 and ¢ are spherical-polar coordinates (colatitude and lon-
gitude), and ¢ is time. The Y™ are spherical harmonics, a,, is a complex mode
amplitude, and &,(r) is the radial eigenfunction of the mode with frequency wy,.
For a spherically symmetric star, wy;,, does not depend on m. Rotation, however,
removes the (20 + 1)-fold azimuthal degeneracy of the frequency of the nonradial
mode (n,l). The radial order, n, corresponds to the number of nodes of the radial

eigenfunction &,,.

The m-averaged power spectrum shown in Fig. 1.1 was obtained with the Michel-
son Doppler Imager (MDI, Scherrer et al., 1995) onboard the SOlar and Heliospheric
Observatory (SOHO). Each ridge in the power spectrum corresponds to a different
radial order, n. The lowest frequency ridge (n = 0) is for the fundamental (f) modes.
The f modes are identified as surface gravity waves, with nearly the dispersion re-
lation for deep water waves, w? = gk, where w is the angular temporal frequency,
g = 274 m s72 is the gravitational acceleration at the Sun’s surface, k ~ [/Rg, is
the horizontal wavenumber, and R; = 696 Mm is the solar radius. The f modes
propagate horizontally. All other ridges, denoted p,,, correspond to acoustic modes,
or p modes. The restoring force for p modes is pressure. The ridge immediately
above the f mode in Fig. 1.1 is known as p;, the next one py, and so forth. Low-/ and
high-n modes penetrate deeper inside the Sun. For frequencies above the acoustic
cutoff frequency (5.3 mHz), acoustic waves are not trapped inside the Sun. For
degrees larger than about 150, wave damping becomes significant and modes are
not resolved in [ (continuous ridges). Acoustic modes with similar values of wy, /!

propagate to similar depths inside the Sun.

Perhaps the greatest achievement of helioseismology is to have confirmed the
basic standard model of stellar structure by measuring the sound speed as a func-
tion of depth with great accuracy. Because rotation breaks the azimuthal symmetry
between modes propagating around the sun in opposite directions, it has also been
possible to map the internal angular velocity versus depth and latitude, with great
detail. The current research, however, focuses on small temporal variations con-
nected to the solar cycle that are likely to be related to the magnetic dynamo.
Figure 1.2 shows bands of faster and slower rotation beneath the Sun’s surface that

migrate in latitude as the present activity cycle unfolds (Schou, 1999). These bands,
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MDI Medium-—({ Power Spectrum

frequency, mHz

0 50 100 150 200 250 300
angular degree, [

Figure 1.1: m-averaged power spectrum of the five-minute solar oscillations observed
in velocity with the MDI instrument.
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Zonal flows from MDI f modes

Latitude

97.0 98.0 99.0 00.0 01.0
Year

Figure 1.2: Torsional oscillations are bands of slower (blue) and faster (red) rotation
with an amplitude of 10 m/s that migrate equatorward at low latitudes. This plot
was derived from the frequencies of the global f modes in the range 150 < [ < 250.
(Courtesy: J. Schou)

called “torsional oscillations”, may be driven by the Lorentz force due to a migrat-
ing dynamo wave (Schiissler, 1981) or caused by a thermal effect due to surface
magnetic fields (Spruit, 2003). Another exciting result concerns the detection of

temporal variations in the Sun’s asphericity (Antia et al., 2001).

Global mode helioseismology has, however, fundamental limitations: inversions
of normal mode frequencies have no resolution in longitude and are unable to dis-
tinguish the northern from the southern hemisphere. Also, global helioseismology
is not appropriate for measuring flows in meridional planes (meridional circulation).
To complement global helioseismology, recent techniques of local helioseismology are
being developed. Local techniques include ring diagrams (Hill, 1988), acoustic imag-
ing (Chou, 2000), acoustic holography (Lindsey & Braun, 2000) and, the subject of

this thesis, time-distance helioseismology.
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1.3 Time-Distance Helioseismology

1.3.1 Principle

Time-distance helioseismology (Duvall et al., 1993b) aims at producing three-dimen-
sional maps of the subphotospheric flows, temperature inhomogeneities, and possi-
bly magnetic field. This technique proposes to measure the time it takes for a
wavepacket to travel between any two points on the solar surface, in either direc-
tion. An acoustic wave packet will reach deeper layers as the horizontal separation
between the two points is increased. Surface gravity waves, which propagate hori-
zontally, can be used to probe the near surface. Although the wavefield observed at
a given point is due to a random superposition of waves generated by distant source
events, the travel time between two locations can be determined from the temporal

cross-correlation function of the oscillation signal.

Figure 1.3 shows a theoretical cross-correlation as a function of the distance be-
tween two points and the correlation time lag (calculated for a spherically symmetric
solar model). The first ridge corresponds to acoustic waves propagating in between
the two points without additional reflection from the solar surface. The next ridge
corresponds to waves which arrive after one reflection from the surface, and the
ridges at greater time delays result from waves arriving after multiple bounces. The
backward branch associated with the second ridge corresponds to waves reflected on
the far side of the Sun. In most applications, only the direct (first-bounce) travel

times are measured.

Local inhomogeneities in the Sun will affect travel times differently depending
on the type of perturbation. For example, temperature perturbations and flow
perturbations have very different signatures. Given two points on the solar surface,
1 and 2, the travel time perturbation due to a temperature perturbation is, in
general, independent of the direction of propagation between 1 and 2. However a
flow with a component directed along the direction 1 — 2 will break the symmetry
in travel time for waves propagating in opposite directions: waves move faster along
the flow than against it. Magnetic fields introduce a wave speed anisotropy and will

have yet another travel-time signature (this has not been detected yet).
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Theoretical Time—Distance Diagram

/77 ey e
') -

300

250 |

time, min

0 50 100 150
distance, deg

Figure 1.3: Theoretical cross-correlation function for p modes as a function of time
lag and arc distance, also called the time-distance diagram. The temporal cross-
correlation function between the signal, ¢, measured at points 1 and 2 is defined by
C(1,2,t) = [ ¢(1,t') ¢(2,t' +1¢) dt’. In this calculation the solar model is spherically
symmetric, and C'(1,2,¢) only depends on the arc distance between 1 and 2 and is
symmetric with respect to the correlation time lag, t. (Courtesy: A.G. Kosovichev)
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1.3.2 Recent Results

The observational technique for time-distance helioseismology, the measurement of
travel times, is rather well established. The interpretation of the travel-time per-
turbations has not been developed to the same degree. The interpretation of travel
times is a two step procedure: the forward problem and the inverse problem. The
forward problem of time-distance helioseismology is to compute the sensitivity of
travel-time perturbations to local perturbations in a reference solar model, i.e. sen-
sitivity kernels. Traditionally, the observations have been modeled in the ray ap-
proximation Kosovichev (1996). The ray approximation is essentially valid when
inhomogeneities vary smoothly on a scale larger than the central wavelength of the
wave packet. Recently Jensen et al. (2000) and Birch & Kosovichev (2000) computed
wave-based kernels in the single source approximation, where waves at one point are
assumed to have been generated by a causal source at the other point. We argue in
chapter 3 that travel-time sensitivity kernels must include two essential ingredients:
(i) a physical description of the wavefield generated by distributed random sources

and (ii) the details of the travel-time measurement procedure.

The inverse problem, i.e. using travel-times to learn about how the Sun differs
from a model, is a separate issue. Techniques for the 3D inversion of time-distance
data have been developed by Kosovichev (1996) and Jensen et al. (1998). The
errors in the travel-time measurements, which are essential to solving the inverse
problem, are mainly due to realization noise. An important unsolved problem is
how to estimate these errors. Notice also that the inverse problem is more or less
difficult to solve depending on what data are to be inverted. In a commonly used
scheme the travel-time is measured between a central point and a set of surrounding
annuli or quadrants. These measurements are mostly sensitive to a region close to
the central point. Duvall has implemented a different averaging scheme which would
enhance the sensitivity at a target location in the solar interior, by considering all

rays which intersect at that location (deep-focusing technique: Duvall, 1995).

Most inversions of travel-time data have been done in the ray approximation.
Some of the main results concern large-scale subsurface zonal and meridional flows,
convective structures, and flows and sound-speed perturbations below sunspots.

Meridional flows, from the equator toward the poles, were first observed in surface
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Doppler images with an amplitude of 10-20 m/s (e.g. Howard & LaBonte, 1980;
Duvall, 1979). With time-distance helioseismology, Giles et al. (1997) and Giles
(2000) showed that these flows persist in depth over a significant fraction of the
convection zone. The data are consistent with a small return flow at the base of
the convection zone (3 m/s, equatorward). The meridional circulation may play an
important role in the transport of magnetic flux and the cyclic polar field reversal.

Giles (2000) also confirmed the torsional oscillations.

Convective structures at the supergranular scale (30 Mm) were investigated by
Duvall et al. (1997) and Kosovichev & Duvall (1997). In the upper layers (2-3
Mm) horizontal outflows were detected from the center of supergranules. The su-
pergranulation flow pattern becomes very weak below 5 Mm. It is estimated that
the correlation between internal flows and surface flows switches sign at depths of
5-10 Mm (Duvall, 1998; Zhao, 2003; Braun & Lindsey, 2003), suggesting the exis-
tence of a “return flow” below these depths. The vertical flows of supergranules have
been very difficult to measure. A more extensive review of what is known about

supergranulation is presented in Sect. 2.2.

One of the exciting areas of time-distance helioseismology concerns sunspots.
Downflows were detected below sunspots (Duvall et al., 1996) as well as wave speed
perturbations (e.g. Kosovichev et al., 2002). Recently, Zhao et al. (2001) inferred
mass flows around a sunspot below the solar surface. Powerful converging and down-
ward directed flows were detected below the sunspot at a depth of 1.5 to 5 Mm,
which may provide further evidence for downdrafts and vortex flows suggested for
a cluster model of sunspots (Parker, 1979). The sunspot appears to be a relatively
shallow phenomenon with a depth of 5-6 Mm. A strong mass flow across the sunspot
is found at a depth of 9-12 Mm. In a complementary study, Gizon et al. (2000)
used f modes to probe horizontal flows around sunspots in the first 2 Mm beneath
the surface. The sunspots are surrounded by outflows (moat flows) with velocities
peaking at the outer edge of the penumbra. Moat flows have a fairly well defined
boundary, despite azimuthal variations. There is a counter flow at the moat bound-
ary, suggesting the existence of a downflow around the moat. In the penumbra,
the subsurface outflow is much smaller than the surface Evershed flow observed in

Dopplergrams. The Evershed effect may therefore be a very shallow phenomenon,
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as suggested by current theories (Schlichenmaier et al., 1998).

1.3.3 Basic Procedure

Data Requirements

The fundamental data of modern helioseismology are high-resolution Doppler images
of the Sun’s surface. In order to assess the science that can be extracted from these
data by means of local helioseismology, one needs to take into consideration the
field of view, the temporal and spatial resolutions, the observation duration, and
the overall quality, durability and continuity of the data.

Travel-times are sensitive to inhomogeneities in the vicinity of the geometrical ray
path connecting two surface locations. The maximum depth that can be reached
is a function of separation distance. For example, distances greater than 45° are
required in order to reach the base of the convection zone with p modes. The outer
layers of the convection zone are best probed with high-degree f modes.

A cadence of one image per minute is the norm in helioseismology. There is no
obvious need for a higher cadence since high-frequency traveling waves have small
amplitudes above the Nyquist frequency at 8.33 mHz. A spatial sampling, d, on
the Sun’s surface gives access to angular degrees up to [ = 7R /d near disk center.
Since there is little mode power beyond [ = 2500, no better sampling than d = 0.9
Mm is required. The study of near-surface phenomena requires high degree modes.
Lower degree modes are essential as we probe deeper into the Sun, in combination
with high degree modes to evaluate the surface contribution to the total travel-time
perturbations.

The level at which a buried localized perturbation is detectable depends on the
depth, size and type of the perturbation, and on the observation duration, 7. The

172 Duvall recently made an estimate of

noise level is expected to go down like 7T~
the magnitude of a flow perturbation that can be detected in one solar rotation as
a function of depth in the solar interior (see Gizon et al., 2001a). He constructed
travel-time maps using rays that intersect at various target depths (deep-focusing
technique). The standard deviation of the inferred velocity values gives an estimate
of the “noise” level. Over one solar rotation it should be possible to obtain valuable

flow maps (10° resolution) in the upper 100 Mm of the convection zone. It might
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however be very challenging to resolve flows near the bottom of the convection zone
(Birch, 2002). As will be shown in chapter 2, local flows can be measured with very

high precision near the solar surface.

MDI Dopplergrams

The Michelson Doppler Imager has provided line-of-sight Doppler velocity images
of the Sun’s surface since 1996 with an excellent duty cycle (SOHO is in a halo
orbit around the Sun-Earth Lagrange point L;). MDI Dopplergrams are obtained
by combining 4 filtergrams on the wings and core of the Ni 6788 A absorption line,
formed just above the photosphere. Dopplergrams are available at a one minute
cadence.

MDI operates under several observing modes. The Dynamics Program runs for
2 to 3 months each year and provides 10242 full-disk Doppler images. The plate
scale is 2” per pixel, or 0.12 heliographic degrees at disk center (d = 1.45 Mm). The
orientation is usually parallel to the solar rotation axis. The Structure Program
provides continuous coverage: full-disk images are binned onboard into a set of
about 20, 000 regions of roughly similar projected areas on the Sun to make use of
the narrow telemetry channel. The Structure Program data are used to measure
mode frequencies up to [ = 250 (global helioseismology, Fig. 1.1). MDI can also
operate in High-Resolution mode by zooming on a 11’ square field of the Sun with
a plate scale of 0.625” per pixel and a diffraction-limited resolution of 1.25”. A high

resolution power spectrum is shown in Fig. 1.4.

Filtering

In general, the first operation in time-distance helioseismology is to track Doppler
images at a constant angular velocity, (iack, to remove the main component of
solar rotation (period around 27 days). In this process, images are remapped onto
different projection grids, such as the cylindrical equal-area projection or Postel’s
azimuthal equidistant projection. A series of tracked images form a datacube, i.e.
the surface Doppler velocity as a function of the two spatial coordinates and time.
Usually, the temporal mean of the images is subtracted from each image in order

to remove the latitudinal gradient in rotation, but waves are still advected by flows
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High—resolution power spectrum from MDI
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Figure 1.4: Power spectrum from an 8-hour campaign of high-resolution MDI
Doppler images. The ridges are visible to very high [ values. The power close
to zero frequency is due to solar convection, granulation and supergranulation. The
lowest frequency ridge corresponds to the surface gravity waves.

measured in a frame co-rotating with the Sun at the angular velocity Qack-

A filtering procedure is then applied to the datacube in Fourier space (horizontal
wavevector k and angular frequency w). In order to remove granulation and super-
granulation noise, frequencies below 1.5 mHz are filtered out. The data are further
filtered in Fourier space to select parts of the wave propagation diagram.

For example, in chapter 2, we will use f modes to probe near-surface flows. In

this case, all p modes are removed by applying a filter function that only depends

on the wavenumber k& = ||k||. This function is 1 if, for a given k, w is such that
lw+ \/gk| < kUeys (1.2)

and 0 otherwise. The parameter U,y selects a region around the f-mode dispersion

relation, w? = gk. A reasonable choice is Uy = 1 km/s. This value allows for large
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Doppler frequency shifts introduced by flows, and does not let the p; ridge through.
In the case of p modes (sect. 2.6) a different filtering is used. The f-mode is
filtered out and a phase speed filter is applied. Acoustic waves with the same
horizontal phase speed, v, = w/k, travel the same horizontal distance A (Bogdan,
1997). If we want to measure the travel time for acoustic waves propagating between
two surface points separated by A, it is appropriate to consider only those waves
with the same phase speed v,. Thus, the choice of the phase speed depends on the
travel distance. Standard codes for tracking, remapping, and filtering the data have
been developed by Rick Bogart, Tom Duvall, and Peter Giles (see Giles, 2000).

In all cases, the filtered signal, ¢, can be written as
¢>:?{é-v}, (1.3)

where v is the Eulerian surface velocity and £ is a unit vector in the direction of the
line of sight. The operator F describes the filter used in the data analysis, which
includes the time window (time duration 7'), instrumental effects, and other filtering.
Systematic errors in helioseismic analyses can be introduced by imperfections in the
Dopplergrams due to focus changes, plate scale, detector misalignment, and point-

spread function. These imperfections are symbolically included in the operator F.

Cross-Correlations

The main computation in time-distance helioseismology is the temporal cross-correla-
tion, C'(1,2,t), between the signal, ¢, measured at two points, 1 and 2, on the solar

surface,

C(1,2,t) = %/OO dt’ ¢(1,t') ¢(2,t + 1), (1.4)

0
where T is the time duration of the observation. The cross-correlation is useful as
it is a phase-coherent average of inherently random oscillations. It can be seen as
a solar seismogram, providing information about travel times, amplitudes, and the
shape of the wave packets traveling between any two points on the solar surface. For
surface gravity waves, the cross-correlation displays two branches (Fig. 1.5). The
positive-time branch corresponds to waves moving from 1 to 2, and the negative-

time branch represents waves moving in the opposite direction. For acoustic waves
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Figure 1.5: Surface gravity wave cross-correlations. The left panel shows an example
of an observed cross-correlation C'(1,2,t) averaged over all possible pairs of points
(1,2), as a function of distance A = ||2 — 1|| and time t. Red refers to positive
values and blue to negative values. The observations are 8-hr time series from the
MDI high-resolution field of view. The filter F is chosen to isolate surface gravity
waves. The right panel shows the theoretical cross-correlation from the model which
we discuss in § 3.3.

there are additional branches, at larger absolute time, corresponding to multiple

bounces off the surface in between 1 and 2 (Fig. 1.3).

Spatial Averaging

Since solar oscillations are driven by a stochastic process, the line-of-sight velocity is
a sample function of space and time drawn from some probability distribution. The
cross-correlations have a significant amount of “realization noise”, and it has proved
difficult to measure wave travel times between two individual pixels on the solar
surface for 7' < 1 day. In order to enhance the signal-to-noise ratio, we construct

various spatial averages of the cross-correlations before measuring the travel times.

In chapter 2 we will essentially be interested in measuring flows. To measure sep-

arately flows in the west direction and in the north direction, the cross-correlations
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are averaged over quadrants:

(@, A ) = // Clz,2.1) d2+// C,m,t)dl,  (L3)

(@, A 1) :// C(,2.1) d2+/ C(1,a,1) d (1.6)

where W, E, N, and S are four quadrants of an annulus of radius A centered on
the spatial pixel . The annulus is one pixel thick. These quadrants correspond to
the cardinal directions west, east, north, and south (by convention, the direction of
solar rotation is west). In practice, the average cross-correlation for each quadrant
is obtained by cross-correlating the signal at the central pixel, @, with the signal
averaged over the quadrant. A third cross-correlation, C°, is obtained by averaging

over the whole annulus:

C(x, A, t) = // C(x,2,t) d2 (1.7)

where T is the total area of the annulus. The positive-time part of C° contains
information about outgoing waves from @, and the negative-time part about waves
converging toward the center of the annulus. In the case of the f modes, which prop-

agate horizontally, C° can be used to provide a proxy for the horizontal divergence
of the flow field.

Travel Times

At fixed  and A, a cross-correlation oscillates around two characteristic (first-
bounce) times ¢ = +t,. Duvall et al. (1997) measure travel times by fitting a
Gaussian wavelet to the cross-correlation. This procedure distinguishes between
group and phase travel times, by allowing both the envelope and the phase of the
wavelet to vary independently. The positive-time part of the cross-correlation is

fitted with a function of the form

w(t) = A exp[—y*(t — t,)*] coslwo(t —71)], (1.8)
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where all parameters are free, and the negative-time part of the cross-correlation is

fitted separately with
w_(t) = A exp[—72(t + t4)?] coslwo(t +71)] . (1.9)

The times 7, and 7 are the so-called phase travel times. The basic observations
in time-distance helioseismology are the travel-time maps 7, (x,A) and 7_(x, A),
measured for each of the three averaged cross-correlations, C™¢(x, A, t), C*(x, A, t),
and C°(z, A, t).

Let us consider the cross-correlation C'"®. The phase travel time 7, is for waves
that propagate westward, and 7_ is for waves that propagate eastward. For f-modes,
which propagate horizontally, the travel time difference 7 — 7, is proportional to
the westward component of the flow in the neighborhood of . The northward flow
is related to the south-north travel-time difference. This interpretation is valid for
flows that vary smoothly within a distance A from @. In Sect. 2.1, we determine a
simple calibration constant that enables to convert the f-mode travel-time differences
into horizontal flow velocities (in m/s). In the case of the cross-correlation C°, the
difference 7. — 7, is a proxy of the horizontal divergence of the local flow, while the
mean travel (7_ 4+ 7_)/2 is connected to local wave-speed perturbations.

A fundamental question is how a general perturbation in internal solar properties
affects travel times (the forward problem). This question is addressed in detail in

chapter 3.

1.4 Results Contained in this Work

In chapter 2 we present new observations of the solar velocity field in the upper
convection zone. To achieve this we employ the technique of time-distance helioseis-
mology which consists in measuring the time it takes for seismic waves to propagate
between different points on the solar surface.

Surface-gravity waves (f modes) are used to map the near-surface horizontal
flows with a high spatial resolution. We discover that supergranulation exhibits
wave-like properties, undergoing oscillations with periods of 6-9 days. This points

to a mechanism involving traveling-wave convection, and explains the observations



1.4. RESULTS CONTAINED IN THIS WORK 17

of anomalously fast rotation of the supergranulation pattern. In addition, the effect

of the Coriolis force on supergranular flows is observed for the first time.

We also study flows near regions of magnetic activity. Near the solar surface, we
detect a large-scale 50 m/s flow converging toward active regions, whose origin is
unknown. Deeper inside the convection zone, and using acoustic waves (p modes),
we detect a new component of the solar dynamics: the north-south component of
the “torsional oscillations”, i.e. bands of slower and faster meridional motion with

an 11-yr period.

In chapter 3, we discuss the general forward problem of time-distance helio-
seismology, i.e. the computation of travel-time perturbations which result from
perturbations to a solar model. We present a new and physically motivated general
framework for calculations of the sensitivity of travel times to small local pertur-
bations to solar properties, taking into account the fact that the sources of solar
oscillations are spatially distributed. In addition to perturbations in sound speed
and flows, this theory can also be applied to perturbations in the wave excitation

and damping mechanisms.

Our starting point is a description of the wave field excited by distributed random
sources in the upper convection zone. We employ the first Born approximation to
model scattering from local inhomogeneities. We use a clear and practical definition
of travel-time perturbation, which allows a connection between observations and
theory. In this framework, travel-time sensitivity kernels depend explicitly on the

details of the measurement procedure.

After developing the general theory we consider the example of the sensitivity
of surface gravity wave travel times to local perturbations in the wave excitation
and damping rates. We derive explicit expressions for the two corresponding sen-
sitivity kernels. We show that the simple single-source picture, employed in most
time-distance analyses, does not reproduce all of the features seen in the distributed-

source kernels developed in this chapter.

In chapter 4 we address prospects for asteroseismology. Long and continuous

space-based observations of stellar pulsations will be made available in a few years.
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Asteroseismology provides us with the possibility of determining the angular velocity
of a pulsating Sun-like star, €2, and the angle, 7, between the direction of the rotation
axis of the star and the line of sight. A knowledge of ¢ is important not just for
obtaining improved stellar parameters, but also in order to determine the true masses
of extra-solar planets detected from the radial velocity shifts of their central stars.
By means of Monte-Carlo simulations, we estimate the precision on the measurement
of 7 and other stellar parameters. We find that the inclination angle can be retrieved
accurately when ¢ 2 30° for stars that rotate at least twice faster than the Sun.
We also investigate the signature of localized magnetic activity in the spectrum
of the global modes of oscillation of a Sun-like star. We estimate the measurement
precision of the even splitting coefficient as (a measure of asphericity). It is found
that, under certain conditions, some information can be retrieved about the surface

distribution of stellar activity.



Chapter 2

Time-Distance Helioseismology:

Observations !

!This chapter is essentially a compilation of articles that appeared in Solar Physics (Duvall
& Gizon, 2000), Nature (Gizon et al., 2003), the Astrophysical Journal (Beck et al., 2002), and
the proceedings of the TAU Symposium 203 (Gizon et al., 2001b) and of the SOHO 12 confer-
ence(Hindman et al., 2003; Gizon & Duvall, 2003). Although I did the final analysis of the
travel-times in all cases, many people contributed to these observations. The cross-correlations
were computed using the code of Tom Duvall, except for § 2.6. John Beck computed the cross-
correlations in § 2.6 using Peter Giles’ code. Tom Duvall did part of the writing in § 2.1, Brad
Hindman in § 2.5 and John Beck in § 2.6. Useful discussions with Jesper Schou and Douglas Gough
are acknowledged.
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2.1 Time-Distance Helioseismology with f Modes

In this introductory section, we demonstrate the utility of f-mode time-distance
helioseismology. Travel times measured for the f mode have been used to study
flows near the solar surface in conjunction with simultaneous measurements of the
magnetic field. We measure the spatial and temporal power spectra of the super-
granular flows for a six-day observing sequence. Previous measurements of Doppler
surface rotation, small magnetic feature rotation, supergranular pattern rotation,
and surface meridional circulation are confirmed and compared to the f-mode mea-

surements.

2.1.1 Introduction

The fundamental, or f, modes are classified as surface gravity waves with very nearly
the classical water-wave dispersion relation, w? = gk, where w is the angular fre-

2 is the gravitational acceleration at the Sun’s surface, and

quency, g = 274 m s~
k = 1/Rg is the horizontal spatial wavenumber expressed in terms of the spherical
harmonic degree [ and the solar radius R;. High-degree f modes propagate hori-
zontally. MDI full-disk data show that f modes are excited with a similar frequency
envelope to the acoustic p modes, peaking near circular frequency v = w/2m = 3
mHz with a full width at half maximum of 1 mHz. The envelope peak occurs near
[ = 880 and the full power width covers the degree range 600-1200. In this range
the f mode kinetic energy is concentrated within 2 Mm of the solar photosphere.
There are several advantages to using the f mode as a tracer of flows near the solar
surface. Using the time-distance technique, there is direct sensitivity to both hori-
zontal components of the flow. Already this is much better than direct Doppler mea-
surements, which see only the line-of-sight component. In this respect the f-mode
time-distance technique is similar to correlation tracking of granulation (DeRosa
et al., 2000). Other techniques for measuring vector flows include ring diagrams
(Hill, 1988), p-mode time-distance helioseismology (Duvall et al., 1996) and knife-
edge diagnostics (Lindsey et al., 1996). With f modes, there is no direct sensitivity
to vertical motion, although by examining the horizontal divergence it may be pos-

sible to estimate the vertical motion. Because we know the f-mode eigenfunctions,
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the depth over which we are averaging is well defined (Fig. 2.1a).

As f modes have not been been used in time-distance helioseismology before, the
purpose of this section is to test the utility of the technique by first observing well-
known phenomena. To this end, we simultaneously measure three tracers of solar
rotation that in the past have given similar yet consistently different rotation rates
(Beck, 2000). By using the same instrument with simultaneous observations, we
expect that some of the possible systematic errors will be common. The first tracer
we use is the f-mode advection rate determined from time-distance helioseismology,
which we identify as a proxy of the surface rotation. This is compared to the surface
Doppler rate averaged over 18 years by Snodgrass & Ulrich (1990). The tracer that
gives the highest apparent rotation rates is the supergranulation pattern (Duvall,
1980; Snodgrass & Ulrich, 1990). The third tracer is obtained by tracking the small
magnetic features (Komm et al., 1993b).

2.1.2 Observations

MDI full-disk Dopplergrams (Scherrer et al., 1995) were used to study flows for
the time period 1999 April 14, 16h UT to 1999 April 20, 16h UT, or a total of
six days. The region studied was centered at Carrington longitude 180°. This
particular region was picked because it was quiet and the data coverage was very
good as it was during MDI’s three months of continuous coverage for 1999 (97.3%
of the minutes had usable data during the six days). Three separate regions were
studied, with all three of size 45° in longitude and in latitude, with one centered on
the equator, one centered at 40° North and the other at 40° South. There is some
overlap between the regions, and as the equatorial and higher latitude areas were
tracked at different rotation rates, this difference was used to calibrate one of the
signals, as described below. The By angle was —5° during the observations, and we

estimate that latitudes ranging from —55° to +45° can be analyzed safely.

Doppler images were calibrated and located in the CCD frame using the normal
MDI pipeline routines. The first step in the analysis is the tracking of the regions to
be studied. Images were interpolated onto Postel’s azimuthal equidistant projection

(Pearson, 1990) centered on a point in latitude 0°, +40°, —40° and at longitude
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Figure 2.1: F-mode kinetic energy density versus height z, defined by p(2)e?** where

p is the density and k the wavenumber. (a) Kinetic energy density for f modes with
degrees 400, 800 and 1200. Calculations are for a plane-parallel atmosphere with
constant gravity. The height is measured from the photosphere (radius 695.99 Mm).
A free surface is placed 2 Mm above the photosphere. The internal density is taken
from the standard solar model of Christensen-Dalsgaard et al. (1993). Above the
temperature minimum, density is from the chromospheric model C of Vernazza et al.
(1981). Curves are normalized to the same arbitrary constant. (b) Average kinetic
energy density versus height for the f modes used in this study. The mean and
standard deviation of this distribution are respectively —1.05 Mm and 1.01 Mm.
The location of the absolute maximum coincides with the highly superadiabatic
layer.
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180°. The azimuthal equidistant projection is linear in great-circle distance mea-
sured from the central point of the projection to outlying points. This projection
is used rather than a longitude-sin(latitude) projection so that three-dimensional
Fourier filtering can be used on the data more effectively. The regions were followed
at a rate appropriate for the central latitude and consistent with the supergranule
pattern rate measured by Snodgrass & Ulrich (1990). During the time period of the
observations MDI was observing both full-disk Dopplergrams and magnetograms
with one-minute cadence. Both Dopplergrams and magnetograms were processed
by the above procedure so that detailed comparisons between the two could be
made. A smooth background image (spatial scale 0.2 R) was subtracted from each

Dopplergram before the projection.

The magnetograms were also processed to remove cosmic rays and smoothed
in time. To remove the effect of cosmic rays striking the CCD during the expo-
sure/readout, the temporal pixel-by-pixel median of three successive images was
taken and the resultant median replaced the middle image. The cosmic rays com-
monly affect pixels in a small neighborhood but only for a single image and so are
generally removed by the median procedure. This procedure also smooths the field
on a three-minute time scale. After the median procedure, images over a ten-minute

interval are averaged and a new time series is constructed of these ten-minute means.

To obtain travel times, a similar procedure is used as for p modes (Duvall et al.,
1997), except that the filtering is a little different. For each 8-hour interval, the
datacube goes through a three-dimensional Fourier filter that cuts off power below
2 mHz (mostly supergranulation) and isolates the f mode ridge. The resultant power
spectrum peaks near v = 2.9 mHz and spherical harmonic degree [ = 800. The full
widths at half maximum are Av = 0.7 mHz and Al = 400. Figure 2.1b displays
the average kinetic energy density versus depth for the average wave packet. We see
that we can probe the first 2 Mm below the solar surface, with maximum sensitivity
at a depth of 1 Mm.

The temporal signal at a central pixel is cross-correlated with the signals in
the four quadrants of an annulus centered in arc distance, as described in chapter
1. These quadrants are centered on the cardinal directions north, south, east, and

west. Before measuring the travel times, average cross correlations are made for the
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waves propagating in the directions west-east and north-south. Additional averages
are made for waves propagating outward from the center and inward toward the
center of an annulus. The difference between outward and inward travel times is
expected to be proportional to the horizontal divergence of the flow. In addition, to
make the signal-to-noise acceptable, the cross correlations for a 2x2 grid of origins
are averaged, thereby reducing the spatial resolution of the resultant maps by a
factor of two below that of the original data.

The thickness of an individual annulus is the same as the spatial sampling of the
original images, or 0.12° . Four of these are combined during the fitting process,
and so all pixels from 0.42° to 0.9° are used in the measurements. The angle 0.9°
corresponds to a distance of 7.5 pixels in the original spatial sampling and 3.75 in
the reduced spatial scale.

The cross correlations were then fit by least squares to a harmonic function
multiplied by a gaussian envelope, sometimes called a Gabor wavelet. This func-
tional form has been used for the case of p modes (Kosovichev & Duvall, 1997), and
seems to work reasonably well for the f modes. The difference between phase times

for counter-propagating waves is proportional to the local horizontal flow velocity
(Kosovichev & Duvall, 1997).

2.1.3 Supergranulation Pattern

Supergranulation on the surface of the Sun is a pattern of horizontal outflows with
a distinct scale of 30 Mm and an apparent lifetime of 1 day, outlined by a network
of small magnetic features. An example of the divergence signal (inward minus
outward travel time) for one of the 18 8-hour intervals analyzed is shown in Fig. 2.2
with magnetic field information overlaid. A white, or positive signal, corresponds to
an outflow from the center. From the size of the features present, their lifetime, and
the presence of the magnetic field in the dark lanes, we identify supergranulation
as the main contributor to the signal. This can also be seen by making a spatial
power spectrum of the 18 frames covering the 6 days. Averaging over all temporal
frequencies, the spatial spectrum is shown in Fig. 2.3. The peak near degree [ = 120
is characteristic of the supergranulation and has been seen before in the surface

Doppler observations (e.g. Hathaway et al., 2000). The histogram of the divergence
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Figure 2.2: Example of the divergence signal (inward travel times minus outward
times) with small magnetic features overlaid. Magnetic field is displayed as green
and red for the two polarities when the magnitude of the field is larger than 15 Gauss.
The gray scale is for the divergence signal with white shades for outflow and dark
shades for inflow. The color-bar indicates the travel time difference in seconds. The
line Y=0 corresponds to the equator and X=0 corresponds to Carrington longitude
180°. The time-distance data is averaged over 8.5 hours starting at the time shown
on top.
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Figure 2.3: Power versus horizontal wavenumber averaged over temporal frequency
and azimuth for the divergence signal (inward travel times minus outward times).
The power scale is arbitrary.

signal is shown in Fig. 2.4. An asymmetry between the regions of divergent and
convergent flows is clearly seen. There are more points associated with a convergent
flow than with a divergent one, and the distribution is skewed. It should be noted
that both these properties are present in simple models of incompressible hexagonal

convection near onset (e.g. Veronis, 1959).

In Fig. 2.5 we show the temporal power spectrum of the divergence signal av-
eraged over all spatial frequencies. We see that much of the power is at very low
frequencies, with 85% of the power below 6 pHz. This is reasonably consistent
with a Lorentzian-shaped temporal spectrum, as suggested in the Harvey (1985)
model, although we note that the power peaks at a non-zero frequency. We also
studied the temporal correlation of these images and found that it was significantly
negative (—0.1) at a time lag of 3 days, consistent with the observation that new

supergranules appear near the boundaries of old supergranules (Shine et al., 2000).
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Figure 2.4: Histogram of the divergence signal (inward travel times minus outward
times). The maximum of the histogram occurs near —2.5 s and the skewness is 0.42.
There are about 20% more points with negative divergence than positive divergence.
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Figure 2.5: Power of the divergence signal versus temporal frequency averaged over
horizontal wavenumber. The power scale is arbitrary.
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2.1.4 Rotation and Meridional Circulation

To measure differential rotation, we take the difference between the eastward and
the westward travel times, §7°%. After averaging in longitude, we obtain 67 (\)
versus latitude, A. In order to convert the travel-time difference into a westward

velocity, v,, we seek a calibration constant « such that
ve(A) = a 07 (N) . (2.1)

Because the three regions centered at latitude —40°, 0°, and 40° were tracked at
different known tracking rates and because they overlap in latitude (each is 90°
wide), it is possible to derive « from the data. We require that the velocity be the
same for the equatorial region (eq) and for the northern region (up) where they

overlap:

V(0°)+a ot (N)|., = V(40°) + a 67" (V)| for 35° <A <45°, (2.2)

eq up

where V() is the differential rotation velocity from Snodgrass & Ulrich (1990). The
optimal calibration constant is & = 7.08 m s=2. The angular velocity is then given
by Q = (v, + V)/(RscosA). As a check, we then compare the angular velocity in
the overlap region between the equatorial and southern regions and find excellent
agreement within 0.3 nHz.

The angular velocity 2 from f modes is compared with the long-term average of
the surface Doppler rate in Fig. 2.6a. We see that the two agree rather well. We also
measured the near-surface meridional circulation from the south-north travel-time
differences using the calibration constant «. The results are shown in Fig. 2.6b,
compared with the motion of the magnetic features measured by Meunier (1999). It
appears that from six days of data we can make remarkably consistent measurements
of rotation and meridional circulation.

To study rotation of the supergranulation pattern we tracked the divergence
signal in time, with a time-lag of 8 hour. At each latitude, one-dimensional spatial
cross-correlations were computed. The cross-correlations are averaged and then fit
to a Gaussian function. The spatial shift at correlation maximum is converted to

a longitude, divided by eight hours, and added to the tracking rate to determine
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Figure 2.6: (a) f-mode advection rotation rate (solid curve) and surface Doppler
rotation (dashed curve) versus latitude. The surface Doppler rate is the average
from 1967-84 given by Snodgrass & Ulrich (1990), which is found to be 3.4 nHz
higher on average. (b) Meridional circulation versus latitude. The solid curve and
crosses are the f-mode measurements. The dashed curve is from the motion of
the small magnetic features (Meunier, 1999) for the first year of MDI operation in
1996-97.
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Figure 2.7: Rotation rates measured in this work compared with previous works.
From the top, the open circles with error bars are derived from the supergranulation
patterns of the divergence signal (this work) and the solid line through the values is
the supergranulation feature rate for years 1967-1987 of Snodgrass & Ulrich (1990).
In the middle, the crosses with error bars are from the MDI magnetic correlations
(this work) and the underlying solid line plots the average over years 1975-1991 of
the small magnetic feature rate (Komm et al., 1993b). At the bottom, the open
squares with error bars are the f-mode advection measurements from this study and
the nearby solid line is from the average surface Doppler rotation rate for years
1967-1984 of Snodgrass & Ulrich (1990).

a pattern rotation rate. The procedure for the small magnetic features is similar

except that the time-lag is ten minutes, as this gave the smallest errors.

The three rotation measures are compared with previous work in Fig. 2.7. We
find that there is good agreement with earlier data averaged over decades. This
figure confirms differences between the rotation rate of the plasma near the solar
surface and the apparent rotation rates of supergranulation and magnetic features.
[t was suggested long ago (Foukal, 1972) that the difference between the rotation of
magnetic patterns and the surface Doppler rate may be due to magnetic structures
being “rooted” in deeper, more rapidly rotating layers. The high supergranulation

rate is more puzzling. An explanation is presented in the next section.



2.1. TIME-DISTANCE HELIOSEISMOLOGY WITH F MODES 31

To learn more about the difference between the rotation rates of the supergran-
ulation pattern and the small magnetic features, we examined a movie made from
frames similar to Fig. 2.2. After removing differential rotation, the movie confirmed
that a small motion of the magnetic features can be seen in the eastward direction
(slower rotation) with respect to the supergranulation network. The magnetic fea-
tures stayed in the dark lanes (convergent flows) as this slow apparent drift took
place.

Simultaneous measurements of velocity and magnetic field with MDI is a pow-
erful combination to study the dynamics of the near solar surface. Time-distance
helioseismology of the f mode has been shown to be a useful tool to study horizontal
flows. In the next section, we focus on the mysterious dynamics of the supergranu-

lation using the same time-distance technique but a much longer MDI data set.
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2.2 The Dynamics of Supergranulation

The dynamics of the supergranulation is poorly understood and there is as yet no
explanation for the observation that the supergranular pattern appears to rotate
faster than the magnetic features. In this section we show that supergranulation
undergoes oscillations and supports waves with periods of 6-9 days. The nature of
supergranulation appears to be travelling-wave convection. The waves are predom-

inantly prograde, which explains the apparent superrotation of the pattern.

2.2.1 Introduction

Convective-like motion on the solar surface consists of two main components: gran-
ulation and supergranulation. Granules, with a typical size of 1.5 Mm, are well
understood as a convective phenomenon and can be studied with realistic numeri-
cal simulations (Stein & Nordlund, 2000). Supergranules, however, have remained
puzzling since the early observations by Hart (1954). Hart (1956) described local
variations with a spatial periodicity of 26 Mm and an rms velocity of 0.3 kms !,
but rejected a convective instability as an explanation on the basis that the scale of
the phenomenon was too “large”. In a classic paper, Leighton et al. (1962) reported
“large cells of horizontally moving material distributed roughly uniformly over the
entire solar surface” that are outlined by the chromospheric network. It is worth cit-
ing the physical description of supergranulation given by Simon & Leighton (1964)
nearly forty years ago, as it summarizes the current paradigm:

“The observed cellular flow pattern of the large-scale motions is strongly sugges-
tive of convective motions, and we tentatively propose that we are dealing with a
larger scale version of the familiar photospheric granulation — a supergranulation.
The observed dimensions of the large cells (32000 km) suggest that they originate
in the Sun’s convective envelope which extends from the bottom of the photosphere
to depths of 5000-100000 km. Although the lifetime (20 h) of the supergranulation
appears very long at first glance, if one considers the small velocity and the large
dimensions one finds that the matter in all probability does not circulate more than
once. This fact, coupled with the very irregular size and shape structure of the cells,

suggests that we are observing an example of non-stationary convection, rather than
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the stationary laminar convection of classical Bénard cells. Since we are able to
observe the supergranulation only from above, we have no means of determining the
geometrical shape of the convection pattern; it may be either a circulating flow or a
columnar convection such as a cloud or plume... In view of these considerations it
seems proper to ask whether there is a possible mechanism in the Sun which would
select cell depths of roughly 5000 km. A possible answer lies in the ionization zones

of either neutral He atoms or singly ionized He™, or perhaps both.”

“The observed horizontal motions provide a mechanism for building up relatively
strong fields in a narrow network pattern, as is observed. These magnetic channels in
turn suggest an explanation for the origin of the Ca™ emission network... Magnetic
fields would tend to be swept to the cell boundaries by the horizontal currents, and

concentrate there in strengths several times greater than the average field. ”

This description makes a lot of sense, although some points still need confirma-
tion. Despite several studies (e.g. Simon & Weiss, 1968) it remains to be shown
that a convective instability due to the recombination of ionized Helium is the ori-
gin of the distinct supergranular scale. The depth of the supergranulation layer is
largely unknown. It has been suggested that the properties of convective motions
in a highly stratified atmosphere may imply that supergranules are a deep phe-
nomenon, with depths in excess of their horizontal diameters (Parker, 1973). Local
helioseismic studies show that the correlation between internal flows and surface
flows appears to switch sign at depths of 5-10 Mm (Duvall, 1998; Zhao, 2003; Braun
& Lindsey, 2003), suggesting the existence of a “return flow” below these depths.
There have been a number of studies related to the influence of supergranular flows
on magnetic fields. It has been shown that a stationary cellular flow tends to expel
the magnetic field from the regions of fluid motion and concentrate the flux into
ropes at the cell boundaries (Parker, 1963; Galloway et al., 1977; Galloway & Weiss,
1981). For obvious reasons of simplicity, analytical or semi-analytical studies often
picture supergranulation as laminar convection, although, as noted above by Simon
& Leighton (1964), the flows must be highly turbulent and non-stationary. Recent
numerical simulations of stratified convection at high Rayleigh number have revealed
a very complex picture. It is now accepted that heat and momentum transport in

solar-like turbulent convection is controlled by a network of coherent cyclonic plumes
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sinking from the thermal boundary layer (Julien et al., 1996; Brummell et al., 1996).
The dynamics of individual plumes is dominated by strong vortex-vortex interac-
tions with neighboring plumes (Julien et al., 1996). Rast (2003) claims that the
scale of supergranulation may have its origin in the interaction and merging of in-
dividual granular plumes (see also Ploner et al., 2000). A somewhat related model
was proposed earlier by Rieutord et al. (2000, 2001) whereby supergranulation is
the result of a nonlinear large-scale instability of the granular flow, triggered by
exploding granules. In both these models, supergranulation is not a proper scale of
thermal convection, and the depth of supergranulation is determined by the depth
at which network plumes can remain stable (Rast, 1997). Realistic numerical sim-
ulations will be crucial in understanding the nature of supergranulation. Yet, the
solar convection zone is so highly turbulent and stratified that numerical modeling

at supergranular scales has remained elusive.

On the observational side, the original work of Leighton and coworkers has been
refined. A variety of methods have been used to characterize the distribution of the
cell sizes. A characteristic scale can be obtained from the spatial autocorrelation
function (e.g. Hart, 1956; Simon & Leighton, 1964; Duvall, 1980), the spatial Fourier
spectrum (e.g. Hathaway, 1992; Beck, 1997), and segmentation or tessellation algo-
rithms (Hagenaar et al., 1997). Although definitions vary, average cell sizes are in
the range 15-30 Mm. The topological properties of the pattern have been studied
by Schrijver et al. (1997). It is unclear whether there is a variation of cell sizes with
latitude: Rimmele & Schroeter (1989) and Komm et al. (1993a) report a possible
decrease with latitude, Berrilli et al. (1999) an increase, and Beck (1997) no signifi-
cant variation. The typical “lifetime” of the supergranular/chromospheric network,
obtained by fitting an exponential decay to the correlation function, is found to
be about 1 day (e.g Rogers, 1970; Worden & Simon, 1976; Duvall, 1980; Wang &
Zirin, 1989). An important observation by Beck & Duvall (2001) shows that the
temporal autocorrelation of the supergranulation pattern does not follow a simple
exponential decay with time but becomes negative after a few days. Thus e-folding
lifetimes may be misleading (we will come back to this point later). The typical rms
horizontal velocity of supergranular flows is known to be about 0.3 km s~!(e.g. Hath-

away et al., 2000). However, the vertical component of the flows has been extremely
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difficult to measure (e.g. Giovanelli, 1980) or infer (November, 1989). Miller et al.
(1984) cautioned that Doppler velocity measurements at the cell boundaries may be
polluted by the network field. The best estimate is perhaps due to Hathaway et al.
(2002) who find that the vertical flows have speeds of about 10% of their associated

horizontal flows or about 30 ms™—!

, although the topology of the vertical flows is
largely unknown. Perhaps even more difficult to measure are the related tempera-
ture fluctuations. Observers have searched for the thermal signature of a convective
process, i.e. rising hot material at the cell centers and sinking cool material at the
cell boundaries. Unfortunately, answers vary too widely (see Lin & Kuhn, 1992, and

references therein).

2.2.2 Anomalous Motion of the Pattern

Duvall (1980) showed that the rotation of the supergranular pattern is faster than the
photospheric plasma by approximately 5%. This anomaly has since been confirmed
by Snodgrass & Ulrich (1990) who used a local correlation tracking method with a
time-lag of At = 24 hr (see Fig. 2.7). In order to study this point in more detail, we
constructed a series of f-mode divergence maps of size 90° x 90° for the whole 1996
dynamics period (2 months) following the same method as described in the previous
section. To quantify the apparent motion of supergranules in the divergence maps
we used a local correlation tracking method (e.g. DeRosa, 2001) with various time-
lags At between frames. Around each point, we consider a small region apodized
by a Gaussian surface with a full width at half maximum of 3.84°, i.e. about
twice the supergranulation scale (see Fig. 2.8). At fixed Carrington longitude, small
regions separated by At are spatially cross-correlated. The spatial displacement at
correlation maximum, A, is obtained by fitting a parametric surface to the cross-
correlation. Three different parametric models were used for the fits (product of
Gaussian functions, cylindrical Bessel function .Jy(r)/r, product of sinc functions).
On average, we did not find a significant model-dependent bias. The accuracy of
the feature tracking algorithm was successfully tested on divergence maps locally
shifted by known amounts. The apparent velocity of the pattern is then given by
urct = Az /At.
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Figure 2.8: An individual map (8 hr average, 1996 MDI Dynamics run) of the
horizontal divergence of the flow field. White shades indicate a positive divergence.
Around each point, we consider a small region apodized by a Gaussian surface with
a full width at half maximum of 3.84° (black disk). Small regions separated by a
time-lag At are spatially cross-correlated. The spatial displacement at correlation
maximum, Az, corresponds to the apparent velocity upcr = Ax/At.
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Figure 2.9: Anomalous flows derived from the temporal evolution of the supergran-
ulation pattern, using a local correlation tracking method. (a) Apparent rotation of
the supergranulation pattern for At = 6, 8, 16, and 22 hr. For comparison, the cross
shows the equatorial rotation obtained by Snodgrass & Ulrich (1990) for At = 24 hr.
(b) Apparent meridional circulation as a function of time-lag, At. The meridional
motion appears to be equatorward for At > 20 hr. A P-angle correction was applied
to the data.
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Figure 2.9 shows the apparent rotation and meridional circulation that we ob-
tained as a function of At. The meridional circulation is very small and even equa-
torward for large At. The rotation rate increases rapidly with A¢. It has been
speculated (e.g. Corbard & Thompson, 2002) that the fast rotation of the pattern
may be a consequence of convective cells deeply rooted in the shear layer below the
surface (rotation increases inward at low latitudes). However, Beck & Schou (2000)
point out that rotation measured from correlation tracking (At = 24 hr) is faster
than the rotation of the solar plasma measured at any depth in the interior. It is
especialy puzzling that the rotation of the magnetic network (Komm et al., 1993b)
is also less than that of the supergranular pattern, since magnetic fields are expected
to be strongly advected by supergranular flows. To date, a definitive explanation of
the excess rotation speed of the supergranular pattern has not been presented.

In the following, we study yet another time series of flow maps of the solar
supergranulation, obtained from f-mode time-distance helioseismology. These data
of even larger size (120° x 120°) cover the whole 1996 Dynamics run and enable us
to characterize, for the first time, the true dynamics of the supergranulation. We
find that the power spectrum appears to be consistent with a spectrum of traveling
waves (Gizon et al., 2003).

2.2.3 Supergranulation Supports Waves

Turbulent solar convection is commonly characterized by an autocorrelation func-
tion that exhibits an exponential decay in time (Harvey, 1985; Kuhn et al., 2000),
leading to a power spectrum that is a decreasing function of temporal frequency.
That supergranulation may not follow such a simple model has been hinted at pre-
viously. For example, the observed autocorrelation function becomes negative after
60 hr (Beck & Duvall, 2001) and new supergranular cells appear to form near the
boundaries of decaying cells (Shine et al., 2000). The negative excursion of the auto-
correlation function leads to a power spectrum peaked at a low non-zero frequency
(Duvall & Gizon, 2000, and previous section), suggesting an underlying long-range
order.

To study supergranulation, we use a 60-day sequence of Doppler velocity images
obtained in 1996 by the Michelson Doppler Imager (Scherrer et al., 1995) on board
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SOHO. MDI full-disk Dopplergrams are observed at a one-minute cadence with
a spatial sampling of 0.12° at disk center. Images are tracked at the Carrington
angular velocity (Qc = 2.87 prad s™') to remove the main component of solar
rotation. We apply the techniques of time-distance helioseismology (Duvall et al.,
1993b) to obtain every 12 hr a 120° x 120° map of the horizontal divergence of the
flows in a 1 Mm-deep layer beneath the surface (Duvall & Gizon, 2000). Unlike raw
Doppler images, the divergence signal has uniform sensitivity across the solar disk
and is subject to few systematic errors. Supergranules appear as cellular patterns

of horizontal outward flow in the divergence maps.

The divergence maps are obtained by measuring the time it takes for solar f
modes to propagate from any given point on the solar surface to a concentric annulus
around that point. The difference in travel times between inward and outward
propagating waves is a proxy for the local horizontal divergence of the flow field.
Images were interpolated onto Postel’s azimuthal equidistant projection (Pearson,
1990) centered on latitude 0° and Carrington longitude at image center. Data cubes
go through a three-dimensional Fourier filter to isolate the f-mode ridge and cut
off the power below 2 mHz (supergranulation noise). The temporal signal at a
given pixel is cross-correlated with the signal in a concentric annulus of thickness
0.12°. The cross-correlation function contains information about waves propagating
outward and inward from the central pixel depending on the sign of the correlation
time lag. To enhance the signal, cross-correlations are averaged on a 2 x 2 grid of
origins, corresponding to a spatial sampling of 0.24° at image center. Travel times for
inward and outward propagating waves are measured by fitting a Gaussian wavelet
to the cross-correlations. Travel-time differences are then averaged for a range of
annuli (mean radius 15 Mm). The divergence maps are finally interpolated onto a

Carrington longitude-latitude grid with a resolution of 0.24° in both coordinates.

For any given target latitude, A, we extract a longitudinal section of the data 10°
wide in latitude centered about A. The divergence signal is Fourier transformed in
three dimensions to make power spectra as a function of frequency, v, and horizontal
wavevector, k = (kg, k), where k, and k, are in the East-West and South-North

directions respectively. In cylindrical coordinates, k is uniquely specified by its
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Figure 2.10: Power spectrum of the supergranulation signal near the equator (A =
0°). Cuts are shown at constant wavenumber k& = 120/R where R is the solar
radius. (a) The thick line is the power spectrum versus frequency, v, for k = (k,0)
pointing in the direction of solar rotation, ¢» = 0 (West). There are two peaks at
frequencies v and v,. The frequency resolution is given by the power spectrum
of the temporal window function (thin line). (b) Cylindrical cut, Py(v,1), in the
power spectrum at constant k£ versus v and the direction of k, v. By construction,
Pi(v,¢) = Pi(—v,1» — 7). Power peaks in two ridges at frequencies v_()) and
vy (1). For each 1, we measure vy by fitting the sum of two independent Lorentzian
functions to the power. The fits take into account the convolution by the window
function. The sinusoidal variation of v, with v is due to advection by a background
flow u = (uy, u,). The double lines show the fit v = tvy+ (kuy, cos ¥ +kuy sin ) /2
to v4 (1)), where 14 is a constant frequency. At the equator we find w = (43,0) ms™'.
The velocity u, is measured in a frame co-rotating with the Sun at the Carrington
rotation rate. (Gizon et al., 2003)
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magnitude, k£, and its direction, ¢, such that

ke = kcosty (2.3)
k, = ksing. (2.4)

Figure 2.10 shows cuts in the equatorial power spectrum at a constant k typical of
the supergranulation. For each azimuth ), the power has two broad peaks at fre-
quencies vy and v_ (Fig. 2.10a). No Galilean transformation can cause these peaks
to coalesce, at zero frequency or otherwise. This implies that the supergranulation

undergoes oscillations.

For each azimuth, we measure the frequencies v, and v_ by fitting the sum of
two Lorentzian functions to the power (Fig. 2.10b). Observations show that the
difference v, — v_ is essentially independent of azimuth, and v, have a sinusoidal

dependence with 1 of the form:
vy =ty + vy cos(Y — 1) - (2.5)
We interpret 14 to be a Doppler frequency shift,
vy = k||u||/27, (2.6)

produced by a horizontal background flow w pointing in the direction )y, as one
does in helioseismological ring analysis (Schou & Bogart, 1998). The nearly linear
relationship measured between vy and k in the range 40 < [ < 180 (I = kRg) is
consistent with this interpretation. The latitudinal dependence of w is shown in Fig-
ure 2.11. The inferred rotation (Fig. 2.11a) and meridional circulation (Fig. 2.11b)
are both remarkably similar to that of the small magnetic features (Komm et al.,
1993b,c). This property is consistent with the view that magnetic fields are advected

by supergranular flows.

The dynamics of the supergranulation are best studied once the background
flow, u, has been removed. In a co-moving frame, each spatial component oscillates
at a characteristic frequency 5. We find a clear relationship between v and the

wavenumber k, well described by a power law (Fig. 2.12a). This is a fundamental



2.2. THE DYNAMICS OF SUPERGRANULATION 41

100
a 201 b f
—~ 50 r 1 —~
'n ' 10°f ]
E o £
> > 0
5 %0 s
G o 10K 1
> =100 - 1 >
=207 4
=150 L L L L
—-60° —30° 0° 30° 60° —60° —30° 0° 30° 60°
Latitude Latitude

Figure 2.11: Flows, u, inferred from the advection of the supergranulation spectrum
versus latitude, . (a) Flow in the direction of solar rotation, u, (red line and error
bars). The green line shows the rotation of the small magnetic features (Komm
et al., 1993b) and the black line is for the photospheric rotation (Snodgrass &
Ulrich, 1990). The dotted line shows the pattern rotation obtained by tracking
supergranular features with a 24 hr delay, in agreement with an earlier measurement
(Snodgrass & Ulrich, 1990). (b) Northward meridional flow, u, (red line and error
bars). The meridional flow of the magnetic features from Komm et al. (1993c)
(green) is again similar. The dotted line shows the anomalous results obtained by
tracking the supergranulation pattern with a 24 hr delay. (Gizon et al., 2003)

relationship as it is measured to be independent of both ¢» and A\. The data are
consistent with a spectrum of travelling waves with a dispersion relation v = vy (k).
The waves have a rather low quality factor, as can be seen in the azimuthally
averaged power spectrum (Fig. 2.12b). The shape of the power spectrum is described
accurately by the sum of two Lorentzian functions. From the measured line widths
(Fig. 2.12a) we find that the lifetime of supergranules is about 2 days at [ = 100.2
Since vy and the dominant size of supergranules are observed to be essentially
independent of latitude, the general dynamics determining the time scale and the
spatial scale of supergranulation is not affected by the Coriolis force associated with
the large scale vorticity (rotation). We observe, however, a pronounced anisotropy
in the azimuthal distribution of wave power at fixed k (Fig. 2.13a). The power is
maximum in the direction of rotation and toward the equator in both hemispheres

(Fig. 2.13b). The pattern therefore senses the effect of rotation. A snapshot of the

2The lifetime is given by (2r HWHM) ! where the HWHM is measured in Hz.
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Figure 2.12: Average dynamical properties in a co-moving frame. (a) Oscilla-
tion frequency vy versus [ at latitudes A = 0° (solid), A = £25° (dotted) and
A = £50° (dashed). For reference, we plot the approximate dispersion relation
v = 1.65(1/100)°4° ;Hz (orange). Also shown is the half width at half maximum
(HWHM) of the Lorentzian profiles for the same latitudes, implying an e-folding life-
time of 1-3 days. The quality factor, vo/HWHM, does not exceed 2. (b) Power spec-
trum corrected for rotation and meridional circulation and averaged over azimuth
and latitude. We note that the distribution of power as a function of frequency is
affected only by the known temporal window function, while the wavenumber de-
pendence includes effects of the telescope optics and of the time-distance analysis
which are not fully understood. (Gizon et al., 2003)
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Figure 2.13: Wave power as a function of azimuth and latitude. (a) Directional
distribution of power at latitude A\ = —30° (solid line), obtained by integrating
Py(v, 1) over frequencies v > k - u /27 and then averaging over k. We applied an
MTF correction estimated from the data. The azimuth of maximum power, ¥yax,
is measured by fitting a sinusoidal function (dashed line). (b) Plot of t,ax versus
latitude. There is excess power in the direction of solar rotation and toward the
equator in both hemispheres. (Gizon et al., 2003)

divergence field would not reveal this as the sum of the powers measured in opposite
directions is nearly isotropic (Fig. 2.13a); the vorticity field, on the other hand, is

slightly sensitive to the effect of the Coriolis force as we will show later.

As already mentioned, earlier estimates of supergranulation rotation (Duvall,
1980; Snodgrass & Ulrich, 1990), obtained by tracking the supergranulation pattern
from one image to the next, were systematically found to be higher than the rotation
of the magnetic network (Fig. 4a). This apparent super-rotation of the pattern
can now be understood since waves are predominantly prograde. The East-West
motion of the pattern is effectively a power-weighted average of the true rotation
and the non-advective phase speed u,, = 27vy/k ~ 65 ms™!. Similarly, the excess of
wave power toward the equator is reflected in the meridional motion of the pattern

(Fig. 4b).

We have shown that supergranulation displays a high level of organization in
space and time. Perhaps this order has its origin in the network of coherent cyclonic

plumes that controls solar-like turbulent convection. The prograde excess of wave
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power is most likely due to the influence of rotation that breaks the East-West sym-
metry, allowing for new instabilities to propagate. Recent numerical simulations of
solar convection (Miesch et al., 2000) show patterns that move prograde relative to
the local rotation at low latitudes, and may help explain the observations. Convec-
tion in oblique magnetic fields (Hurlburt et al., 1996) also exhibits solutions that
take the form of travelling waves, where the tilt of the convection cells, their wave
speed, and direction depend on the strength and obliquity of the field. Supergranu-
lation would appear to be a rare known example of travelling-wave convection in a

very highly turbulent fluid.
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2.3 Effect of the Coriolis Force on Supergranula-

tion

An interesting effect that can be studied with both horizontal components of the
flows is the effect of the Coriolis force on convection. This was studied theoretically
for a simplified solar convection model by Hathaway (1982). Cellular convection in
a rotating incompressible fluid was also studied by Veronis (1959). In these models,
the Coriolis force causes divergent and convergent horizontal flows to be associated
with vertical components of vorticity of opposite signs. In the northern hemisphere,
the cell rotates clockwise where the horizontal divergence is positive, while it rotates
counterclockwise in the convergent flow towards the sinks. A corresponding pattern
of streamlines is shown in Fig. 2.14. The sense of circulation is reversed in the
southern hemisphere and the amplitude is proportional to the radial component of
rotation. The vorticity associated with supergranular flows was apparently detected
by Kubicela (1973), which is quite remarkable considering the state of technology
at that time. The first unambiguous detection of the Coriolis effect is due to Duvall
& Gizon (2000). Here we present a more detailled study (Gizon & Duvall, 2003),

using the data from the previous section.

As we have seen earlier, f-mode time-distance helioseismology not only provides
maps of the horizontal divergence of the flows, but it also provides information about
the two individual components of the horizontal velocity (Duvall & Gizon, 2000).
We use the data from the previous section to estimate the horizontal vector flow,
v = (vy,vy), by measuring the difference in travel time for f modes propagating
in opposite directions. From each 12 hr vector flow image we subtract the mean
image, to remove rotation and field effects. Like before, we consider longitudinal
strips centered at latitude A and 10° wide in latitude. The vertical component of
the vorticity is given by

curl = d,v, — Oyv, (2.7)

where spatial derivatives are approximated by a first-order centered difference. Note
that differential rotation does not contribute to the vorticity as it has been removed.

The horizontal divergence of the flow field, denoted by div, can either be obtained



Figure 2.14: A sketch of horizontal streamlines in rotating hexagonal convection
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by calculating 0,v, + 0,vy, or by using the “divergence signal” (difference in travel-
times for f modes propagating between a central point and an annulus). In general
the second method is preferable as it is less noisy; although both methods compare

favorably.

It is not straightforward to predict the statistical properties of the vorticity in
rotating turbulent convection (cf. Hathaway, 1982). Vorticity production is due to
the effect of the Coriolis force and to vortex stretching and tilting mechanisms. The
importance of the Coriolis force is characterized by an inverse Rossby number, or
Coriolis number, defined by

Co=27.Q2-g, (2.8)

were @ is a unit vector in the downward direction and 7. is a characteristic correlation
time of the turbulence. Linear theory predicts curl ~ Co div (order of magnitude),
and we expect the latitudinal variations of the Coriolis effect to go like

Q(A) sin A

fA) = 0w (2.9)

where ), is the equatorial solar angular velocity. Away from the equator, the
magnitude of Co is greater than unity in most on the convection zone, except near the
surface where it can be very small. Taking 7. = 2 day we find that Co ~ —0.98sin A

for supergranulation.

Despite the fact that the vorticity field is very noisy, we detect a significant cor-
relation of a few percent between the vertical vorticity and the horizontal divergence
(Fig. 2.15a). The correlation coefficient at latitude A is defined by

e\ = (div curl) | (2.10)

(div?)(curl?)

where the angle brackets denote the spatial average over the area of a 10° band
centered around A. In the North, positive (negative) divergence is correlated with
clockwise (anticlockwise) vorticity. The correlation changes sign in the South. The
sign and the latitudinal variation of C()\) are both characteristic of the effect of the
Coriolis force on the flows. Away from the equator, the number of right-handed

cyclones is not equal to the number of left-handed cyclones.
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Figure 2.15: Effect of the Coriolis force on supergranular flows. (a) Plot of the
correlation coefficient, C(\), between the vertical vorticity, curl, and the horizontal
divergence, div. (b) Horizontal averages of the vorticity, (curl), (solid) and (curl)
(dashed), over regions with div > 0 and div < 0 respectively. A vorticity of 1 Ms
corresponds to an angular velocity of 2.5° day ™! or a typical circular velocity of
10 ms™!. (c) Estimate of the slope, s, in the linear fit curl = s div. The solid line
shows s(\) versus f(A) in the case when the ratio of errors r = 04y /0cun is assumed
to be zero. The dashed line is for the case r = 2. (d) Plot of (curl div) versus f ().
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Figure 2.15b shows horizontal averages of the vertical vorticity, (curl)y, versus
f(A), where the averages (-), and (-)_ are restricted to the regions of positive and
negative divergence respectively. We observe a nearly perfect linear relationship be-
tween (curl)y and Ff(\), given by (curl)s ~ F3f(\) Ms~!. This is again consistent

with the interpretation as a Coriolis effect. In principle, a linear fit of the form
curl(A) = s(A) div(}) (2.11)

can be extracted from the data at each latitude, A\. This operation is not trivial
as it requires a knowledge of the errors in the observations, o.y1 and ogjy. A first

approximation is to assume that div is mostly signal, and curl is mostly noise:

(div curl) _ Odiv

S — ——— =
<diV2> Ocurl

—0. (2.12)

In this limit we find s(\) ~ —0.048 f(\) (Fig. 2.15¢), or s(A) ~ Co(A)/20 in terms
of the Coriolis number quoted above.

Figure 2.15d shows that the latitudinal variations of the horizontal average
(divcurl) are well described by (divecurl) ~ —3f()\) x 107'® s72. This observa-
tion may be compared directly to a prediction by Riidiger et al. (1999), who used

the mixing length theory to estimate the effect of rotation on convection:

802 Qe
35v2 7.

(div curl) ~ —

f(A), (2.13)

where « is the mixing length parameter and ~ is the ratio of specific heats. For
a=1.5,7=5/3, and 7. = 2 day, the prediction is (divcurl) = —3f(\) x 1071% s72
for supergranulation, i.e. two orders of magnitude smaller that the measured value.
This disagreement is perhaps not too surprising as there is some freedom in choosing
a and 7 in Eq. (2.13) and the mixing length theory may oversimplify the problem.

On the other hand, the measurement errors are not well understood either.
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2.4 Large-Scale Flows Around Active Regions

2.4.1 Data Analysis

In this section we use an extensive set of Dopplergrams from the MDI Dynamics
Program to construct synoptic maps of the near-surface horizontal flows from mea-
surements of f-mode travel times. The data sets we considered include up to three
months of continuous Dopplergrams for each of the years 1996, 1998, and 1999. We
recall that in 1996 the sunspot cycle was at a minimum of activity. Regions of size
90° in longitude and 90° in latitude were tracked at the Carrington rotation rate
for 24 hr. Images were interpolated onto Postel’s azimuthal equidistant projection
centered on latitude 0° and Carrington longitude at image center. The tracking pro-
cedure is repeated every 20.3 hr so that the Carrington longitude at image center
decreases by 12° at each step. Each 24-hr tracked region was then split into three
8-hr data cubes. For each Dynamics period, we thus obtained a sequence of 8-hr
data cubes covering two to three months each year. Data cubes go through a three-
dimensional Fourier filter to isolate the f-mode ridge and cut off the power below
2 mHz. The temporal signal at a given pixel is cross-correlated with the signal in
concentric quadrants of thickness 0.12°. To enhance the signal, cross-correlations
are averaged on a 2 x 2 grid of origins, corresponding to a spatial resolution of 0.24°
at image center. West-east and north-south travel time differences are measured by
fitting a Gaussian wavelet to the cross-correlations. Travel-times are averaged over a
range of annuli with radii ranging from 0.42° to 0.90°. The travel-time perturbations
are converted into velocity by using the calibration from section 2.1. In addition,
we measure in-out mean travel times. Travel-time maps are then interpolated onto

a Carrington longitude-latitude grid with 0.24° resolution in both coordinates.

In order to examine field effects as a source of systematic errors, we construct
averages of the flow maps without shifting images with respect to the central merid-
ian longitude. These averages are shown in Fig. 2.16 for rotation and meridional
circulation. The small scale fluctuations in theses maps are essentially due to super-
granulation. However, at fixed longitude, there are smooth variations as a function
of central meridian longitude which cannot be of solar origin. In 1996, the equatorial

rotation can vary by as much as ~50 m/s across the 90° longitudinal range (the west
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Figure 2.16: Field effects. Average of the maps obtained for the 1999 Dynamics
period. The figures on the left are for rotation (measured in a frame corotating
at the Carrington angular velocity) and the figures on the right are for meridional
circulation. The upper figures are for the 1996 MDI Dynamics run, the middle
figures for 1998, and the lower figures for 1999.
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limb appears to rotate faster than the east limb). We note that the systematic errors
do not appear to be as severe in 1998 and 1999. Field effects can have many possible
causes (e.g. point spread function, solar radius error, cubic distorsion, tilt of ccd,
plate scale, remapping errors, etc.) and do vary with time (the MDI telescope was,
by design, out of focus in 1996 and mostly in focus during 1999). The main causes

have not been identified.

2.4.2 Longitudinal Averages

The longitudinal averages of rotation and meridional circulation are plotted in
Fig 2.17 for the three dynamics periods. Small offsets were subtracted from the
meridional circulation curves to correct for a 0.2° P-angle error in the orientation of
MDI images (Toner, 2001) and a 0.1° error in Carrington’s measurement of the in-
clination of the solar equator to the ecliptic (Giles, 2000).> These errors cause solar
rotation to leak into the meridional circulation signal with a one year periodicity.
We observe in Fig 2.17 that both rotation and meridional circulation seem to
change with time, although we need to keep in mind that there is a time dependence
in the systematic errors. Note that poleward meridional motion is not a monotonic
function of latitude during periods of magnetic activity (1998 and 1999). In 1998
(resp. 1999) meridional circulation reaches a maximum at latitude 20° (resp. 16°).
Other studies reveal a similar behavior (Giles, 2000; Meunier, 1999). As for rota-
tion, it is known from surface Doppler measurements (Howard, 1996) and inversions
of global-mode frequency splittings (Schou, 1999) that there are small solar-cycle
variations in the rotation rate, known as torsional oscillations or zonal flows. To
measure the zonal flows for each dynamics period, we subtract a smooth fit to the
angular velocity of the form Q(\) = Qy + Q; sin® A + Qysin® A, where ) is the lati-
tude. The north-south symmetric component of the zonal flows is shown in Fig 2.18
(dashed line). The thin solid line shows a previous measurement obtained by Schou
(1999) for the same time periods (global modes). The thick solid line shows the
zonal flows measured by tracking the superganulation pattern with a correlation

tracking technique with At = 8 hr (see Fig 2.9). Figure 2.18 shows a very good

3P denotes the position angle of the northern extremity of the axis of rotation, measured
eastward from the north point of the disk. The 0.2° P-angle error in the pointing of MDI is within
specifications.
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Figure 2.17: Rotation and meridional circulation for the three MDI Dynamics runs
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Figure 2.18: North-South symmetric component of the zonal flows obtained after
subtraction of smooth rotation curves (thick dashed line, see Fig 2.17). The thick
solid line is from correlation tracking of the supergranulation pattern (At = 8 hr,
see Fig 2.9). The thin line shows the zonal flows obtained from f-mode frequency
splittings (Schou, 1999) for the same time periods.
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agreement, in both phase and amplitude, between these three independent meth-
ods. This suggests that we are able to measure zonal flows with a very high level of
precision, of the order of 1 m/s, and that time-distance helioseismology does work.
Because the torsional oscillations vary much faster with latitude (~ 20° period) than

the systematic field effects, we were able to separate the two.

2.4.3 Local Flows

We now investigate the structure of the local flows and their relation to magnetic
activity. For a given Dynamics run, we subtract the average flow map (Fig. 2.16)
from each individual 8-hr flow map. This enables us to remove all unwanted field
effects, and to study residual flows. We then construct synoptic maps by averaging
the flows at fixed Carrington longitude. In other words, the maps are averaged
in a frame that is corrotating with the Sun at the Carrington rotation rate. This
procedure implies that the flows are effectively averaged in time over 7.5 days near
the equator; there is less temporal averaging at higher latitudes because individual
maps are disks (45° radius, see Fig. 2.16).

Each solar rotation is denoted with a Carrington number. The synoptic residual
flow maps are plotted in Fig. 2.19 for Carrington rotation number 1911 in 1996,
Fig. 2.20 for Carrington rotation 1948 in 1999, and Fig. 2.21 for Carrington rotation
1949 in 1999. Arrows are plotted every 3.84°. We remind the reader that horizontal
flows obtained by f-mode time-distance helioseismology are averaged over the first 2
Mm beneath the photosphere. Also plotted for comparison are MDI synoptic mag-
netic maps (photospheric magnetic field strength). In addition, we constructed syn-
optic maps of the mean travel-time perturbations. Mean travel times are obtained
by measuring the average travel time for f-modes traveling the distance between a
central point and an annulus (inward and outward). Like for the flow maps, we
subtracted a background mean travel-time map from each 8-hr map before making
the synoptic maps. The mean travel-time perturbations are overlaid on the flow
maps.

It is quite clear from the synoptic maps that we detect large-scale flows converg-
ing toward active regions. The convergent flows have a magnitude of the order of

30 to 50 m/s and can be detected as far as ~ 15° from a large active center (see



2.4. LARGE-SCALE FLOWS AROUND ACTIVE REGIONS 55

Latitude (deg) Latitude (deg)

— Ot%,
0c—

4

k%

a1 A s N N>

\ \
B N N
o o o o

~
O
O ‘ L ‘ FT ‘ AL ‘

1¢z17k¢L:
1]

s/pu_og

ceecwen
e R RS € e € o
D L R
e wRF—e < > ¢ Vv > >
P R R
P e<cecveessr >
P e R
e Lq e oA
v e s € > A bV b
SNz e e v 7 e R
b S~ v leres vesss
L e e
ce U NNY ceveres
[ cevyvNSsverven
ce=<v | JVvyNN
[ e/ L NSNS
e v KN €4 >N 4N
e ANce TN LYy
Flres vy enNtmew
VYLV s e
Sl s\~ | ¢«

N NS 7> >N >4

SMO|J

00l
00l

Vusacees Nt ot
v Laa e s ARN <« <

Leancr N >ANN b e

N
N
>
-
~
3
.
N
N
v
v
3
v
v

1oubow

Aav Y AR R A
R
«
v
<

P N

2
.
a s
Noa

;] O

SRS S e e e
RSN\ S e e ¢
AR S e b 3
AARKR € > >
Nsa csme ey
LN A s/ VLY
vnNs e/
Ve s L by
SIS \}w*w
NN\ P

1 |9ADJY UDDW +

00¢
00¢

opnMibuoT uo1buLID) | | 6]
PIe

NN A verstaag> s s
N S 753 33N 67 33\ Ve ber> VENSTATI> >V N ece<Yra376v /8 va23ben P2 e~

PP A AT >INV YR AN VLT Al e b bar AN RVEARSSERIA AV NS SRSV /) ey L
JU 935355 ¢33 3 chN/7ARVeErnaA>aAavIias>arbecennranececs prsves—e/) | vsiery

TN
O P N N N .
(D b L NN yEe——

N L N e
O Ve e 7 71 et -
~—

A A BN SN

AP APRRRRARN T Ly v verelbuboacr /ecs >SNV 12a09 v
71 SV L CAAREe b <7 €N T LA S L L eV A VU AT SR NS > A rNND I > v pa fp

21> 53 aat i bvvvenceatb | Jeers PARN> SART VUV vt Aasss a0k b7,
Nrarc e A AN A 2SS VY ERN /D5y P LN c <V EERRAS Ny becsscanssecv/ /[ /[/issuyn

> s e e
Ry
AT >0

10gJnyied ow

Revsex TN\
PNSNevestars N1 L
Nev/arntorsemnnns
\\(1A4>\\¢/e»xx EW N
ENeevav s NNNesnns > > a4 r
NeewevaN\(\\Ve=sx~ L e -
Ne v /> \NNy<eee e C) "
[ PRes/vssaa3vy | e/ [
AR r 256y P D
LR RNS«NS=7740 vt /N — v L b
e RARNRI2 /P72 5« NV N
W VNN s ] 7oA s> N2 W -
QO Fertresntraztins <v il O r 1
O | < ARcessrr2flas <1 O
[ sNecexsssr 17N> RKT/ L
P SRR B Y NN Fr?/
Ar v s ANRS RAR ey s
FosvvanNessnse s raa? b
S SN R R a4 s nss Yo P
SrsesS s« s RN TP Ve
Frmss—cecctlPnrsay vl r
FRARSC el rRses et PRSI
Eorrprsecvesvevees BRI L
RPA>q 94 vsverbvy PR
Y A2 o7 v s 55N\ e ¢ on
[ AP 72277702475y ~e | r .
7711)17<11% n(f inr ‘ ‘ ‘ ‘
I O T [ T Y Y . N o

8660
0001
0°00¢

Figure 2.19: Carrington Rotation 1911 (1996). Continuum intensity, magnetic field
(Gauss), mean travel time perturbation (normalized), and flow field (absolute mag-
netic field in the background).
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Figure 2.22: Zoom on part of Carrington Rotation 1949 (1999)
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Fig. 2.22 for a zoom). Because these flows are small it is important to ask if they are
real. Could the travel-time differences be caused by other types of perturbations?
This question was first raised by Woodard (1997) who suggested that increased
wave damping in active regions could introduce a travel-time difference and there-
fore mimic a flow. However, both Woodard’s analysis and the work presented in
chapter 3 imply that travel times should be slightly smaller for waves propagating
away from a region of increased damping. Hence this effect cannot be dominant, or
we would observe a divergent flow around active regions.

The synoptic maps also reveal that the mean travel-time perturbations are highly
correlated with the magnetic field strength: mean travel times are reduced in active
regions. This may imply that f-modes travel faster in active regions. Other effects
may contribute as well. For instance, if the power spectrum is affected in such a way
that high frequency waves have decreased power in active regions then the central
frequency of the wave packet would decrease, and the travel-time would decrease as
well. The effect of magnetic fields on travel times remains to be studied.

We now come back to the zonal and meridional flows. We have already seen that
the longitudinal averages of these flows vary with the solar cycle. An important
question is how local flows around large complexes of activity contribute to the
longitudinal averages. In order to answer it, we separate the regions of magnetic
activity from the quiet regions in Carrington maps 1948 and 1949 (as shown by the
contours in Figs. 2.20 and 2.21). Figure 2.23 shows the torsional oscillations and the
meridional flows when magnetic regions are excluded from the longitudinal average
(thick lines) and when all data are taken into account (thin line). We find that in
1999 the zonal flows are only slightly affected when active regions are excluded from
the average. It appears that regions of magnetic activity rotate a little faster. This
result was already known (active regions may be rooted beneath the surface where
rotation is larger). The active regions are affecting the mean meridional circulation
by no more than +5 m/s, producing a little kink around the latitude of mean activity.
Thus the converging flows around active regions produce a longitudinal modulation

in the torsional oscillation. We will come back to this observation later.
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Figure 2.23: Zonal and meridional flows for Carrington rotations 1948 and 1949 in
1999. The thick lines correspond to the longitudinal averages when active regions
are excluded from the calculation. The thin lines are averages over the whole maps
(quiet and active regions). The bottom panel shows the latitudinal distribution of
the magnetic field strength.
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2.5 Comparison with Ring-Diagram Flow Maps

In the local helioseismic technique of ring-diagram analysis, a 15° x 15° region of
a Doppler image of the Sun is tracked and Fourier transformed in 3 dimensions to
obtain a power spectrum. In the presence of flows, waves with the same wavenumber
propagating in opposite directions have their frequency split by the Doppler effect.
Such frequency splittings are used in ring analysis to measure flow velocities averaged
over the depths where the p or f modes have significant amplitudes.

The resulting flow fields display complex and dynamic behavior. At the smallest
scales, time-distance has successfully measured supergranular flows (Duvall & Gizon,
2000) and the moat flow around sunspots (Gizon et al., 2000). At larger scales,
likely connected to giant cell convection, both the time-distance and ring analysis
techniques have now detected strong correlations with magnetic features and near-
surface converging flows around active regions. Finally, on global scales, the local
techniques have confirmed the presence of the migrating torsional oscillations (e.g.
Hathaway et al., 1996; Schou, 1999) and have shown that meridional circulation
evolves with the solar cycle (Giles, 2000; Haber et al., 2000; Haber et al., 2002;
Beck et al., 2002). Most of this work has been performed independently with little
validation of the measurements through comparisons with other techniques. Before,
we can fully trust the exciting discoveries of local helioseismology, we must verify
that the different local helioseismic techniques are reliable and robust. In this section
we make the first direct comparison of flows obtained through ring and time-distance
analyses.

Ring analysis assesses the speed and direction of horizontal flows below the solar
surface by measuring the Doppler shift of ambient acoustic waves that are advected
by the flows. Using the procedures detailed in Haber et al. (2002), the Doppler shifts
are measured by careful fitting of the peaks within a 3-D power spectra. Through
1-D RLS inversion of the integral equation which relates the frequency splittings
to the flow properties, the horizontal velocity is computed as a function of depth
below the photosphere (Hill, 1988; Thompson et al., 1996; Haber et al., 2002). Using
Dynamics Program data from MDI, this mode fitting and inversion procedure was
applied to different patches on the solar surface on a daily basis to build maps of the

local flow field as a function of time and position on the solar disk. Typically, each
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region consists of a 15° diameter disk. A mosaic of such tiles fills the solar disk out
to 60° from the center, with tile centers separated by 7.5° in longitude and latitude.
Before analysis, each tile is tracked at the surface rotation rate (Snodgrass, 1984) to
remove the effects of differential rotation. The end result is a measurement of the
flow field as a function of time, depth, and position on the solar disk. The horizontal

resolution is roughly 15° and the vertical resolution is a few Mm near the surface.

Time-distance helioseismology applied to f modes provides information about the
two components of the horizontal flows in a 1 Mm-deep layer beneath the surface
(§ 2.4). These time-distance flow maps are sampled every 0.24°. For comparison
with the ring analyses which have far coarser resolution, the resolution of the time-
distance measurements has been degraded by spatial averaging. The averaging was
performed over each of the 15° diameter tiles in the ring-analysis mosaic, and the
flows were weighted by the spatial apodization function used to generate the 3-D
spectra employed in the ring analysis. The end result is a set of measurements with
the same coverage and horizontal resolution as the ring-analysis. Figure 2.24 shows
synoptic maps of the residual flow field that remain after the longitudinal mean
has been removed from both the time-distance and ring-analysis flows. Figure 2.25
shows the longitudinal means of the zonal and meridional flows for both techniques.
The data are for the Carrington rotation 1948 (1999).

The residual flows obtained using the time-distance and ring analysis methods
agree remarkably well. Subtle differences do appear in the flow details. However,
centers of outflow and inflow as well as flow directions are largely identical in the
synoptic maps obtained using either technique. In particular, the inflows located
around magnetic active regions are captured by both methods. The Spearman rank
correlation coefficient between the two sets of residual flows is roughly 0.8 for the
Carrington rotation shown in Fig. 2.24. In comparison, correlations made between
the time-distance measurements for one Carrington rotation and the ring analysis
measurements for a different rotation generally produce a coefficient with a modulus
less than 0.1. The correlation is highest when the depth used for the ring analysis
is roughly 1 Mm, the height best sampled by the f modes used in the time-distance
analyses. The correlation begins to drop precipitously as the depth increases beyond

2 Mm, dropping to as low as 0.4 at a depth of 16 Mm.
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Figure 2.24: Synoptic maps of near-surface flows for Carrington rotation 1948 span-
ning 3 Apr — 29 Apr 1999. The flow field shown is the residual that remains after
the mean meridional and zonal flows have been subtracted. The upper map was ob-
tained using ring analyses with RLS inversion. The lower map was generated from
time-distance analyses of f-mode data without depth inversion. The time-distance
measurements have been averaged spatially such that the two analysis schemes have
the same horizontal resolution of 15°. The tiles used in the ring analyses overlap by
7.5°, and the resulting flow field has been interpolated twofold to generate arrows

with a spacing of 3.75°.
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Figure 2.25: The mean zonal flows (left panel) and meridional flows (right panel) as
a function of latitude obtained using ring analysis and time-distance f-mode analysis
of Dynamics Program data from Carrington rotation 1948 (in 1999). The zonal flow
is measured relative to the surface differential rotation rate of Snodgrass (1984).
The thick solid curve is the flow obtained with time-distance analysis. The other
curves were obtained using ring analysis, and correspond to the flow at different
depths: solid 0.9 Mm, dotted 2.0 Mm, dashed 4.4 Mm, and dot-dashed 7.1 Mm.
These flows were removed from the full flow field to obtain the synoptic map shown
in Fig. 2.24.

In contrast, the mean flows display less similarity. Both techniques generate
zonal flows that have consistent shape as a function of latitude. However, there
appears to be a substantial constant offset of 15 m/s between the rotation rates.
This offset represents about 0.8% of the sun’s equatorial rotation rate. We do not
fully understand the source of this offset, although we suspect that it is due to the
different tracking and remapping methods used to remove rotation and sphericity.
The time-distance analyses for a given day are performed on a single region, 90°
square, that is tracked at the Carrington rate and remapped using an equal area
projection. The ring analysis is executed on many different regions each 15° in
diameter, each tracked at the local surface differential rotation rate and remapped
using Postel’s projection. The mean meridional flows obtained by both techniques
and shown in Fig. 2.25 are roughly consistent when the time-distance results are

compared to the 0.9 Mm depth of the ring analysis measurements.

The similarities between the residual flows obtained with f-mode time-distance
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and ring analysis are heartening. Both techniques appear to provide reliable mea-

surements of large scale flows just beneath the solar surface.
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2.6 Solar-Cycle Variation of the Meridional Flows

We construct maps of rotation and meridional flows using time-distance helioseis-
mology applied to p modes from the MDI Structure Program. The mean travel
distance is 17° corresponding to a maximum depth of 65 Mm below the surface
(no depth inversion is done). Meridional flow maps show a time-varying component
that has a banded structure with an equatorward migration over the solar cycle.
The time-varying component of meridional flow consists of a flow diverging from
the dominant latitude of magnetic activity. This map is compared with torsional
oscillation maps and with magnetic strength maps, showing a correlation with active
latitudes and a strong link between the time-varying component of the meridional

flow and the east-west torsional oscillations.

2.6.1 Introduction

Torsional oscillations and meridional flows have been studied for over two decades
(e.g. Howard & LaBonte, 1980; Duvall, 1979; Ulrich, 1988). The surface meridional
flow is generally agreed to be poleward in both hemispheres with an amplitude
of 10-20 ms™! . The torsional oscillations (also termed ’zonal flows’) consist of
latitudinal bands of alternating faster and slower rotation which migrate toward the
equator over the solar cycle and are superimposed on top of the differential rotation.
The zonal flows can be seen at depths of 56 Mm (Howe et al., 2000) with global
helioseismology.

Meridional flows have been difficult to measure by direct Doppler observation
due to their small amplitude compared to the large amplitude velocity patterns
such as convective limb shift and rotation. However, Nesme-Ribes et al. (1997) have
studied meridional flows using sunspots as tracers and have identified a correlation
of east-west and north-south motions consistent with angular momentum transport
which would sustain differential rotation. Time variations of the meridional flow
were noticed by Ulrich (1988) and Hathaway (1996).

The p-mode time-distance helioseismology studies of the meridional circulation
conducted by Giles et al. (1997) and Giles (2000) showed that it extends through the

convection zone. Haber et al. (2002) studied meridional flows using ring-diagram
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analysis and found indications of a second meridional cell during the years 1998
through 2001 in the outer 7 Mm; additionally, they found an asymmetry in the
meridional flows between the northern and southern hemispheres which would have
impact on angular momentum transport. Chou & Dai (2001) studied subsurface
meridional flows using time-distance helioseismology and found a time-varying com-
ponent which extends down to 70 Mm. They suggested that the varying flow could
be linked to magnetic activity. Furthermore we showed in Sec. 2.4 that, near the
surface, meridional circulation is affected by large-scale convergent flows around

active regions.

2.6.2 Analysis and Results

The data reduction followed the description by Giles (2000). The data spanned from
May 1996 through July 2001 and consist of medium-resolution MDI dopplergrams.
The data gap from June 1998 until March 1999 corresponds to the period of broken
contact with SOHO. Images were grouped into 72-hour periods for detrending of
solar rotation and supergranulation. Regions, spanning 100° in latitude and longi-
tude, were tracked at the solar rotation rate. These tracked regions were ’stacked’
into a data cube for further processing, which consisted of applying a high-pass
filter (cutoff at 1.7 mHz) to remove supergranulation and applying a phase-speed
filter to select acoustic modes. Temporal cross-correlations were obtained using
code developed by Giles (2000). To measure meridional flows, cross-correlations are
computed between pairs of points separated in latitude by amounts ranging from
3° to 45°. To improve the signal-to-noise ratio, the cross-correlation functions for
each latitude were averaged over three-month periods. Further averaging was done
keeping the mid-point constant, and producing 61 latitude bins (~ 3° sampling).
This was repeated for 21 three-month epochs. This procedure was also performed
in an east-west direction to measure rotation.

Wave travel times were measured by fitting to the cross-correlation function. A
positive time delay corresponds to a flow to the north in the case of meridional
circulation or a flow to the west for rotation. The measurement of the travel-
time shifts follows closely the method discussed by Gizon & Birch (2002). At each

distance, a mean reference cross-correlation symmetric for the two senses of time
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Figure 2.26: Mean meridional flow. The mean signal of meridional flows is shown
here for the interval May 1996-July 2001. A northward flow corresponds to a positive
travel-time shift. From a simple meridional flow model (Giles, 2000), we estimate
that a 1 s time shift corresponds to ~ 20 ms™! .

lag was derived. This reference function was cross-correlated with an individual
cross-correlation to yield an approximately zero-centered result except for the shift
away from zero due to the flow. A weighted average over distances was derived
with the contribution peaked near a distance of 17° with a width of 4°. A ray
connecting points separated by 17° extends to a depth of 65 Mm. The time shift
was measured as twice the shift of the maximum of this correlation away from zero
lag by forcing a parabola through the three closest points to the peak. The factor of
two is necessary to match earlier definitions of time shift which involved measuring
the shift of positive time lags and negative time lags separately and taking the

difference, effectively doubling the signal.
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As shown in Fig. 2.26, the meridional flow averaged over time is strongly an-
tisymmetric as a function of latitude, with positive values indicating a northward
flow. The peak velocity is about 15 ms™! toward the poles at mid-latitudes. Small
errors in the pointing of the MDI telescope can cause solar rotation to contami-
nate meridional velocity measurements. Taking the antisymmetric component re-
moves this error. The time-varying component of the meridional flow was obtained
by subtracting a smooth fit to the 5-year average from the measurement at each
epoch. Figure 2.27a shows the residuals, with red indicating poleward motion in
both hemispheres. The east-west flow was similarly analyzed, with the exception
that a smooth rotation curve was subtracted to produce the torsional oscillation
pattern shown in Fig. 2.27b. Torsional oscillations obtained from f-mode frequency
splittings by Schou (1999) are shown for comparison in Fig. 2.27c.

A map of magnetic field strength is included in Figure 2.27d to indicate the
active latitudes over the period of interest. To compare with the flow maps, a
mean latitude of magnetic activity was derived by taking the absolute value of the
magnetic field (from MDI synoptic charts), re-binning in latitude and longitude,
symmetrizing in latitude, squaring, and fitting a Gaussian function in latitude at
each longitude. The mean latitude of activity, given by the location of the peak
of the Gaussian, is plotted on top of the velocity maps in Figure 2.27 to indicate
the strong connection between the magnetic cycle and the equatorward propagating
flow patterns.

The flows are organized about the mean latitude of magnetic activity. The
residual meridional flow is away from the latitude of activity. Whether the residual
flows cause the magnetic activity to emerge at this latitude or is a result of rising
magnetic flux is unknown. The zonal flow is faster equatorward of the mean latitude
of activity and slower poleward, as noted previously by LaBonte & Howard (1982).
The time-varying component of the meridional flow correlates very well with the
zonal flows, with a more strongly poleward flow corresponding to a slower rotation.
Although we have not derived the depth dependence of the flows explicitly, the north-
south component of the “torsional oscillation” that we detect is tens of megameters
beneath the surface (65 Mm maximum). What is not known yet is the longitudinal

structure of the residual flows.
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Figure 2.27: Residual meridional flow and torsional oscillation maps from time-
distance helioseismology compared with a torsional oscillation map from global
modes and a butterfly diagram of magnetic fields. The heavy black line over-plotted
is the mean latitude of activity. a) The poleward flow, obtained from subtracting
a fit to the mean meridional flow and symmetrizing the residuals. A positive time
delay indicates a poleward flow in both hemispheres. b) The torsional oscillations
obtained from time-distance helioseismology. Red is prograde. c¢) Torsional oscil-
lations obtained from f-mode frequency splittings (Schou, 1999). d) Magnetic field
strength derived from MDI synoptic charts.



Chapter 3

Time-Distance Helioseismology:

Interpretation of Travel Times !

!This chapter is from a paper published in the Astrophysical Journal (Gizon & Birch, 2002).
The basic theory presented here was developed independently and in parallel by the authors.

71
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3.1 Introduction

Time-distance helioseismology, introduced by Duvall et al. (1993b), has yielded nu-
merous exciting insights into the interior of the Sun. This technique, which gives
information about travel times for wave packets moving between any two points on
the solar surface, is an important complement to global-mode helioseismology as it
is able to probe subsurface structure and dynamics in three dimensions. Some of
the main results concern flows and wave-speed perturbations underneath sunspots
(Duvall et al., 1996; Kosovichev et al., 2000; Zhao et al., 2001), large-scale subsur-
face poleward flows (Giles et al., 1997), and supergranulation flows (Duvall & Gizon,
2000).

The interpretation of time-distance data can be divided into a forward and an
inverse problem. The forward problem is to determine the relationship between the
observational data (travel times 67) and internal properties (q,). Generally, this

relationship is sought in the form of a linear integral equation,
0T = Z/ dr 0q.(r) K*(r), (3.1)
o Jo

where the dq,(7) represent the deviations in internal solar properties from a the-
oretical reference model. The index « refers to all relevant types of independent
perturbations, such as sound speed, flows, or magnetic field. The integral f® dr
denotes spatial integration over the volume of the Sun. The kernels of the inte-
grals, K%(r), give the sensitivity of travel times to the perturbations to the solar
model. The inverse problem is to invert the above equation, i.e. to estimate dq,, as
a function of position 7, from the observed d7. In this chapter we consider only the

forward problem.

An accurate solution to the forward problem is necessary for making quantita-
tive inferences about the Sun from time-distance data. There have been a number
of previous efforts to understand the effect of local perturbations on travel times.
D’Silva et al. (1996), Kosovichev (1996), and Zhao et al. (2001) used geometrical
acoustics to describe the interaction of acoustic waves with sound-speed perturba-

tions and flows. Bogdan (1997) argued that a finite-wavelength theory is needed.
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Birch & Kosovichev (2000) solved the linear forward problem for sound-speed per-
turbations, in the single-source approximation. Jensen et al. (2000) solved a weakly
nonlinear forward problem for sound-speed perturbations, in the single-source ap-
proximation, and proposed the use of Fresnel-zone based travel-time kernels. Bogdan
et al. (1998) used a normal mode approach to compute travel-time perturbations
in a model sunspot. Woodard (1997) estimated the effect of wave absorption by
sunspots on travel times. This important work, which required a model for random
distributed wave sources, is one of the primary motivations for obtaining a general
theory for travel-time sensitivity kernels. The model developed by Woodard (1997)
employs, however, the approximation that wave damping affects only the amplitude
of transmitted waves, ignoring scattering. Birch et al. (2001) tested the accuracy
of travel times obtained in the Born approximation, which models single scattering
from local inhomogeneities. Although the above mentioned efforts represent sub-
stantial progress, there is not yet a general procedure for relating actual travel-time
measurements to perturbations to a solar model that takes into account random

distributed sources for solar oscillations, despite a preliminary study by Gizon &
Birch (2001).

The first part of this chapter (§ 3.2) is an attempt to synthesize and extend
the current knowledge into a flexible framework for the computation of the linear
sensitivity of travel times to local inhomogeneities. We start from a physical descrip-
tion of the wave field, including wave excitation and damping. We incorporate the
details of the measurement procedure. Two other key ingredients of our approach
are the single-scattering Born approximation and a clear observational definition of
travel time, both taken from the geophysics literature (e.g. Tong et al., 1998; Zhao &
Jordan, 1998; Marquering et al., 1999). The main difference between the geophysics
and helioseismology problems is that helioseismology deals with multiple random

wave sources as opposed to a single isolated source.

The second part of this chapter (§ 3.3) is an example calculation of travel time
kernels for surface gravity waves. The purpose is to demonstrate the application of
the general theory described in Section 3.2. We compute travel-time kernels for local
perturbations in source strength and damping rate. In our model, these perturba-

tions are confined to the surface and therefore are computationally convenient as we
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obtain two-dimensional kernels. Localized source and damping perturbations are
interesting and not yet well understood. For this example, we also compare these
kernels with kernels calculated in the single-source picture (Birch & Kosovichev,
2000; Jensen et al., 2000), in which distributed random sources are replaced by an
artificial causal source placed at one of the observation points. We show that the
single-source kernels do not reproduce all the features seen in the distributed-source

kernels.

3.2 The General Forward Problem for Random

Distributed Sources

3.2.1 Definition of Travel Times

The fundamental data of modern helioseismology are high-resolution Doppler images
of the Sun’s surface. In general, the filtered line-of-sight projection of the velocity

field can be written as
qb:&"{é-v}, (3.2)

where v is the Eulerian velocity and £ is a unit vector in the direction of the line of
sight. The operator F describes the filter used in the data analysis, which includes
the time window (time duration T'), instrumental effects, and other filtering.

The basic computation in time-distance helioseismology is the temporal cross-
correlation, C'(1,2,t), between the signal, ¢, measured at two points, 1 and 2, on

the solar surface,

C(1,2,1) = %/Z At S(1,8) 62,1 +1). (3.3)
where 7" is the time duration of the observation. The cross-correlation is useful as it is
a phase-coherent average of inherently random oscillations. It can be seen as a solar
seismogram, providing information about travel times, amplitudes, and the shape of
the wave packets traveling between any two points on the solar surface. Figure 1.5
shows an example of a surface gravity wave cross-correlation. The positive-time

branch corresponds to waves moving from 1 to 2, and the negative-time branch
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represents waves moving in the opposite direction. For acoustic waves there are
additional branches, at larger absolute time, corresponding to multiple bounces off

the surface in between 1 and 2.

We define the “travel time” for each branch to be the time lag that minimizes
the difference between the measured cross-correlation, C, and a sliding reference
wavelet, C™". Depending on the choice of reference wavelet the term “travel time”
may be an abuse of language; this issue will be clarified later. The travel time for
waves going from 1 to 2 is denoted by 7,(1,2) and the travel time for waves going
from 2 to 1 by 7_(1,2). The difference (in the least squares sense) between the

observed cross-correlation and the reference wavelet is

X.(1,2,8) = /Oo dt’ f(+t)

oo

x[C(1,2,) — C'(1,2,¢ F1)]°. (3.4)

The window function, f(t'), is a one-sided function (zero for ¢’ negative) used to
separately examine the positive- and negative-time parts of the cross-correlation.
The window f(#') is used to measure 7y, and f(—t') is used to measure 7_. One
possible choice is a window that isolates the first-skip branch of the cross-correlation.
Other window functions could be chosen to, for example, isolate the second bounce

branch of a cross-correlation in the case of acoustic modes.

By definition the travel times 7. are the time lags that minimize X, :
74+(1,2) = argmin{ X4(1,2,¢) }. (3.5)
t

Minimizing X is equivalent to fitting C™ (# F ¢) to C(t') with a weighting in time
given by f(4t'), varying the time lag ¢ only. An example of measuring the travel

times 71 from a cross-correlation is shown in Figure 3.1.

The choice of reference wavelet C™(1,2,t) is left to the observer. For most
applications the reference wavelet needs only be a function of distance A = ||2 —1||
and time ¢. As was done in Figure 3.1, one possible choice is to take C™ to look like a

cross-correlation. In this case 7, and 7_ are small and the term “travel time” should
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Figure 3.1: An example showing how to measure the travel times 7. from a cross-
correlation C'(1,2,t). In this figure we choose the reference wavelet C™! (heavy line
in top panel) to be the zero-order cross-correlation, for the distance A = 10 Mm,
from the surface gravity wave example discussed in Section 3.3. In general, the
observer is free to choose any reference wavelet. This function C™' is even in time.
The light line (top panel) shows an example cross-correlation, C', which in this
particular case was computed from a model including a uniform horizontal flow of
400 m s~ ! in the direction 1 — 2. To measure the travel times d7. from C we
need to minimize the functions Xi. The lower panels show the functions X_ ()
and X (), constructed using equation (3.4). The window function f was chosen
to be the Heaviside step function. For the positive-time branch of C', the best fit is
obtained by shifting C™® toward ¢ = 0 (to the left). The minimum of X, (¢) occurs at
a negative time 7, , as can be seen in the right bottom panel. For the negative-time
branch of C, the minimum of the function X_(¢) occurs at a positive time 7_ (see
bottom left panel). The locations, 7 and 7, of the minima of the functions X ()
and X () are, by definition, the measured travel times. In this particular example
the signs 7, < 0 and 7 > 0 make sense as waves travel faster with the flow than
against it.
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be understood to mean “time lag”. A reference wavelet that resembles a cross-
correlation can be constructed by either averaging the observed cross-correlations
over all possible pairs of points (1,2) for each distance A (see Fig. 1.5), or by
computing a theoretical cross-correlation from a solar model (see § 3.3). Another
possible choice is to take C*™f(1, 2, t) to look like a single wavelet centered about t =
0. In this case 7, and 7 will essentially represent the time it takes for wavepackets
to travel between the observation points, and the denomination “travel times” for
T4 iS appropriate.

The definition of travel time presented here is analogous to the typical definition
of travel time used in the geophysics literature (e.g. Zhao & Jordan, 1998). In
time-distance helioseismology Duvall et al. (1997) measure travel times by fitting a
Gaussian wavelet to cross-correlations. This procedure distinguishes between group
and phase travel times, by allowing both the envelope and phase of the wavelet to
vary independently. Our definition is a simplification of this procedure as it contains
only one travel-time parameter per branch. The travel time defined here is neither
a pure group or phase time; it is, however, perfectly well defined and has already
been used in a time-distance study with real data (Gizon et al., 2000). Without
significant difficulty, the fitting presented here could be extended to include more
parameters, for example amplitude and central frequency, as is done by Duvall et al.
(1997).

Traditionally, mean and difference travel times have been used in place of the
one-way travel times. The mean and difference travel times are obtained from the

one-way travel times by

1
Tmean — 5(7—4- + 7——) ) (36)
Taif = T4 —T-. (3.7)

The motivation behind using 7Tean and 74 is that sound-speed perturbations are
expected to contribute mostly to the mean travel time and flows to the travel-time
difference (e.g. Kosovichev & Duvall, 1997).

The definition of travel-time perturbations described here leaves observers free
to measure without reference to a solar model. We note, however, that in order

for a proper interpretation of measured travel-time perturbations to be made it
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is essential for observers to report their choices of reference wavelet C™, window
function f, and filter F. A solar model is only necessary for the next step, the
interpretation of travel-time perturbations in terms of local perturbations to a solar

model, to which we now turn.

3.2.2 Interpretation of Travel Times

The goal of time-distance helioseismology is to estimate the internal solar properties
which produce model travel times that best match observed travel times. To achieve
this, we need to know how to compute the travel times for a particular solar model.
In order to make the inverse problem feasible we also need to linearize the forward

problem around a background state that is close to the Sun.

A background solar model is fully specified by a set of internal properties (density,
pressure, etc.) which we denote by g, (7) for short. Standard solar models provide
a reasonable background state. In the background state the cross-correlation and
the travel times are C° and 7 respectively. We then consider small perturbations,
dqa(r), to the solar properties. These perturbations could include, for example,
local changes in density, sound speed, or flows. The difference between the resulting

cross-correlation, C', and the background cross-correlation we denote by 6C,
6C(1,2,t) = C(1,2,t) — C°(1,2,1). (3.8)
Likewise, the perturbed travel times 074 are
67+(1,2) = 72(1,2) — 79(1, 2). (3.9)

The travel times 74(1,2) are measured from the cross-correlation C'(1,2,t). The
reference times 7 are the travel times which would be measured if the Sun and the

background model were identical.

As we are considering small changes in the solar model, the correction to the
model cross-correlation, 0C, will also be small. As a result we can linearize the

dependence of the travel-time perturbations 071 on dC. The algebra is detailed in
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Appendix A. The result of this calculation can be written as

574(1,2) = /OO dt Wi (1,2,1)5C(1,2,4). (3.10)
—o0
The functions W, depend on the zero-order cross-correlation C°, the reference
wavelet C™ and the window function f, and are given in equation (A.7). The
sensitivity of 47+ to dC is given by the weight functions W,.. We emphasize that
the travel-time perturbations d74 are proportional to dC, which is a first-order
perturbation to the background solar model. We interpret the right-hand side of
equation (3.10) as a model for the difference between the observed travel times and
the theoretical travel times in the background solar model.

The source of solar oscillations is turbulent convection near the solar surface (e.g.
Stein, 1967). As a result the signal ¢ and the cross-correlation C are realizations
of a random process. In general, a random variable is fully characterized by its
expectation value and all of its higher-order moments. As a result, to describe a
travel time perturbation 07 we need its expectation value (ensemble average) as
well as its variance, etc. In this chapter we consider only the expectation value. A
calculation of the variance of the travel times would be essential to characterize the
realization noise in travel time measurements. An accurate estimate of the noise in
travel time measurements is important for solving the inverse problem.

In this chapter we only compute the expectation values of travel time pertur-
bations and cross-correlations. This represents a first and necessary step. Notice
in addition that under the assumptions of the Ergodic theorem (e.g. Yaglom, 1962)
the cross-correlations (hence travel times) tend to their expectation values as the

observational time interval increases.

3.2.3 Modeling The Observed Signal

In order to obtain the cross-correlation, C°, and its first-order perturbation, §C, we
need to compute the observable, ¢, defined in equation (3.2), and therefore the wave
velocity v. Linear oscillations are governed by an equation of the form (e.g. Gough,
1993)

Lv=S. (3.11)
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The vector S denotes the source of excitation for the waves. The linear operator
L, acting on v, should encompass all the physics of wave propagation in an inho-
mogeneous stratified medium permeated by flows and magnetic fields. Damping
processes should also be accounted for in £. An explicit expression for the operator
L including steady flows is provided by Lynden-Bell & Ostriker (1967). Bogdan
(2000) includes magnetic field.

We now expand L, v, and S into zero- and first-order contributions, which refer

to the background solar model and to the lowest-order perturbation to that model:

L = L4460, (3.12)
v = v+ v, (3.13)
S = S§°+48. (3.14)

The operator 6L depends on first-order quantities such as local perturbations in
density, sound speed, damping rate, as well as flows and magnetic field. In general,
one may contemplate time-dependent perturbations. There are, however, many
interesting structures on the Sun (e.g. supergranules, meridional flow, moat flows)
which are approximately time independent on the time scale on which time-distance
measurements are made (at least several hours). As a result, for the sake of simplic-
ity, we only consider time-independent perturbations. These perturbations, which
we denoted by d¢,(r) for short, are thus only functions of position = in the solar

interior.

To lowest order, equation (3.11) reduces to
L% = 8°. (3.15)

In order to solve this equation, we introduce a set of causal Green’s vectors G'
defined by
LOGi(wa ta S, Zts) = éz(s) 6D(;B - S) 6D(t - ts) ) (316)

where the é;(s) are three orthogonal basis vectors at the point s and d, is the Dirac
delta function. The vector G'(x,t;s,t,) is the velocity at location & and time ¢

which results from a unit impulsive source in the é; direction at time ¢; and location
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s. Note that the vector G* does not in general point in the direction of &;. Guided

by equation (3.2), we define the zero-order Green’s functions for the observable ¢:
Gi(x, b 8,t5) = ?{E(m) : Gi(:c,t;s,ts)}. (3.17)
In terms of §', the unperturbed signal reads:

Oz, t)= [ d oodtsi 8, 1) SY(s, 1) . 3.18
¢(w)/®8/oo G (2. 1; 8.1) S%(s, 1) (3.18)

The sum is taken over the repeated index i, as is done for all repeated indexes

throughout this chapter.

To the next order of approximation, equation (3.11) gives
LY6v = —6L0° +68. (3.19)

This is the single-scattering Born approximation (e.g. Sakurai, 1995). The first-
order Born approximation has been shown to work for small perturbations (e.g.
Hung et al., 2000; Birch et al., 2001). We note that equation (3.19) is of the same
form as equation (3.15): the term —dL v°+ 48 appears as a source for the scattered

wave velocity dv. The solution to equation (3.19) is thus

dv(x,t) = /ds/ dt, G'(z,t; s,t,)
® —00

x{—0Lv"(s,t,) + 6S(s,t,)} (3.20)

7 ’
where {-}; denotes the i-th component of the vector inside the curly braces.

By expressing the zero-order velocity v° in terms of the Green’s function and
the source, and using equations (3.20) and 6¢) = F{£- §v}, the perturbed signal can

be written as
dp(x,t) = [/ dr/ dt'/ds/ dty G (x, t; 7, 1)
© —00 © —00
x{—0LG (r,t';s,15)}. S} (s, )]
+/ ds/ dt, G'(z,t; 8, t5) 6Si(s, ts) . (3.21)
® —00
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We recall that the operator £ contains the first-order perturbations to the solar
model, §¢, (7). The first term in the above equation contains two Green’s functions;
it represents the contribution to d¢(x, t) that comes from a wave that is created by
the source at location s at time %, is scattered at time ¢’ by the perturbations at
location 7, and then propagates to the location . The details of the scattering pro-
cess are encoded in the operator 0£. The second term results from the perturbation
to the source function, and involves only a single Green’s function, which propa-
gates waves from the location and time of the source to the observation location
and time. As we now have ¢° and d¢ we can next compute the zero- and first-order

cross-correlations, C° and §C.

3.2.4 Temporal Cross-Correlation

We remind the reader that we only want to compute the expectation value of the
cross-correlation (see § 3.2.2). In the rest of this chapter, cross-correlations stand
for their expectation values. From equation (3.3) and the equation for ¢° derived in
the previous section (eq. [3.18]) we deduce a general expression for the zero-order

cross-correlation:

1
C°(1,2,t) = T/dt’dsdtsds’dt; M (s, ts; ', 1)
xG'(1,t;s,t) G (2, +t;8, 1), (3.22)
with
M%(s,ts; s't) = E[S?(s,ts) S?(s',t’s)] , (3.23)

where E[-] denotes the expectation value of the expression in square brackets. For
the sake of readibility, we have omitted the limits of integration in equation (3.23).
The matrix M gives the correlation between any two components of S§°, measured
at two possibly different positions.

No assumption has been made about M to obtain equation (3.22). With the
assumptions of stationarity in time and homogeneity and isotropy in the horizontal
direction, M° only depends on the time difference ¢, — t., the horizontal distance
between s and s’, and their depths. Further assumptions could be made in order

to simplify the computation of equation (3.22). In the spirit of Woodard (1997) one
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might assume that the sources are spatially uncorrelated or are located only at a
particular depth. A better approach might be to obtain the statistical properties
of §° from recent numerical simulations of solar convection (e.g. Stein & Nordlund,
2000) or observations of photospheric convection (e.g. Title et al., 1989; Chou et al.,
1991; Strous et al., 2000). Furthermore, a comparison of models and observations
of the power spectrum of solar oscillations can be used to constrain the depths and

types of sources (e.g. Duvall et al., 1993a).

We now perturb equation (3.3) and take the expectation value to obtain

6C(1,2,t) = %/Oo dt' E[6¢(1,1') ¢°(2,¢' +t)

o0

+¢°(1,¢) dp(2, 1" + )] . (3.24)

The function 6C' has two contributions, one from the perturbation to the wave

operator, 6C¢, and one from the source perturbation, 6Cy :

0C = 0C, + 0Cy. (325)

Using the expressions for ¢° and d¢ given by equations (3.18) and (3.21), we
obtain the perturbation to the cross-correlation resulting from a change in the wave

operator L:

1
6C:(1,2,t) = T/dr/dt'dt"dsdtsds'dt;
®
x{—éLGi(r,t";s,tS)}kij(s,ts;s',t;)
x[§7(2,¢ +t; 8, 1) G* (1,157, t")
+G(1, 18, 1) G5 (2,¢ + t;7,1")] . (3.26)

The above equation, which gives the perturbation to the cross-correlation due to
scattering, has two components, illustrated in Figure 3.2a. The first component
comes from the correlation of the scattered wave at 1 with the direct wave at 2,
i.e. 0¢(1,t)¢°(2,¢ +1), and the second component comes from ¢°(1, )¢ (2,1 +1).
Both these components appear in equation (3.26) as the product of three Green’s

functions. From the term d¢(1,t)¢%(2, + t) there is one Green’s function for
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the wave that goes directly from s’ to 2, which gives ¢°(2). There is a second
Green’s function for the wave that is created at s and travels to =, and the third
Green’s function takes the scattered wave from = to 1, which gives d¢(1). The
term ¢°(1,¢)0¢(2,t +t) can be understood by switching the roles of 1 and 2. The
scattering process is described by the operator £, which depends on the perturba-
tions 0¢, (r). The Green’s function G is used for waves that arrive at an observation
point as it gives the response of ¢ to a source. The Green’s vectors G* are used to
propagate the wave velocity from a source to the scattering point, as the scattered
wave depends on the vector velocity of the incoming wave.

The cross-correlation is also sensitive to changes in the source function. The
first-order perturbation resulting from a small change in the source function can be
written as (from eqs. [3.18] and [3.21])

1
6Cs(1,2,t) = T/dt'dsdtsds'dt's OM;j(s,ts; 8, ty)
xG'(1,t';8,t) G (2, +t; 8, 1), (3.27)

where the perturbation to the source covariance is:

SMy (st t) = B[S)(s.t) 0,(s'.1)
+<5Si(37 tS) SJQ(SI’ t;)} : (3'28)

Figure 3.2b gives a graphical interpretation of this equation. Unlike the perturbation
to the cross-correlation due to scattering, the above equation contains only two
Green’s functions. One connects the unperturbed source with the unperturbed
signal at an observation point, while the second relates the source perturbation to
the perturbed signal at the other observation point.

Later in this chapter it will be necessary to express the perturbation to the cross-
correlation as a spatial integral over the location, 7, of the perturbation to the solar
model. In order to be able to write equation (3.27) for 6C's in this form, we introduce
the change of variable 7 = (s + s') /2 and uw = s — s’. This change of variable is
also useful because we expect the source covariance M to be small for large u, i.e.
for sources that are far apart. In the limit of very small source correlation length,

M is a function only of r.
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(a) Perturbation from scatterer

S(st) o S(s',t) st "/50(5',1:;)
‘ -+
% G
S¢(1,t) °(2,t'+t) #°(1,t) G« 0p(R,t+1)
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(b) Source perturbation
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S(L1) P(R.'+1) $°(1,t) 86(2,t'+1)

Figure 3.2: A graphical representation of the two types of contributions to the first-
order perturbation to the cross-correlation (eqs [3.26] and [3.27]). Panel (a) is for
scattering from perturbations dg,(r) to the model and panel (b) is for changes 6.5
in the source function. Scattering processes contribute to the cross-correlation as
the product of three Green’s functions: one Green’s function to describe the direct
wave from the source to an observation point and two Green’s functions to obtain
the scattered wave at the other observation point, in the Born approximation. The
sensitivity of the cross-correlation to a change in the source function only involves
two Green’s functions, one to propagate waves from the unperturbed source to an
observation point and one to give the response, at the other observation point, to the
change in the source function. Throughout the diagram, as in the text, the Green’s
function for the observable is given by G and the Green’s function for the vector
velocity is G. The dotted line between the source locations, s and s’, indicates that
the two sources are connected through the source covariance matrix M.
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We have shown how to obtain C° and §C from an assumed solar model consisting
of a background model (£° and §°) and small perturbations (£ and 68). Earlier, in
§ 3.2.2, we showed how to connect perturbations to the cross-correlation to travel-
time perturbations. In the next section we put these pieces together and obtain
travel-time kernels, which give the travel-time perturbations resulting from small

changes in the solar model.

3.2.5 Travel-Time Sensitivity Kernels

It is useful for the derivation of travel-time kernels to express the perturbation to the
cross-correlation dC' as an integral over the location r of the perturbations dg, (7).
In general §£ and 6M involve spatial derivatives of the perturbations dg,(r) to the
solar model and so integration by parts on the variable » may be required to obtain,
from equations (3.25), (3.26), and (3.27):

5C(1,2,) = / dr Sq,(r) Co(1,2, t:7) (3.29)
®
The index « refers to the different types of perturbations in the solar model, for
example perturbations to sound speed or flows. The sum over « is over all relevant
types of perturbations. We note that any particular perturbation dg, may appear
in both the operator 6L and the perturbation to the source covariance 0M. For
example a flow will both advect waves as well as Doppler shift the sources. For any
particular 0M(dq) it may be helpful to do partial integrations on equation (3.27)
before making the change of variable r = (s+s’)/2 described above. In Section 3.3,
we will show a detailed example of the derivation of C* for local perturbations to

source strength and damping rate for surface gravity waves.

In § 3.2.2 we showed how to relate the travel-time perturbations d7, to the
perturbation to the cross-correlation §C. Using equation (3.29) for §C, and equa-

tion (3.10) for 674, we obtain:

574(1,2) :/dr 540 (r) /00 At W (1,2,1) C(1, 2, 7). (3.30)

o0
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As we want to define sensitivity kernels in the form
574(1,2) = / dr Sqo(r) K2(1,2:7) (3.31)
®

we make the identification

Ko(1,2:7) = /oo At W (1,2,4) €*(1,2, ;7). (3.32)
—0

By definition, K¢ represent the local sensitivity of the travel-time perturbations
074 to perturbations to the model, d¢q,. From the above equation we can see that
the kernels depend on both the definition of travel time, through the functions W,
as well as on the zero-order problem and the form of the first-order perturbations,
through C*. The inputs needed to compute W, are the zero-order cross-correlation
C°, and the reference wavelet C™! and the window function f(¢) used in the travel-
time measurement procedure (eq. [A.7]). The function €% depends on the source
covariance, the Green’s function, the filter, and the forms of the wave operator and

the source function (egs. [3.26] and [3.27]).
We have now shown a general procedure for computing travel time kernels for
any particular model. In order to demonstrate the utility and feasibility of this
procedure we will, in the next section, derive two-dimensional kernels for surface

gravity waves.

3.3 An Example: Surface Gravity Waves

3.3.1 Outline

In this section we derive the sensitivity of surface gravity wave travel times to
local perturbations to source strength and damping rate. We work in a plane-
parallel model with constant density and gravity. In this model, wave excitation
and attenuation act only at the fluid surface, and the problem can be reduced to a
two-dimensional problem. Our model is a very simplified version of the actual solar
f-mode case, yet incorporates most of the basic physics. We will follow the basic

recipe outlined in Section 3.2 for deriving kernels.
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The example is written in four parts. In § 3.3.2 we fully specify the problem:
we derive the equations of motion, encapsulated in the operator L, and describe
our models for the source covariance and wave damping. We also describe the filter
F which includes an approximation to the MDI/SOHO point spread function. In
§ 3.3.3 we compute the zero-order solution to the problem: the Green’s function,
power spectrum, and zero-order cross-correlation. Travel-time kernels for perturba-
tions in source strength and damping rate are derived in § 3.3.4. We conclude, in
§ 3.3.5, with a comparison of the kernels from § 3.3.4 with kernels obtained in the

single-source picture.

3.3.2 Specification of the Problem

We consider a simple plane-parallel medium appropriate to studying waves with
wavelengths small compared to the solar radius. The geometry is shown in Fig-
ure 3.3. The height coordinate is z, measured upward, and a horizontal coordinate
vector is denoted by x. Gravitational acceleration is assumed to be constant, —g2,

2 is the solar surface value. For z < 0 the fluid has a uniform

where g = 274 m s~
constant density p. This assumption simplifies the problem considerably and does
not affect the dispersion relation (w? = gk). In addition, acoustic waves are not
present in this problem because the medium is incompressible. In the steady back-
ground state there is a free surface at z = 0. The background pressure distribution,
P(2), is hydrostatic, with P = —pgz.

In the following sections, we develop the equations of motion, encapsulated in
the operator £, and describe our models for the source covariance and the wave
damping operator. We also describe the filter F which includes an approximation
to the MDI/SOHO point spread function. The measurement procedure is specified

by choosing the reference wavelet and the window function.

Equations of Motion

We now derive the equations of motion, which we want in the form of equation (3.11).

For an inviscid fluid of constant density, the linearized equations of conservation of
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p=const.

Figure 3.3: The basic setup for the example. The coordinate z denotes height and
x is a horizontal coordinate vector. The half space z < 0 is filled with an incom-
pressible fluid of density p and the space above is empty. The line-of-sight vector
is £ = 2, i.e. the observer is looking straight down at the surface. Gravitational
acceleration is constant and points in the —2 direction. Surface gravity waves are
excited by a stochastic pressure distribution II applied at the surface, z = 0.
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mass and momentum read

V.ov = 0, (3.33)
po+Vp = 0, (3.34)

where p is the pressure perturbation associated with the waves. Provided that there
exists a time at which the velocity field is irrotational, it will remain irrotational
for all time. We may imagine a medium free of waves as a starting condition and
subsequently switch on the pressure sources at some initial time in the distant past.
As a result we assume that

VXxv=0 (3.35)

holds for all times.

In the Sun the wave excitation mechanism is near-surface turbulent convection,
with various types of sources distributed with depth (e.g Nigam & Kosovichev, 1999;
Kumar & Basu, 2000). Here, we excite surface gravity waves by applying a stochastic
pressure source II at the fluid surface. Thus, the wave pressure perturbation, p,

satisfies the linearized dynamic boundary condition
p—pgl =11, atz=0, (3.36)

where £ is the vertical displacement, which has time derivative equal to the vertical

velocity at the surface.

In principle, turbulent convection is also responsible for damping f modes (e.g.
Duvall et al., 1998). Turbulent convection can also modify the dispersion relation
(Murawski & Roberts, 1993). Here, however, we use a phenomenological model for
wave attenuation by including a dissipative term pYwv in the momentum equation
at the surface. The operator T is a temporal convolution which reproduces the
observed damping rates, it will be discussed in detail later. At the surface, the

momentum equation thus becomes:
po+Vp=—pYv, atz=0. (3.37)

Eliminating p from equations (3.37) and (3.36), the surface boundary conditions
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reduce to the equation
. 2 1 2 °
0,0 — gViw — 0,V - (Yu) = 5 oIT, (3.38)

where V), is the horizontal gradient and w and w are the horizontal and vertical

components of the wave velocity,
v=u+uwZ. (3.39)

We note that perturbations at the surface do not affect equations (3.33) and (3.35)
for z < 0. As a result the effect of surface perturbations is contained entirely in
equation (3.38). Therefore the problem is completely specified by equation (3.38)
on the surface and the auxiliary equations VXv = 0 and V - v = 0 for z < 0.
The problem is thus essentially two-dimensional, and equation (3.38) is the relevant

equation to put in the form of equation (3.11). So we have

Ly = 0,0 — gViw— 0,V (Tu), (3.40)
s = v (3.41)
P

We notice that the source function S is scalar, unlike in the general theory (§ 3.2).
Now that we have specified the operator £ and the source function S it remains

only to follow the recipe presented in the theory section.

The first part of the recipe is to write the zero-order problem and the first-
order Born approximation. We consider two different types of perturbations to the
background state: a change in the damping operator, Y, and a change in the source

function, 6.5. The zero-order problem is
L0 =50, (3.42)
where

L0%° 0,1° — gVZw" + 0,Y°0,u°, (3.43)
1 .
S =~V (3.44)
p
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Here, S° is the zero-order source function, £° the zero-order wave operator, and v°
the unperturbed wave velocity. We have used the fact that the zero-order damping

operator T? commutes with spatial derivatives. The first-order approximation gives:

LY 6v = —6Lv° + 68, (3.45)

where
—6Lv° = 0,V - (0T u?), (3.46)
65 = %V}f oI (3.47)

Here, S is the perturbation to the source function, 0L the perturbation to the
wave operator, and dv the first Born approximation to the wave velocity. Notice
that equation (3.45) has the same operator, L° on the left-hand side as the zero-
order problem (eq. [3.42]).

Source Covariance

In order to model the zero-order covariance M° of the source function S°, which
is necessary to compute the cross-correlation, we introduce the covariance of the

applied surface pressure distribution I1°,
p’m(z, t; ' ') = B[II(x, t) II°(2', )], (3.48)

which is a physical quantity. In terms of m®, the zero-order source covariance M°

is given by
M°(z,t;2',t") = V2V2 0,0y m°(x,t;2',t), (3.49)

where V£ denotes the horizontal Laplacian with respect to the variable . Guided
by the observations of Title et al. (1989) we write m® as a product of spatial and
temporal decaying exponentials. Under the assumption of translation invariance (in

time and space):
le—a'[|/Ls  o—|t—t'|/Ts

2m L2 275

€7|

m®(z;t; 2, ') = a (3.50)
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Here Ly is the correlation length and T the correlation time of the lowest-order
turbulent pressure field TI°. The constant a is the overall amplitude of m®. The
normalization factors 27TL§ and 27, are included so that in the limits of Ly — 0

and T, — 0, m® becomes the product of two Dirac delta functions, dp(x — ') and
5[) (t - tl).

Title et al. (1989) computed the covariance function of quiet-sun granulation in-
tensity and found exponential dependence on the temporal and spatial separations,
|t —t'| and ||@ — &'||, with correlation time 400 s and correlation length 450 km. For
this work, we take 75 = 400 s and Ly = 0. Neglecting the source correlation length,
i.e. treating the sources as spatially uncorrelated, is done for the sake of computa-
tional simplicity; it is not at all a limitation of the theory. The approximation of
zero-correlation length is appropriate because L is smaller than a wavelength. For
the form of m® given by equation (3.50), and the definition of the Fourier transform

appropriate for functions that are translation invariant (eq. [B.4]) we obtain

a

") = P+ WL

as Ls — 0, (3.51)

which in particular does not depend on k for spatially uncorrelated sources. Here,
as in the rest of the chapter, k is the horizontal wave vector and w is the angular

frequency.

We now consider source perturbations. As we have already shown, what matters
for the computation of cross-correlations is not the perturbation to the source but

rather the perturbed source covariance, § M, which can be obtained from dm through
SM(z,t;2', 1) = V2V2 0,0y 0m(z,t;x' 1) . (3.52)

Three possible types of perturbations to the source covariance are local changes
in source correlation time, correlation length, and amplitude. For instance, Title
et al. (1989) report different correlation times in quiet Sun and magnetic network.
Magnetic fields affect near-surface convection and thus are expected to introduce
local changes in the source strength as well. Here we consider only perturbations to

the local amplitude, a, of m, i.e. to model regions of increased or decreased f-mode
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emission. We choose

dm(z,t; ' t') = da(r) m?(z,t; 2, 1), (3.53)
a
with .
r= 5(:1:—1—:8'). (3.54)

Here da(r) gives the local change in the amplitude of the source covariance. We
have used the assumption that the source correlation length is small compared to
the length scale of the spatial variation of the amplitude of the source function, to

write da as a function of only the central position r.

Damping

Theoretical descriptions of the damping of f modes by scattering from near-surface
convective turbulence exist (e.g. Duvall et al., 1998), but we elect to use a phe-
nomenological model for the sake of simplicity. It is known from observations that
high-frequency waves are damped more strongly than low-frequency waves (e.g. Du-
vall et al., 1998). As a result we need a frequency-dependent damping rate. The
easiest way to implement general frequency dependence is through a temporal con-
volution (e.g. Dahlen & Tromp, 1998). Thus, we express the zero-order damping
operator, T, as N

TOu(a, 1) = 2i / a4t TO(t — ) v(a, ). (3.55)

™ o0
We have assumed that damping is acting purely locally. A more sophisticated
model would presumably include a spatial convolution in addition to the temporal
convolution. With the Fourier convention given in Appendix B, T can be written

Tov(k,w) = Tw)v(k,w), (3.56)

where I'’(w) is the temporal Fourier transform of I'°(¢). In addition, we see that
the operator d; + Y°, which appears in equation (3.37), becomes multiplication by
—iw + I'(w) in the Fourier domain.

For the sake of simplicity, we choose the function I'°(¢) to be real and even in

time. As a result I'°(w) is real and even. A non-physical consequence of this choice
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is that the damping operator is not causal. We will see, however, that the Green’s
function derived using this damping operator is still causal. A treatment of causal
frequency-dependent damping can be found in Dahlen & Tromp (1998). In order
to damp all frequencies w the function I'’(w) must be positive. We will see later
that I'°(w) is the full frequency width at half maximum of the surface gravity wave
power. We obtain a good fit to observed f-mode line widths (Duvall et al., 1998) if

we write [''(w) in the form

Mw) =7 |7
*

, (3.57)

with the parameters w, /27 = 3 mHz , v/27 = 100 pHz, and g = 4.4. This fit is
accurate in the range 1.5 mHz < w/2r < 5mHz. The frequency dependence of the

damping rate is strong.

There are two basic types of perturbations to the local damping rate: a change
in the amplitude of the damping rate, v, and a change in the exponent, 3. In this
chapter we only consider the former and write the perturbation to the damping
operator as

Y v(x,t) = @ Tou(x,t), (3.58)

where 07(x)/v is the local fractional perturbation in the damping rate.

Observational Filter

For this example we take the line-of-sight vector to be vertical and independent of
horizontal position, £ = 2. Then in accordance with equation (3.2) the observable
is

d(x,t) = F{ov(z,t) - 2}. (3.59)
In this example we consider only the case where there is no spatial or temporal
window function in the filter F, i.e. we observe the wavefield over an area A and a

time interval 7" which are both very large. Therefore the filter F can be represented

by multiplication by a function F'(k,w) in the Fourier domain,

o(k,w) = F(k,w)w(k,w), (3.60)



96 CHAPTER 3. INTERPRETATION OF TRAVEL TIMES

where w = v-2. The function F' includes the instrumental Optical Transfer Function
(OTF), which is the Fourier transform of the point spread function of the telescope
optics, as well as the effect of the finite pixel size of the detector. We use an azimuthal
average of the OTF estimated by Tarbell et al. (1997) for the MDI/SOHO telescope
in its high-resolution mode near disk center. We correct the OTF for the effect of

finite pixel size, €, by multiplying by sinc(ke/2), with € = 0.83 Mm and k = || k]|.

In general, F' also includes the filter used to select the particular waves of interest
in the k-w diagram and to remove low frequency noise from the data. In this example
there is only one ridge in the k-w diagram, corresponding to the surface gravity
waves. We choose a filter which is zero for frequencies less than wpy,;,/27 = 2 mHz

and more than wy,,/2m = 4 mHz, as was done for the data shown in Figure 1.5.

We include an additional factor, R, in the filter to make our unstratified example
look more solar. The function R(k) is the ratio of mode inertia in our model to mode

inertia in a standard stratified solar model:

_ pfi)oo e2kz 4
JZ po(z) e dz

R(k) (3.61)
Here p is the constant density in our model and pg is the density as a function of
depth in the solar model. We use the solar model of Christensen-Dalsgaard et al.
(1993) complemented by the chromospheric model of Vernazza et al. (1981) up to
z, = 2 Mm. In the solar model z = 0 is the photosphere. If we had started from the
full stratified solar problem we would presumably obtain a solar-like power spectrum

without this correction factor.

To summarize, we take the filter F' to be:
F(k,w) = OTF(k) R(k) Hea(w — wmin) Hea(wmax — w) , (3.62)

where Hea is the Heaviside step function. The OTF and the k& dependence of the
full filter, F', are shown in Figure 3.4. We repeat that we have not included the
effect of an observational time window, nor the effect of observing a finite area on
the sun. Both of these effects could be included, though the filter could no longer

be represented as a simple multiplication in the Fourier domain.
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Figure 3.4: The wavenumber dependence of the filter F' and of the OTF for the
example calculation. The dashed line is the azimuthal average of the OTF esti-
mated by Tarbell et al. (1997) for the MDI/SOHO high-resolution telescope. The
filter F' is the product of the OTF and the mode-mass correction R given by equa-
tion (3.61). Notice that the mode-mass correction suppresses the low-wavenumber
part of the spectrum, which gives better agreement between our unstratified model
and a stratified solar model, for which low wavenumbers modes are difficult to excite.
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Measurement of Travel Times

As explained in § 3.2.1, the observer needs to select the reference wavelet C™' and the
window function f in order to make a travel-time measurement. For this example,

we choose C™ to be the zero-order cross-correlation of the model,
Ccf(1,2,t) = C°(1,2,1), (3.63)
and the window function f to be the Heaviside step function,
f(t) = Hea(?) . (3.64)

For this choice of reference wavelet, the zero-order travel times 70 are zero (see
Appendix A). The window function f is acceptable as we have only a single skip
(surface waves). Using equation (A.8), we rewrite the travel-time perturbations 074

in terms of the temporal Fourier transforms of W, and 0C"
(m@m:mm/dmm@zmw@z@, (3.65)
0

where Re selects the real part of the expression. The real and imaginary parts of

W, (w) form a Hilbert transform pair:

—Hilb[wC"(1, 2, w)] F iwC’(1, 2,w)
A [F w?|C0(1,2,w")? dw’ ’

Wi(1,2,w)= (3.66)
where Hilb[-] denotes the Hilbert transform (Saff & Snider, 1993). Note that we used
the fact that C°(t) is even. We now have an explicit definition of the travel-time

perturbations d7, and d7_ for our example.

The mean travel-time perturbation, 07,yean, and the travel-time difference, o714,

can be expressed in the form of equation (3.65) with weight functions W, (w) and

Wia(w) given by

* ]‘ * *
W, ::ﬂm+m% (3.67)

mean
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From equation (3.66), and because C°(w) is real, we see that W

2 ean(w) 1s real and

that Wjg(w) is imaginary. Thus the real part of the perturbation to the cross-
correlation, dC(w), introduces a mean travel-time perturbation. The imaginary

part of 6C'(w) causes a travel-time difference.

3.3.3 Zero-Order Solution

Now that the problem has been fully specified, we can compute the Green’s function,
the power spectrum, and the cross-correlation for the zero-order model. We show
that the power spectrum in our example resembles the solar f-mode spectrum. We
find that the unperturbed cross-correlation is the inverse Fourier transform of the

power spectrum.

Green’s Function

Here we derive the Green’s function appropriate for solving a problem of the form
of equation (3.42). The vector Green’s function, G(z, 2,t; s,t5), is the velocity
response at horizontal coordinate «, height z, and time ¢ to an impulsive source in
S at surface location s and time t;. In our example S is scalar, so we need only
one vector Green’s function, and we drop the superscript on the Green’s function,
which appeared in the general theory (eq [3.16]). By definition G solves the surface

boundary condition
LGz, z,t;8,t;) = 0p(x — 8) 6p(t — 15) at z =0, (3.69)

with the additional constraints that G must be irrotational and divergenceless in
the bulk, as well as vanish as 2 —+ —oo. The Green’s function G is only a function of
the horizontal spatial separation  —s, the time lag ¢t —t5, and the observation height
z. Using the Fourier convention given by equation (B.4), the Fourier transform of
the Green’s function can be written

(ik + 2) e
(27)3k [gh — w? — iwl0(w)]’

G(k,w;2) = (3.70)
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where k = k/k. We remind the reader that in this example the wave vector k is
horizontal. From the above expression we can see that the horizontal component of
G(k,w; 2) is in the direction of k and that the horizontal and vertical components
are of the same magnitude and 7/2 out of phase. The amplitude of the Green’s
function decays exponentially with depth; the same result would apply for a verti-
cally stratified medium (Lamb, 1932). At fixed wavenumber k, the Green’s function
has resonant frequencies w ~ +4/gk — il'%/2 in the limit of small damping. We
recognize the dispersion relation for deep water waves. Since I'’(w) is positive, the
imaginary part of the two poles of the Green’s function is negative. This ensures
that the Green’s function is causal (e.g. Saff & Snider, 1993). For later use, we also

introduce another Green’s function,
G (k,w) = iwk?F(k,w)G.(k,w,z =0), (3.71)

which gives the vertical velocity at the surface resulting from an impulsive source in

I1/p. The Green’s function G, is the Z component of G given by equation (3.70).

Power

By definition the power spectrum is the square of the modulus of the Fourier trans-
form of the observable. For convenience, we consider the zero-order power spectrum

per unit area and per unit time:

(2m)°

P(k,w) = T

E [|¢°(k,w)"] , (3.72)

where A is the area and T the time interval over which the power is computed.

After a few simple manipulations, we find that P is given by
P(k,w) = (2m)° |G" (k, w) | m®(k,w) . (3.73)

None of the terms in the above equation depend on the direction of k. In particular,
m® = m%(k,w) because the sources are spatially homogeneous and isotropic in the
zero-order problem. In addition the filter F' is a function only of the wavenumber

k and frequency w. Therefore the power spectrum is independent of the direction
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of k. The term |S™(k,w)|? specifies the shape of the resonance peaks in the power

spectrum. For w near \/gk we have approximately

P(k,w) ~ kQTmO [(w - \/ch)Z + (r“/z)Q] . (3.74)

Thus, at fixed wavenumber, the line shape is Lorentzian with full-width at half-
maximum I'(w).

Figure 3.5 compares the power spectrum for our model, P(k,w), with the power
spectrum for the solar f-mode ridge observed with the MDI/SOHO high-resolution
telescope. The distribution of power with frequency and wavenumber confirms that

there is a good agreement between the model and the observations.

Cross-correlation

To obtain the zero-order cross-correlation, we use the definition of C° (eq. [3.22]),
the expression for the source covariance (eq. [3.49]), and the definition of the Fourier

transform to obtain:

C(1,2,1) = // dk / dos R A0 (g ) (3.75)

where A = 2 — 1. For the zero-order problem the cross-correlation is therefore the
inverse Fourier transform of the power spectrum. This is a consequence of the fact
that the problem is translation invariant. Since in our example P does not depend
on the direction of k we can perform the integration over the angle between k and
A to obtain

C’O(1,2,t):27r/ kdk/ dw e Jo(EA) P (I, w) | (3.76)
0 —00

where .Jy is the cylindrical Bessel function of order zero. From the above expression
it is clear that the zero-order cross-correlation is only a function of the time lag ¢ and
the spatial separation between 1 and 2, A = ||A||. Notice that the amplitude of the
cross-correlation falls off like A='/? at large distances as result of the asymptotic form
of Jo(kA). This factor accounts for the geometrical spreading of two-dimensional

waves, like surface-gravity waves.
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Figure 3.5: A comparison of observed and model power spectra. The upper-right
figure shows the zero-order power spectrum in our model, P(k,w), defined by equa-
tion (3.73). The coordinates are frequency, w/27, and dimensionless wavenumber,
kRs, where R, = 696 Mm is the solar radius. In the upper-left figure is the
azimuthal average of the power observed with the MDI/SOHO high-resolution tele-
scope. The f-mode ridge has been isolated by a simple boxcar filter. The lower-left
panel displays the power integrated over wavenumber, as a function of frequency.
The dashed and solid lines refer to the model and the observations respectively.
The lower-right figure shows the power integrated over frequency, as a function of
wavenumber kR.. Again the dotted line refers to the model and the solid line to the
data. In our model the source correlation length and time are Ly = 0 and 75 = 400 s.
The agreement between the model and the observations could be further improved
by considering a non-zero source correlation length, which would reduce the power
at high spatial frequencies.
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From the power spectrum, we can compute numerically the cross-correlation
using equation (3.76). Figure 1.5 provides a comparison between the model cross-
correlation C° (right panel) and the average MDI cross-correlation for the f-mode
(left panel). The two cross-correlations show the same features, including at very
short distances. The two branches of the cross-correlation correspond to the prop-
agation of the energy of the wave packets at the group speed, v, = g/2w, where
w is the central frequency. For a central frequency of 3 mHz the group speed is
7.3 km s~!. The effect of dispersion is also clearly visible: the oscillating fine struc-
ture has a different slope than the envelope slope, given by the phase speed v, = 2v,.
Low-frequency waves propagate faster than high-frequency waves, because the phase
speed is inversely proportional to w. Note that for distances less than about half
a wavelength (2.5 Mm) the two branches of the cross-correlation are merged. This
implies that travel-time measurements are difficult in the near field. The effect of
damping is to strongly suppress high-frequency waves at large distances. Figure 3.1
shows a plot of the zero order cross-correlation, C° = C™', at a distance A = 10 Mm.
As a consequence of the dependence of the phase speed on frequency (dispersion),
the instantaneous frequency of the cross-correlation is seen to increase with time lag
t.

3.3.4 Kernels for Source Strength and Damping Rate

In this section we derive travel-time kernels, K and K, for perturbations to local
source strength and damping rate respectively. These kernels connect travel-time
perturbations 074 to fractional perturbations to the model:

0re(1,2) = / dr(sa—(r)Ki(l,ZT)
(4) a

J

+/ ar ) g1 (1, 2:7). (3.77)
(4) v

Here da(r)/a is the local fractional change in the source strength and d+(r)/v the

fractional change in damping rate. The two-dimensional integrals are taken over all

points 7 on the surface z = 0, denoted by (A).

In Appendix C we give an explicit derivation of the sensitivity kernels K] and
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K. We first compute the sensitivity of the cross-correlation to small local changes
in @ and v (egs. [C.2], [C.3] and [C.4]). We then relate changes in the cross-
correlation to changes in travel times, through the weight functions W, (eq. [3.30]).
Because of the assumptions that we have made in this example, the kernels can be
written in terms of separate one-dimensional integrals over horizontal wavenumber.

In Appendix C we show that K¢ are given by

K{(1,2;7) = 47rRe/ dw Wi (1,2,w)m’(w)
0
xI* (Al, (.U)I(AQ, w) , (378)

where the integral I(d,w) is a function of a distance d and frequency w only:

I(d,w) = (27?)3/ kdk Jo(kd)G™(k,w). (3.79)
0
In equation (3.78), A, is the distance from 1 to 7 and A, is the distance from 2 to
r. The complex integral I(d,w)/(2m)? is the spatial inverse Fourier transform of the

Green’s function §"(k,w).

As shown in Appendix C, the damping kernels K can also be written as com-

binations of two one-dimensional integrals, I(d,w) and II(d, w):

K1(1,2;7) = 4n(A;-Aj)Re /OO dw Wi(1,2,w)
xm®(w) [I(A, w)L(Ag, w)
+I(Ag, )" (Ay,w)], (3.80)

where Al is a unit vector in the direction r — 1 and Az is a unit vector in the
direction » — 2. The explicit forms of I and I are given in Appendix C. The
function II is complex and involves only one Green’s function, G™. The real integral
Il involves two Green’s functions, GG, and G, and is related to the scattering process
(see Fig. 3.2).

We computed the kernels numerically, with grid spacings of 7 x 1072 rad Mm™!
in k£ and 1072 mHz in w/27, which were selected so that the smallest line widths
(1.5 x 1072 rad Mm ', 1.7 x 10~ 2 mHz) would be resolved. We ran a second set of
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source damping

one way

Figure 3.6: Travel-time sensitivity kernels for perturbations in source strength and
damping rate as functions of position » = (z,y). The left column displays kernels
for source strength, K% and the right column displays kernels for damping rate,
K7. The top row gives the one-way travel-time kernels K77, the middle row gives
the travel-time difference kernels Kj%, and the bottom row gives the mean travel-
time kernels K% . The observation points 1 and 2 have the coordinates (z1,y:) =
(=5,0) Mm and (z2,y2) = (5,0) Mm respectively, and are denoted by the black
crosses in each panel. The color scale indicates the local value of the kernel, with
blue representing negative value and red positive. The color scale is truncated at

+1 s Mm 2. The grid spacing is 0.14 Mm.
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calculations at twice the above stated resolutions and saw only very minor changes

in the resulting kernels.

Figures 3.6a and 3.6b show the kernels K¢ (1,2;r) and K7 (1,2;7) for the dis-
tance A = 10 Mm, as a functions of horizontal position = (z, y). The observation
points 1 and 2 have coordinates (zq,y;) = (—5,0) Mm and (z2,y2) = (5,0) Mm
respectively. An important observation is that the kernels K¢ and K7 are quite
different: one does not simply have the opposite sign of the other. This means that
a decrease in source strength is not equivalent to an increase in damping rate, as one
might naively expect. In particular, the total integral of the source kernel is zero
while the total integral of the damping kernel is positive, with a value of 5.9 s. A
uniform increase in source strength results only in a change in the overall amplitude
of the power spectrum (and thus in the cross-correlation) and as a result does not
affect the travel time. In contrast, a uniform increase in the damping rate affects
the shape of the power spectrum, and thus causes a travel-time perturbation 7.
The kernels K¢ have largest amplitude in the vicinity of the observation points
1 and 2. Both K7 and K¢ have roughly the same magnitude, of the order a few
s Mm 2. Both of the kernels oscillate spatially: this is a finite wavelength effect.

Hyperbola shaped features (with Ay — A; = const) are present in both K7
and K¢. As Woodard (1997) noted, all of the sources located along a particular
hyperbola (with foci at the observation points) give a similar contribution to the
cross-correlation, which explains the appearence of the kernel K¢. We emphasize
that the kernel K¢ (1,2;7) is for the one-way travel time 07, (1,2) which relates
to waves moving from 1 to 2. As a result only perturbations to the sources which
produce waves moving from 1 to 2 can introduce a perturbation in 7, (1, 2). This is
clear from Figure 3.6a: the kernel K¢ is only significant in the region, x < 0, which

produces waves that arrive at 1 before they arrive at 2.

The damping kernel K7 is more complicated, as it shows ellipses (Ay + Ay =
const) in addition to hyperbolas, and results from scattering, unlike the source
strength kernel. The ellipses are due to waves that go through 1, scatter at 7,
and are then observed at 2. The hyperbolas corresponds to scattered waves which
arrive at 1 before the direct waves arrive at 2. These two distinct processes will be

discussed in more detail in Figure 3.10. Note that the damping kernels K" change
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sign on the circle A, - A, = 0 which goes through 1 and 2. This is a result of the
details of the scattering of waves by local inhomogeneities in damping rate. The
scattered wave depends on the direction of the incoming wave; back-scattered waves
are in anti-phase with forward-scattered waves.

In this example, because C™ = (C? is even in time, 67 (1,2) = 67,(2,1). As a

result the kernels K_, for the travel-time perturbation d7_, can be obtained from
K (1,2;7) =K, (2,1;7). (3.81)

This is not, however, a general rule, it depends on the choice of reference wavelet.
The kernels for the perturbations to the travel-time mean and difference can be

easily obtained from the kernels for the one-way travel times:

1
Kil’ga.n = §(Kiﬁ + Kgﬁ) ) (382)
K% = K™ - K7 (3.83)

The kernels K%7 and KJ; are plotted in the remaining panels of Figure 3.6.

mean

The kernels for the mean travel time are symmetric on interchange of 1 and 2
and the travel-time difference kernels are antisymmetric on interchange of 1 and 2.
Notice that like the one-way travel time kernels, the kernels K3} and K% =~ are
largest near the observation points 1 and 2. We note that K§4 is roughly of the
opposite sign of K., except for inside the circle defined by A;- A, =0, where the
sign is the same. A localized perturbation to source strength (damping rate) on the

line y = 0 with = < x; gives an increase (decrease) in the travel-time difference.

In order to show the full range of variation of the kernels we plot, in Figure 3.7,
cuts of the kernels K7 along the lines y = 0 and x = 0. Figure 3.7a shows that
the source kernel is zero along the line x = 0, while the damping kernel is positive
and maximum at y = 0. The side lobes (the second Fresnel zone) of K7 extend
out to 3.5 Mm. The slice along the line y = 0, Figure 3.7b, shows the complicated

behavior of the kernels near the observation points, where they oscillate.

We have studied single-frequency kernels and seen that there is constructive
interference between different frequency components along the line y = 0, —oco0 <

r < xy for K], and the line y = 0,—0c0 < x < z; for K. In the limit of infinite
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Figure 3.7: Cuts through the source and damping kernels, K¢ and K7. Panel (a)
shows cuts along the line x = 0 and panel (b) shows cuts along the line y = 0. The

dashed line is for the source kernel K¢ and the solid line is for the damping kernel
K.
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bandwidth, the kernels K] and K¢ reduce to these rays respectively. This is in
contrast with conventional ray theory where the ray is restricted to the line segment
y=0,7; <x < xs.

In the past, travel-time kernels have been calculated in the “single-source pic-
ture” (Birch & Kosovichev, 2000; Jensen et al., 2000). In the following section we
test the single-source method by comparing single-source kernels with the kernels

calculated using a random distributed source model.

3.3.5 The Single Source Picture

The single-source picture consists of placing a single causal source at 1 and observing
the effect of local perturbations on the wavefield observed at 2. The one-way travel-

time perturbation is approximated by the travel time shift,

_ff"oo dt 6¢(2,t) ¢°(2, t)
S0, dt [0(2, 1))

69(1,2) = , (3.84)
between the unperturbed and perturbed signals at 2 (Birch et al., 2001). This
new definition of travel time is necessary: in the single-source picture there is no
cross-correlation and thus our earlier definition of travel time can not be used. In
equation (3.84), ¢°(2) and §¢(2) are the unperturbed and perturbed wavefields at

2. The wavefield is generated by a causal pressure source placed at 1:
[I(s,ts) = pO(s — 1,t5) . (3.85)

The function © characterizes the pressure source, and will later be used to tune the

source spectrum.

In this section we consider the kernel K™ derived in the single-source picture,
which gives the sensitivity of the travel-time perturbation d7, to a local fractional
perturbation in the damping rate. The single-source picture cannot easily be used
to derive a kernel for a source perturbation, which does not involve a scattering

process.
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Figure 3.8: A comparison between single and distributed source kernels for damping
rate. The left panel shows the distributed source kernel for damping, K7 (also
shown in Fig. 3.6b). The right panel is the single source kernel K™ discussed in
Section 3.3.5 and computed using equations (D.5) and (D.6). For the single source
kernel the source is located at 1 with coordinates (—5,0) Mm. The observation point
2 is located at (0,5) Mm.

By definition the kernel K7™ which we derive in Appendix D, satisfies

575(1,2) = / ar ) vy 9.7y (3.86)
(A) Y
The definition of travel time given in equation (3.84) closely resembles the definition
of travel time used in the general theory (eqs [A.6] and [A.8]) if ¢(2, ) looks like the
positive time-lag branch of the zero order cross-correlation from the random source
model. This condition implies that the spectrum of the source, ©(k,w), is given by
equation (D.8).

Figure 3.8 is a comparison of the single-source kernel K"* with the distributed-
source kernel K7, computed in the previous section. The single-source kernel fails to
reproduce the hyperbola shaped features that are seen in the random source kernel,
even though the ellipses can be seen in both (with the same order of magnitude and

sign). A single causal source at 1 is not sufficient to generate all of the waves which
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15¢

-10 -5 0 5 10

Figure 3.9: Cuts along the line y = 0 through the damping kernels K7 and K™
shown in Figure 3.8. The dashed line is for the distributed-source kernel and the

solid line is for the single-source kernel.
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are relevant to the problem of computing travel time kernels (see Fig. 3.10).

Cuts at y = 0 through K7™ and K] are shown in Figure 3.9, again for the
distance A = 10 Mm which was used in all previous plots of kernels. The kernels
agree well for 2 0, where the hyperbola shaped features in K] are absent. For
x <0, the two kernels are quite different, in particular the single-source kernel is
nearly zero for z < —7 Mm, while K7 has a negative tail there.

In the limit of infinite bandwidth (ray theory), the single-source kernel K7™
would be restricted to the line segment, y = 0, 1 < x < x5; in contrast with the
finding (see § 3.3.4) that the distributed-source kernel K] would reduce to the ray

y=0, —oc0o <z < x5.
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Source at 1 Anti—causal source at 2

Figure 3.10: A graphical discussion of the single-source picture for computing kernels
for the one-way travel time d7 (1, 2). The left hand panel is the conventional single-
source picture where a causal source is exploded at 1 and the scattered wave is
observed at 2. The scattering point is denoted by 7. Perturbations located on
curves with constant ||r — 1|| + ||2 — || contribute to the scattered field with the
same geometrical delay in travel time, and as a result ellipse shaped features are
seen in the travel-time kernel. A single source at 1 does not, however, produce
all of the waves which are relevant to computing correct travel-time kernels. The
right-hand panel shows an example of a component to the wavefield which is missed
in the single-source picture. An anti-causal source at 2 causes an incoming wave
toward 2 which is then scattered at r» and arrives at 1. For  near 1 this gives a
signal that is first observed at 1 and then later at 2, i.e. looks like a wave moving
from 1 to 2. Perturbations located on curves with constant ||r — 1|| — ||2 — r|| ,
i.e. hyperbolas, contribute to the scattered field with the same geometrical delay
in travel time. Were the single-source picture extended to include an anti-causal
source at 2, hyperbola shaped features would be seen in the travel-time kernels.
Note, however, that hyperbolas naturally appear in the distributed-source kernels
K77 (Fig. 3.6a and 3.6b). The hyperbolas with ||r — 1] —||2 — 7|| > 0 are not seen
as they do not affect the positive-time branch of the cross-correlation (the scattered
wave arrives at 1 after the unperturbed wave arrives at 2).



Chapter 4

Global Seismology of Sun-like

Stars !

!This chapter is from a paper accepted for publication in the Astrophysical Journal (Gizon &
Solanki, 2003). Section 4.2 was published in Astronomische Nachrichten (Gizon, 2002).
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4.1 Inclination of Stellar Rotation Axes

4.1.1 Introduction

For an Earth-based observer the rotation axis of the Sun is almost perpendicular
to the line of sight. Traditionally, the solar rotation axis has been approximated
to be exactly perpendicular to the ecliptic plane for helioseismic investigations of
spatially-unresolved oscillation data. An exception concerns the search for oblique
rotation of the Sun’s core (Goode & Thompson, 1992; Gough et al., 1995). The
rotation axes of stars are however randomly distributed in space. Since the visibility
of the pulsation modes with various azimuthal orders m is a function of the angle
between the rotation axis and the line of sight, 7, this angle cannot be ignored in
asteroseismology. The presence of random ¢ values not only affects the method to
measure oscillation mode parameters, but asteroseismology conversely provides us
with the possibility of determining ¢, a parameter that in general is very poorly
determined. Space missions such as COROT of CNES (Baglin et al., 2001) and
Eddington of ESA (Favata et al., 2000) are expected to deliver the data necessary

to do high-precision asteroseismology on a large number of stars.

The surface rotation rate of a star is one of its fundamental parameters and has
been well studied. The standard method of deducing the rotation rate is to consider
the widths of spectral lines. This technique only gives v sin 7, however, where v is the
equatorial rotation velocity at the stellar surface. Asteroseismology can in principle
provide measurements of the angular velocity, 2, and of the inclination angle .
From these three measurements it is possible to determine the stellar radius, another

fundamental parameter, without knowledge of stellar structure and evolution.

Knowledge of i is important not just for obtaining improved stellar parameters,
but also in order to determine the masses of extra-solar planets. The standard
technique used to detect such planets is to look for periodic Doppler shifts in the
spectrum of the central star of the extra solar planetary system (Mayor & Queloz,
1995; Noyes et al., 1997; Marcy & Butler, 2000). This technique, however, only re-
turns M, sini,, where M, is the mass of the orbiting body and i, is the inclination of
the normal to its orbital plane relative to the line of sight. Clearly, the mass estimate

obtained in this manner is a lower limit. Since ¢ and ¢, are expected to be similar
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(see below) a knowledge of i« would help to improve the mass estimates of extra solar
planets considerably and would distinguish also misidentified brown dwarfs in orbits
with small 7, from bona fide planets. In the solar system ¢ and i, differ by less than
10° for all the planets excluding Pluto. Also, currently favored theories of planetary
system formation predict that the orbital plane of planets should nearly coincide
with the equatorial plane of the central star (Safronov, 1972; Lissauer, 1993). An
alternative technique for detecting planets involves looking for planetary transits in
photometric data. So far this technique has uncovered only a couple of such systems
(Charbonneau et al., 2000; Henry et al., 2000; Udalski et al., 2002; Konacki et al.,
2003; Dreizler et al., 2003), compared to a total of over 100 planets detected using
radial velocities. However, missions such as COROT, Eddington, and Kepler aim
at discovering many such systems. Since for transiting planets i, is known to high
accuracy (Brown et al., 2001), a comparison with the independently measured i of
the central stars would allow a direct test of the theoretical prediction that i, and

¢ are very similar. Clearly, there are many reasons to attempt to measure %.

Here we present a technique employing low-degree non-radial oscillations to de-
termine 7 for sufficiently rapidly rotating stars. The technique makes use of the fact
that the ratio of amplitudes of the m = £1 and m = 0 components of dipole oscilla-
tions is a strong function of 7. Similarly, the amplitudes of the peaks in quadrupole
multiplets exhibit different dependences on i. This technique is thus similar to us-
ing the ratios of o(AM; = £1) to 7(AM; = 0) components of Zeeman-split atomic
transitions to determine the angle of the magnetic field vector relative to the line-
of-sight, a standard procedure in Zeeman magnetometry. By studying solar dipole
modes of oscillation, Gough et al. (1995) were able to measure the inclination of the

Sun’s rotation axis within 5° of the true value.

In this chapter we simulate a large number of realizations of oscillation power
spectra seen in intensity with known values of the stellar rotation and of the in-
clination angle. We then fit a parametric model to each power spectrum with a
maximum likelihood technique to estimate 7, {2, and other mode parameters. The
distribution of the measured values of i indicates how precise a measurement can

be. In order to assess the feasibility of the technique we adopt the pessimistic view
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that only a single multiplet, [ = 1 or [ = 2, is observed. In practice, the informa-
tion from tens of modes would be combined to better constrain 7. Although we are
investigating a problem which has not been studied before, we employ many results

from helioseismology.

4.1.2 Effect of Rotation on Stellar Oscillations

Stars like the Sun undergo global acoustic oscillations driven by near-surface tur-
bulent convection. The pulsation frequencies w,; of eigenmodes with radial order
n and spherical harmonic degree [ are characteristic of the spherically symmetric
structure of a star (Brown & Gilliland, 1994). For distant Sun-like stars, observa-
tions are mostly sensitive to high-order acoustic modes with [ < 2, i.e. radial, dipole,
and quadrupole p modes. Because low-degree frequencies satisfy a relatively simple
asymptotic relation (Tassoul, 1980) in which the large separation w,;, — w,_1,; and
the small separation wy,g — wp—12 depend weakly on n, the degree [ of a multiplet
can in principle be identified without ambiguity in the oscillation power spectrum
(Fossat, 1981). A solar oscillation power spectrum for 200 days of observation of
the total irradiance (Frohlich et al., 1997) is shown in Figure 4.1. Many attempts
have been made to detect p modes on other Sun-like stars. So far they have only
been clearly detected on o« Cen A (Bouchy & Carrier, 2001; Schou & Buzasi, 2001;
Bedding et al., 2002).

Rotation removes the (21 + 1)-fold degeneracy of the frequency of oscillation of
the mode (n,[). The nonradial modes of a rotating star are thus labeled with a third
index, the azimuthal order m, which takes integer values from —/ to +I. When the
angular velocity of the star, 2, is small, the effect of rotation on mode frequencies
can be treated as a small perturbation. In the case of rigid-body rotation, and
to a first order of approximation, the frequency of the mode (n, [, m) is given by
(Ledoux, 1951):

Wnim = Wnt +mQ (1= Cyy) . (4.1)

The kinematic splitting, mS2, is corrected for the effect of the Coriolis force through
the dimensionless quantity C,; > 0 whose value depends on the oscillation eigen-
functions of the non-rotating star. High-order low-degree solar oscillations have

C,i < 1072 rotational splitting is dominated by advection. We note that the
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Figure 4.1: Solar oscillation power spectrum for 200 days of observation of the total
irradiance (Frohlich et al., 1997). The data are from the VIRGO experiment aboard
the ESA/NASA Solar and Heliospheric Observatory (SOHO). The global modes
of oscillation are ordered in sequence: (n — 1,1 = 2), (n,l = 0), and (n,l = 1)
with radial order n increasing with frequency. The large frequency separation is
(Wny — wp—1,4)/2m ~ 135 puHz and the small separation is (wy—¢ — Wp_1,-2)/27 ~
10 pHz.

rotation-induced frequency shift would not be linear in m if the angular velocity
Q2 were to vary with latitude (e.g. Hansen et al., 1977).

To the next order of approximation, centrifugal forces distort the equilibrium
structure of the star. This results in an additional frequency perturbation (indepen-

dent of the sign of m) which scales like the small parameter

O*R?

ST (4.2)

i.e. the ratio of the centrifugal to the gravitational forces at the stellar surface (Saio,
1981; Gough & Thompson, 1990). Here R denotes the radius of the star, M its mass,
and G the universal constant of gravity. Second-order rotational effects are negligible
in the Sun (Dziembowski & Goode, 1992). These effects are however significant for
faster rotating Sun-like stars (Kjeldsen et al., 1998). Other perturbations, such
as a large-scale magnetic field, may introduce further corrections to the pulsation
frequencies (Gough & Thompson, 1990).

Here we only consider first-order rigid rotation, and substitute w,; + m2 for
Wnim- Our purpose is to assess the feasibility of measuring the basic rotation param-
eters 2 and 4. In an inertial frame R’ with polar axis coincident with the angular
velocity vector €2, scalar eigenfunctions are proportional to a spherical harmonic
function Y;™(¢', ¢'), where ' and ¢’ are the co-latitude and longitude defined in



4.1. INCLINATION OF STELLAR ROTATION AXES 119

the spherical-polar coordinate system associated with R’. Under the approximation
that the intensity fluctuation due to a mode of oscillation is proportional to a scalar
eigenfunction measured at the stellar surface (such as the Lagrangian pressure per-
turbation), the brightness variations due to the free oscillations of a star may be

written as a linear combination of eigenmodes:

"(t.0.¢) =R Z Apim Y™ (0, ') eonim! (4.3)

nl m=-—I

where A,,;,, are complex amplitudes, ¢t denotes time, and R takes the real part of the
expression. A more accurate expression for I’ requires an explicit relationship be-
tween mode displacement and light-flux perturbation (e.g. Toutain & Gouttebroze,
1993).

To obtain the intensity that an Earth-based observer would measure, it is con-
venient to transform to an inertial frame R with polar axis pointing toward the
observer, inclined by the angle ¢ with respect to 2. Co-latitude # and longitude ¢
are spherical-polar coordinates defined in R. For an appropriate choice of longitude
origins, spherical harmonics expressed in R’ and R are related linearly according to
(Messiah, 1959):

l
= D V0, 6) i (i), (4.4)
m/=—1

where the rotation matrix r® is real and unitary. According to Wigner’s formula
(see Messiah, 1959) each rotation matrix element can be written explicitly as a
homogeneous polynomial of total degree 2/ in the two variables sin(i/2) and cos(i/2).
Inserting equation (4.4) into equation (4.3) we obtain intensity variations expressed

in the frame with polar axis (f = 0) pointing toward the observer:
I(t,0,0) =R D> Aum Y™ (0,0) 11, (i) enmt. (4.5)
nlmm/

The spherical harmonic projection (I, m') is given by a linear combination of eigen-

modes (I,m). From the above equation, we derive the observed disk-integrated



120 CHAPTER 4. GLOBAL SEISMOLOGY OF SUN-LIKE STARS

intensity signal, I(¢):

™ w/
() = /0 ey /0 40 1(1:0,6) W (6) cosfsin . (4.6)

where W (f) is the limb-darkening function. Because the function Y™ (6, ¢) is pro-
portional to exp(im/¢), components with m’ # 0 vanish upon integration over az-

imuth, and

I(t) = R > Vi A i (1) €t (4.7)

nlm

with the visibility factor V; given by
/2
—— / YO(0) T(6) cos Osin 0 do (4.8)
0

For each (I,n) there are 2] + 1 visible peaks in the power spectrum; as is expected
for a steady perturbation such as rotation. The quantity V;? is an estimate of the
geometrical visibility of the total power in a multiplet (I,n) as a function of [. The
solar limb darkening function quoted by Pierce (2000) implies (V;/V5)? = 0.50 and
(V3/Vy)? = 0.17. These estimates are crude (see Toutain & Gouttebroze, 1993).
However, the ratios V;/V} are unimportant to the present study as we are interested

in the relative power between azimuthal modes with common values of [ and n.

Assuming that there is energy equipartition between modes with different az-

imuthal order, we write amplitudes A,,,, in the form
Anlm = |Anl| eid)nlm ) (49)

where the magnitude |A,| is independent of m, and ¢, is an arbitrary phase.
Using this assumption, consistent with the solar data, together with equation (4.7),

we find that the dependence of mode power on azimuthal order m is given by

Eim (i) = [r) ()2 (4.10)

(1)

Matrix elements 7,

(i) are explicitly given by Messiah (1959) in terms of associated



4.1. INCLINATION OF STELLAR ROTATION AXES 121

Legendre functions, P™:

(L = |m])!

Em (i) = 05 ) [le(cosi)r. (4.11)

The above equation links mode visibility to inclination angle 7 (see also Dziembowski,
1977; Toutain & Gouttebroze, 1993). It provides the basic information required to
later extract ¢ from photometric measurements. It is however unknown whether
the key assumption, equation (4.9), remains valid for very fast rotators as rotation
affects convection and therefore the mechanism by which acoustic modes are excited.

For dipole multiplets, [ = 1, the observed mode power (Eq. [4.11]) is given by

€10(i) = cos’i (4.12)
1
E1(i) = 5sin%‘. (4.13)

For quadrupole multiplets, [ = 2, we have

Eoo(i) = i(3cos2i—1)2, (4.14)

3
Eori(i) = 3 sin®(2) , (4.15)

4

827i2(i) = §sin 1. (416)

8

[t is worth noting the symmetries &, (—i) = Epn(m — i) = &, (7). Knowledge of
Eim(4) is not enough to fully specify the direction and sense of the rotation axis, but
only |i| modulo 7. When the rotation axis is aligned with the line of sight (i = 0
mod 7), only the mode m = 0 is visible and rotation cannot be inferred. Notice
also that > &, (i) = 1, so that &, represents the relative power in the mode m

within a multiplet (n,[).

4.1.3 Modeling Oscillation Power Spectra

In the previous section we studied the intensity variations due to the free oscillations

of a star with an arbitrary orientation of the rotation axis. We found that the
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brightness variations can be approximated by

I(t) = Z V Eim () cos[(wn; + mQ)t + ¢y , (4.17)

m=—I

when considering only the contribution from a single multiplet (n, ). The observed
power in the azimuthal component m is given by &, (i), and ¢,, is an arbitrary
phase. In Sun-like stars, oscillations are however excited by near-surface turbulent
convection. The above model is too simple as it ignores the stochastic nature of
stellar pulsations (Woodard, 1984). Oscillations also have a finite lifetime deter-
mined by their interaction with convection. In this section we give a more realistic

description of the statistical properties of the oscillation signal in Fourier space.

The observed brightness variations of a star are presumed to be given by the
function I(t) recorded over a large observation time interval of length T, at a suffi-
ciently high cadence (say less than 1 min). Since pulsations are forced by turbulence,
the signal is a random sample drawn from some probability distribution. Neglecting
edge effects introduced by the time window, we assume that I(¢) is a stationary
process. We denote by I(w;) the FFT of I(¢) sampled at the angular frequency
w;j = 27j/T. A random variable is fully specified by its expectation value, E, and
higher-order moments (in the sense of ensemble averages). Here, I(w;) is complex
with zero mean, E[I(w;)] = 0, and stationarity implies that frequency bins are

uncorrelated:
E[I*(wj) I(w;)] =0 forj #j . (4.18)

Foglizzo et al. (1998) showed that low-degree modes are essentially uncorrelated.
This is a consequence of the fact that there is a very large number of excitation events
per damping time. The central limit theorem ensures that mode amplitudes converge
to independent Gaussian distributions. The signal I(w;) can thus be modeled by a

sum of independent complex Gaussian random variables:
I(wj) =Y om(w;) Ny + 0"N7. (4.19)

The symbol N denotes a complex Gaussian random variable with zero mean and

unit variance, E[N*N] = 1. The standard deviation of a mode amplitude, denoted
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by the function o,,(w), is large for w near the resonant frequency wy, + mS) (see
below). The distributions N, ; are all independent of each other. The additional
term o"N} denotes uncorrelated Gaussian noise with standard deviation o". The
origin of this noise is both stellar (convection) and instrumental (e.g. photon noise).
For simplicity, the noise level, o™, is assumed to be frequency independent over a

small frequency interval around w,,;.

In order to obtain o0,,(w) one should in principle solve the inhomogeneous wave
equations once a model for wave damping and excitation has been specified. Here,
however, we parametrize the variance o2, in the form

02 (W) =S (i) Lyy(w —mQ). (4.20)

m

The constant S gives the overall amplitude of the power, and the weights &;,, (%) give
the m-dependent visibility as a function of inclination angle i (cf. § 4.1.2). The line
shape, L,;(w), is a real positive function which becomes large for w near the resonant
frequency w,;. We choose the standard Lorentzian line profile (e.g. Anderson et al.,

1990) appropriate for describing an exponentially damped oscillator:

1+ (“F_/;”l>2] ) , (4.21)

where the damping rate I' represents the full width at half maximum of L, (w).

Lnl (w) =

Notice that equation (4.21) only gives the positive-frequency part of the spectrum;
the negative-frequency part does not contain extra information and can be deduced
from the relation I(—w) = I*(w).

Since the sum of independent Gaussian random variables is a Gaussian variable,
the Fourier spectrum (Eq. [4.19]) at frequency w; can be written in terms of a single

complex normal distribution, N;:

1/2

I(wj) = |8 &m(i) Lu(w; —mQ) + N|  Nj. (4.22)

We introduced the notation N = (¢")%. The traditional method to generate a

complex Gaussian distribution is called the Box-Muller method. Given a uniform
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distribution on [0,1], U;, and a uniform distribution on [0,27], ©;, the random

variable

N, = /—InU; % (4.23)

is complex Gaussian with independent real and imaginary parts and unit variance.
From equations (4.22) and (4.23), we see that a realization of the power spectrum
is given by

Plwy) = (@)l = ~In(Uy) P(wy) (4.24)

where P is the expectation value of the power spectrum,

Plw;) =S Eun(i) Lu(w; — mQ) + N (4.25)

We now have an expression for generating realizations of a stellar oscillation power
spectrum. Because L,;(wy,;) = 1, it makes sense to refer to S/N as the signal-to-noise
ratio in the power spectrum. Since —In(U;) is an exponential distribution with unit
mean and variance, the probability density function of the random variable P(w,)

is given by

1 b
f(P) = Py P <—?(wj)> , (4.26)

where f(P;) describes the probability that P(w,) takes a particular value P; (Woodard,
1984; Duvall & Harvey, 1986).

Figure 4.2 shows plots of the expectation value of the power spectrum, P(w),
for various values of the inclination angle 7. The left panels in Figure 4.2 are for
dipole multiplets [ = 1, and the right panels for quadrupole multiplets [ = 2. In
these plots the parameters are I' = ', and Q = 69, where 'y /27 = 1 pHz and
Qo /2m = 0.5 pHz are characteristic solar values for the line width and the angular
velocity. For noiseless data, the dependence of the power at different frequencies
on ¢ is clearly evident, and it is possible to distinguish between different i values
relatively easily.

To illustrate the effect of stochastic excitation, Figure 4.3 shows two realizations,
P(w), of an [ = 2 power spectrum for i = 30° and i = 80°, together with the

expectation values denoted by the thick curves. A solar-like background noise was
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prescribed (S/N = 100). Although realization noise is important, the two spectra

can be distinguished from each other.

In the previous section, we described a simple statistical model for the stellar
oscillation power spectrum. This model depends on a minimal set of physical pa-
rameters (wy, I, €, i) and the overall signal and noise levels (S,N). In this section,
we describe an algorithm which allows to estimate these parameters from a real-
ization of the power spectrum. We use the maximum likelihood method which is
commonly used in helioseismology (e.g. Anderson et al., 1990; Schou, 1992; Toutain
& Appourchaux, 1994; Appourchaux et al., 1998, 2000).

We consider a section of the spectrum that includes the 2/ + 1 peaks of a given
multiplet (I,n). The spherical harmonic degree [ is either 1 or 2. We denote by A

the set of parameters that we want to estimate:
A={i,Quw,, S, N}. (4.27)

Maximum likelihood estimators involve specifying the joint probability density func-
tion for the sample data {P;}. For a given frequency wj;, the probability that the
power takes the particular value P; is given by the probability density function, f(P;)
(see Eq. 4.26). We write f(P;|\) to indicate the dependence on the parameters A.
Because frequency bins are independent, the joint probability density function is
simply the product of f(F;|A) for the index j spanning the frequency interval of
interest. The likelihood function F(A) is another name for the joint probability

function evaluated at the sample data
FO) =] FF). (4.28)
J

The basic idea of maximum likelihood estimation is to choose estimates A* so as to

maximize the likelihood function. In practice, one minimizes
L(A) =—=InF(X\). (4.29)

This gives the same result since the logarithm is a monotonic increasing function.

The probability of observing the sample values is greatest if the unknown parameters
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Figure 4.2: Expectation value of the power spectrum, P(w), for dipole and
quadrupole multiplets as a function of the inclination angle ¢. The left panels are
for dipole multiplets, [ = 1, and the right panels are for quadrupole multiplets,
[ = 2. The parameters are I' = 'y and Q = 69, where I'p/2r = 1 puHz and
Qo /2m = 0.5 pHz are characteristic solar values for the line width and the angular
velocity. The bottom panels show the power for the specific values i = 30° (solid
lines) and 7 = 80° (dashed lines). There is no background noise in these plots.
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Figure 4.3: Two realizations of the power spectrum of an [ = 2 multiplet versus
centered frequency (w — wy;)/2m. The stellar rotation is 2 = 62 and the mode line
width is I' = I'. Panel (a) corresponds to an inclination angle i = 30° and panel
(b) is for ¢ = 80°. A signal-to-noise ratio S/N=100 has been prescribed and the
simulation corresponds to 6 months of uninterrupted observations. The expectation
value of the power, P, is overplotted (smooth curves).
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are equal to their maximum likelihood estimates:
A =argmin { L(A) } . (4.30)
A

We use the conjugate gradient method to find the parameters that minimize the
function L.

The method of maximum likelihood has many good properties (e.g. Kendall &
Stuart, 1967; Rao, 1973). The maximum likelihood estimate A* is not biased as the
sample size tends to infinity. Moreover, for large sample size, A* will have an approx-
imate multi-normal distribution centered on the true parameter value A. Maximum
likelihood estimators are also minimum variance estimators. Furthermore when the
model is misspecified, A* will still have a well-defined probability distribution and
will be approximately normally distributed. In our case we have a finite sample
size, since T is limited to a few months. There is no guarantee that the maximum
likelihood estimator will be normally distributed or even unbiased. Note also that
the distribution of 7* has to be periodic since £ only depends on |i| mod 7.

In order to derive the correct probability distributions of the likelihood estimates,
we run Monte-Carlo simulations (e.g. Toutain & Appourchaux, 1994). The method
consists of simulating a large number of realizations of a power spectrum and then
fitting each realization to construct the distribution of the measured A;. Monte-
Carlo simulations enable us to determine the bias and the precision associated with
the measurement of each parameter ;. Ideally we would want to run simulations
for each relevant point in A-space and for varying observation times 7. Because
Monte-Carlo simulations are time consuming, we decide to keep I" and S/N fixed to
their solar values, varying only €2 and ¢. For all simulations, the observation time is
T = 6 months.

4.1.4 Results

In Figure 4.4 we show the results for one set of Monte-Carlo simulations. Plotted
are in Figures 4.4a and 4.4c the inclination angle ¢*, and in Figures 4.4b and 4.4d
the angular velocity in solar units, Q* /), returned by the fit versus the inclination

angle, 7, that entered the computation of each realization. For this set we simulate
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Figure 4.4: Maximum likelihood estimates * and Q* deduced from an [ = 1 triplet
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of the points falling into a bin. For (a) and (c) a bin is 2 deg. For (b) and (d) a bin
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Figure 4.5: The same as Figure 4.4, but for an [ = 2 multiplet.
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a single [ = 1 triplet and the rotation frequency is €2 = 6{2;. For each value of the
inclination angle 7 ranging from 0 to 90°, we computed 2000 realizations of the power
spectrum. The initial guesses in wy,, I'*, S*, and N* for the fits to the simulated
spectra are randomly distributed in some interval around the true parameter values.
The random initial guess in 7* is uniformly distributed between 0 and 90°, whatever
the true inclination angle. For Q*, we started with two different initial guesses.
The guesses are indicated by the dashed lines in Figure 4.4b (for the results shown
in Figures 4.4a and 4.4b) and 4.4d (for Figures 4.4c and 4.4d). The guess for {2

shown in Figure 4.4d is not too dissimilar from an initial guess based on vsinz

measurements.

We note that most ¢* values returned by the fits lie within 4+5° of the true i.
However, the distribution of 7* is highly non-Gaussian as 7 tends to either 0 or 90°.
The accuracy is lower for small 7 values in particular if a wrong initial guess of {*
is made (Figure 4.4c). In this case the fits tend to either i* = 0 or i* = 90° for
i S 10°. The inaccuracies in * are also largest for small i, and systematically too

low values are returned if the initial guess is too low (Figure 4.4d).

The reason for this behavior lies in the fact that only the m = 0 component is
visible at i ~ 0 (Figure 2). Hence the oscillation spectrum does not provide any
means of distinguishing between a (rapidly) rotating star observed almost pole on
and a non-rotating (or very slowly rotating) star with arbitrary ¢ value. In this case
the maximum likelihood fit returns the solution closer to the initial guess (compare
Figures 4.4b and 4.4d).

In Figure 4.5 we plot the same as Figure 4.4, but for an [ = 2 mode. On
the whole, the results look similar. At most inclination angles the accuracy in the
measurements of ¢* and €2* is higher than for / = 1. The major exception is ¢ in
the range 20-40°. The fitting procedure cannot decide between * =~ i, 0* =~ ()
and i* &~ 90°, Q* ~ Q/2. Figure 2 again reveals the cause of this uncertainty. For
t &~ 20-40° only the m = 0 and m = +1 components have significant power. The
solution with Q* ~ €2/2 is achieved if the m = +1 components are misidentified
as Am = +2. This is only possible if simultaneously i* ~ 90° is assumed (see
Figure 2). Unsurprisingly, this wrong solution is more commonly obtained when the
initial guess of Q* is closer to /2 than to Q (Figure 4.5d). For ¢ 2 80° again two
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solutions are obtained, the correct one and Q* ~ 2{2 combined with * ~ 30°. In

this case the fitting procedure misidentifies the m = +2 peaks as m = +1 peaks.

The most reliable result is obtained by fitting dipole and quadrupole modes
simultaneously. Figure 4.6 shows likelihood estimates for three multiplets [ = 0, 1, 2
combined. The ambiguities at i ~ 20-40° and ¢ 2 80° present in the fits to [ = 2
alone are removed, while the scatter in * and €2* is considerably smaller than for fits
to [ = 1 peaks alone. Only the ambiguity at ¢ < 10° remains. “Medians” and “error
bars” are plotted in Figure 4.6. By construction 2/3 of the points lie between error
bars. Because the distributions of i* and Q* are definitely not Gaussian these values

are only indicative; they are not sufficient to assess the measurement precision. Also

*

>0, and

plotted in Figures 4.6¢ and 4.6d are the fitted frequency of the [ = 0 mode, w
the line width, ['*, common to all the modes. The measurement accuracy of these
parameters appears to be independent of the inclination angle 7. Indeed rotation
has no effect on the singlet [ = 0. Including an | = 0 mode in the minimization
procedure helps in turn to measure 2* and ¢* from the dipole and quadrupole modes

by reducing the uncertainty on I['*.

So far we have only considered rapidly rotating stars with rotational splitting
considerably larger than the line width. We now turn to the case 2 = 2Q; and
repeat the analysis described above for {2 = 6{2,. The distribution of i* and Q*
obtained by fitting 750 realizations to [ = 0,1,2 combined is shown in Figure 4.7.
As expected, the accuracy of the deduced * and Q* values is considerably lower
now than for the more rapidly rotating stars. The individual azimuthal components
in a multiplet are not resolved since € = 2I". For i 2 45° the errors are found to
be around +£10° for ¢* and 5-15% for Q2*/Q. At smaller i values the fits tend to
overestimate ¢ and the uncertainty for both ¢* and 2* becomes excessively large for
decreasing ¢, but remains unchanged for w}, and I'*. A comparison with Figure 4.7
reveals that the accuracy of these last two quantities is mostly independent of the

rotation rate when [ = 0, 1,2 are fit together.

Although extremely useful, Monte-Carlo simulations require long computations.
A less reliable but straightforward method to obtain a formal error, o, on the
maximum likelihood estimate A} is to expand L about the true parameter value \j.

As mentioned earlier, in the limit of infinite sample size, A* tends to a multi-normal
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probability distribution which is asymptotically unbiased,

EN] = e, (4.31)
and has minimum variance. An estimate of o}, is

op = 1/Ch, (4.32)

where Cjy, is the k-th element on the diagonal of the inverse, C = H™ !, of the

Hessian matrix given by

020
Huy =E {m(x)] . (4.33)

The formal error oy, called the Cramer-Rao lower bound, is a lower limit on the
error bar associated with the measurement of \; (e.g. Kendall & Stuart, 1967).
Toutain & Appourchaux (1994) showed that these error bars are useful estimates in

helioseismology.

Figure 4.8 shows the errors og,; and oq derived from equation (4.32) for a
single [ = 1 mode, plotted as a function of sini and Q/Q.. This calculation is
easier to carry out when sin¢ is chosen as an independent parameter instead of 7. A
comparison with Figures 4.6 and 4.7 reveals that the error bars obtained by inverting
the Hessian have the correct magnitude. By construction they are symmetric about
the true parameter values and they cannot describe the asymmetric distribution of
i* displayed by the Monte Carlo simulations (Figure 4.7). Of particular interest
is the dependence of the error bars on 2. Figure 4.8 suggests that it is extremely
difficult to determine either ¢ or §2 for a star with the solar rotation rate when a

single mode [ = 1 is taken into consideration.

We have also determined error bars from Monte-Carlo simulations for stellar
rotation frequencies in the range 1 < Q/Qy < 10, although restricted to only
© = 30° and 80°. Medians and error bars are plotted in Figure 4.9 for a simultaneous
fit to three multiplets, [ = 0,1,2. This figure shows that it is realistic to apply
asteroseismic techniques for € 2 2Q., with the results being more reliable for
i = 80° than i = 30°. When azimuthal modes are fully resolved (say Q > 3%Q),

error bars are fairly independent of the rotation rate. Note that for + = 30° and
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Figure 4.8: Formal error bars obtained by inverting the Hessian for an [ = 1 multi-
plet. In panels (a) and (c) the error bars on ¢* and * versus sini are given for two
rotation rates, 2 = 2Q (dashed curves) and Q = 6 (solid). In panels (b) and
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sample error bar for 2 = 2Q; and ¢ = 30° is explicitly plotted. Other parameters
are ' =T, S/N =100, and T = 6 months.
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Figure 4.9: Median and error bars for maximum likelihood estimates i* and (Q* —
2)/Q deduced from Monte Carlo simulations as a function of rotation rate. Results
are shown for two input inclinations, i = 30° (squares and thin error bars) and
i = 80° (diamonds and thick error bars). Three multiplets [ = 0,1, 2 are fit together.
['=T4, S/N =100, and T = 6 months.

2 < 2Qg, the error bars on Q (Figure 4.9b) appear to be decreasing for decreasing
2. This is an artifact: we simply do not have enough realizations to describe the
broad distribution of 2* in this range. Also, likelihood estimates i* and * appear
to be biased when Q < 2Q,. This is likely to be due to our definition of the median

(we do not take into account the periodic nature of the distributions).
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4.2 Stellar Asphericity

4.2.1 Introduction

Magnetic activity affects the structure of the Sun. These changes are reflected in
the observed shifts of the eigenfrequencies of the global modes of solar oscillations
(Woodard & Noyes, 1985). Mode frequencies increase with magnetic activity: over
the period of the 11-year solar cycle, low-degree modes show fractional frequency
shifts of the order of 10~%. Acoustic wave propagation may be affected directly by the
magnetic field and/or indirectly through thermal and density changes. The study of
high-degree modes has revealed that frequency shifts are caused by structural per-
turbations confined to the near solar surface and localized in latitude (Libbrecht &
Woodard, 1990). The latitudinal dependence can be inferred from the observation
that modes with different azimuthal orders, m, are shifted by different amounts.
Sound-speed asphericity inversions of high-precision helioseismic data show latitu-
dinal variations that match the butterfly diagram (Antia et al., 2001).

Thanks to Doppler imaging (e.g. Rice, 2002) the spatial distribution of starspots
on a rapidly rotating star can be recovered from a series of high-resolution spectral
line profiles. Many stars are found to exhibit large polar cap features. Theoretical
work by Schiissler & Solanki (1992) indicates that magnetic flux should emerge at
high latitudes for fast rotators. However, axisymmetric features such as polar spots
do not introduce wavelength variability in the line profiles. For this reason, doubts

have been raised about their reality.

Can we learn about the surface distribution of magnetic activity on a star other
than the Sun by studying the frequencies of its global modes of oscillation? For
distant stars, only modes with spherical harmonic degrees | < 3 can be observed.
As a result wave-speed asphericity inversions will have poor resolution in latitude.
In this section we ask whether it might be possible to discriminate between two sim-
ple activity configurations: an equatorial band and a polar cap. Asteroseismology
will heavily rely on the long and continuous observations provided by the future

European space missions COROT and Eddington.
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4.2.2 Asphericities

We consider a rotating Sun-like star subject to near-surface structural perturbations
introduced by magnetic activity. For perturbations that are steady in an inertial

frame, the frequencies of oscillations may be written as

(rot)
nlm

+ wint) (4.34)

Wnim = Wi + dw nlm

Here the central frequency w,,; includes all spherically symmetric distortions. The
(rot)
nlm ?

fjnff). The activity perturbations

rotation-induced frequency splitting is denoted by dw and the frequency pertur-
bation due to near-surface magnetic activity is dw

have to be azimuthally symmetric with respect to the rotation axis.

In the case of a rigidly rotating star with angular velocity €2, and up to a sec-
ond order of approximation, the m-dependent rotational frequency perturbation is
approximated by (Dziembowski & Goode, 1992; Kjeldsen et al., 1998):

2 D3

ro Q
dwlo) = m(1 = Cu) Q2+ g Wniim (4.35)

where R is the stellar radius, M is the stellar mass, G is the universal constant
of gravity, and C,,; is the Ledoux constant whose value depends on the oscillation
eigenfunctions of the non-rotating star. The second term in Eq. (4.35) describes
the Py-distortion of the stellar surface due to centrifugal forces, with (), given by
(Kjeldsen et al., 1998):

L [\ Po(@) [P (@) da
" fjl[sz(l")]? dx '

(4.36)

The P/™ are associated Legendre functions and P, is a second-order Legendre poly-

nomial.

There is no definitive theory for estimating the frequency shifts introduced by
near-surface magnetic activity. Here, we separate the physics from the geometry,
and parameterize the frequency perturbation in the form

5W(AR) >~ Wnpi €Enl Glm . (437)

nlm



140 CHAPTER 4. GLOBAL SEISMOLOGY OF SUN-LIKE STARS

In this expression, €, gives the overall (unspecified) amplitude of the fractional
frequency shifts. In the Sun, ¢ ~ 10=%*. The m-dependent coefficient G, is a
geometrical weight factor that depends on the latitudinal distribution of surface
activity:
Gom = / Y0, 6)[2 sinfdode (4.38)
AR

where AR refers to the axisymmetric area covered by magnetic “active regions”. The
Y, are normalized spherical harmonics, and 6 and ¢ are spherical-polar coordinates
defined in the inertial frame with polar axis pointing in the direction of the rotation

axis.

For a given multiplet ({,n), the mode frequencies wy;,, can be expressed in terms

of a unique set of 2/ 4+ 1 so-called a-coefficients:

2041
Wotm = Y aj(n,1) P (m) . (4.39)
j=1

where the polynomials CPgl)(m) form an orthogonal set. The standard polynomials
used in this expansion are describe by Schou et al. (1994). For quadrupole multiplets,

the expansion up to as is:
Wnam = Wno +may(n,2) + (m* —2) az(n,2) + - - (4.40)

The coefficient a; relates to the first-order effect of rotation, with a; ~  in the case
of rigid-body rotation. The coefficient a, is a measure of asphericity and includes
magnetic and second-order rotational effects. Rotational oblateness implies as < 0.
Because wave-speed is increased in active regions, an equatorial band of activity
would tend to reduce the effective oblateness, i.e. to increase ay. Polar activity, on
the other hand, decreases the value of a,. In the Sun, activity migrates equatorward
as the cycle develops and the coefficient as is about 35 nHz higher at solar maximum

than at minimum (Appourchaux, 2002).
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Figure 4.10: Maximum likelihood estimates of i, ) and a, deduced from an | =
2 multiplet versus the true inclination angle. The star is solar-like with angular
velocity €2 = 5Q. The negative value of ay is entirely due to rotational oblateness
(no magnetic perturbation was introduced). Observation time 7" = 6 months.

4.2.3 Equatorial Band vs. Polar Cap

The precision of the measurement of the asphericity parameter a; depends on the
input stellar parameters and is limited by realization noise (stellar pulsations are
forced by turbulence). Like before we simulate a large number of realizations of an
oscillation power spectrum for a given stellar configuration, then extract oscillation
parameters using a maximum likelihood technique, and derive the distribution of
the measured values of as.

For this preliminary study we consider a solar-like star with solar mass and radius
and uniform angular velocity 2 = 5(), where 2, = 0.5 uHz. Mode visibility is a
function of the inclination angle, 7, between the line of sight and the stellar rotation
axis. Ignoring activity-related changes in the mode eigenfunctions, the observed

power in individual m-components is given by:

(= |m])!

T+ [P (cosi)]” . (4.41)

Eim (1) =
Each mode is assumed to have a Lorentz profile with full width at half maximum
[' = 1 pHz, and the signal-to-noise ratio in the power spectrum is S/N = 20, i.e.
one fifth of the solar value. The observation time interval is 7" = 6 months. As
mentioned earlier we restrict our attention to two basic configurations: a polar cap
45° < X < 90° and an equatorial band —8.4° < A < 8.4°, where A\ = /2 — 0 is
the latitude. Activity covers the same area in both cases. The amplitude of the

magnetic perturbation, €, remains a variable parameter with values up to 1073, For
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equatorial band polar cap

0.2

Figure 4.11: Maximum likelihood estimates of the asphericity parameter a, versus
inclination angle for an [ = 2 multiplet. In the left panel, activity is restricted
to an equatorial band, and in the right panel to a polar cap. The activity-related
fractional frequency shift is € = 5 x 107*. Solid lines refer to the true as.

each inclination angle, we simulate 1000 realizations of the power spectrum for a
single [ = 2 multiplet.

Using a maximum likelihood technique (e.g. Toutain & Appourchaux (1994)),
we fit a parametric model to each simulated power spectrum, which depends on w,s,
Q, as, I', 7 and the overall signal and noise levels. Figure 4.10 shows, for ¢ = 0, the
distributions of the estimates of i, {2, and a, returned by the fit, as a function of
the true inclination angle 7. The fit works reasonably well for ¢ > 40°. For i < 20°
rotation cannot be inferred with sufficient precision. In the range 20° < ¢ < 40°,
the m = +1 modes are sometimes misidentified as m = 42 modes. Rotational
oblateness can be retrieved for ¢ > 40°.

Figure 4.11 shows the values of ay returned by the fit when the activity pertur-
bation is switched on. For ¢ = 5 x 107 and 7 > 40°, it is possible to distinguish
a polar cap of activity from an equatorial band of activity. Note that the estimate
of as may be significantly biased. There are two reasons for this bias: (1) all 5
modes are not visible simultaneously and (2) the model of the power spectrum is
misspecified (we do not fit for as). Figure 4.12 shows that for i = 60° the parameter
as can be measured from a single [ = 2 multiplet with a precision of 50 nHz. The

distinction between the two configurations can only be made if € > 5 x 104,
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Figure 4.12: Mean and standard deviation of measured a, versus € at inclination
angle i = 60° and for [ = 2. Equatorial band of activity (diamonds) and polar
cap (triangles). Solid lines refer to the true ay. The dashed line is the rotational
oblateness value (¢ = 0).
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We have seen that stellar oscillations may contain measurable information about
the latitudinal distribution of stellar activity. Stellar rotation must be large enough
(individual m~-components must be resolved), stellar activity must be strong enough
(say €>5eg), and the inclination angle of the star must be large enough (say 7 > 40°).

Both rotational oblateness and aspherical magnetic perturbations contribute to
the value of the parameter a,. In order to detect the asphericity due to activity
alone, it is necessary to remove the oblateness due to rotation. To do so, one must
estimate Q2R3 /GM . Hopefully, 2 can be measured from the frequency splittings and
the mean stellar density M/R? can be deduced from the large frequency separation
Wni — W1, X \/W (Brown & Gilliland, 1994).

The present study is however not appropriate for a long-lived patch of activity
that would be localized in longitude, because such a perturbation is unsteady in the
inertial frame of the observer. The signature of an unsteady magnetic perturbation
in oscillation power spectra is rather complicated. An example for the Sun is pro-
vided by Gizon (1998) who studied the perturbation arising from the presence of a
large rotating “sunspot”. In this case the power spectrum of a given multiplet (I,n)

displays (I + 1)(2[ + 1) peaks, most of which cannot be resolved.
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5.1 Solar Near-Surface Flows

Supergranulation has wavelike properties. The spectrum of the horizontal divergence
of the supergranular flows is consistent with a spectrum of traveling waves with a
dispersion relation v ~ 1.65(1/100)%* yHz. The distribution of wave power is
anisotropic with increased power in the direction of rotation and toward the equator,
explaining the anomalous motion of the pattern measured by correlation tracking
(e.g. super-rotation, see Fig 5.1). The spectrum of supergranulation is Doppler
shifted by flows and can be used as a diagnostic tool to probe rotation and meridional
circulation in the upper layers of the convection zone. We have shown that the
rotation of the plasma through which the pattern propagates is consistent with the
rotation of the magnetic network. It is important to note that the main conclusions
presented here (Gizon et al., 2003) have recently been confirmed by Schou (2003)
with direct Doppler data. Realistic numerical modeling is required to understand
supergranulation. Unfortunately the solar convection zone is so highly turbulent
and stratified that modeling of the supergranular scales has remained elusive — the

most promising calculations are due to DeRosa (2001) and Rieutord et al. (2001).

Figure 5.1: Propagation of the supergranules with respect to the local flow. After
about 3 days the divergence pattern (solid) is anti-correlated with the initial pattern
(dashed). The direction of propagation is prograde and toward the equator in both
hemispheres.
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Supergranular flows have a net kinetic helicity. We showed that the vertical
vorticity of the supergranular flows (curl) is anti-correlated with the horizontal di-
vergence (div) in the northern hemisphere, and that the latitudinal variation of
(div curl) can be explained by the effect of the Coriolis force on convection (Gizon
& Duvall, 2003). Parker (1955) proposed that the magnetic field can grow in a mov-
ing medium with a net kinetic helicity, Hy, = (v - V Xv) # 0. Cyclonic convection
is also invoked as an important mechanism for generating a large-scale poloidal field
from an initial toroidal field. Although we only observe the two horizontal compo-
nents of velocity, we may use a proxy for the average kinetic helicity (Riidiger et al.,
1999): Hygn ~ Hy (divcurl), where Hy, = —(, In|pv,|) " is the average vertical
momentum scale height, expected to be positive. Hence, our measurements would
suggest a negative kinetic helicity in the north for supergranulation. However, tur-
bulence may also be driven by magnetic buoyancy (Brandenburg & Schmitt, 1998;
Riidiger et al., 2001) and it may be of interest to search for solar cycle variations in
the quantity (div curl). Our observations give hope for a direct measurement of the
kinetic helicity in the upper convection zone that would perhaps constrain models

of the solar dynamo.

Local flows associated with magnetic active regions. Yoshimura (1971) suggested
a long time ago that the longitudinal ordering of solar magnetic fields may be ex-
plained by the existence of large convective patterns. Earlier attempts at detecting
such flows in direct Doppler data proved difficult (e.g. Scherrer et al., 1986). The
observations presented in section 2.4 provide reliable evidence for extended surface
flows converging toward active regions with an amplitude of 50 m/s at most (Gizon
et al., 2001b, , see Fig. 5.2). The time-distance results agree with the ring analysis
(Hindman et al., 2003) and are consistent with claims by Howard (1996) that plages
drift toward the mean latitude of activity. Perhaps the observed flows favor the
formation of active regions at particular sites on the solar surface; but these flows
may also be a secondary consequence of the emergence of the magnetic flux. On a
larger scale, Beck et al. (1998) and Ulrich (2001) have found evidence for long-lived

giant velocity patterns, with no obvious connection to patterns of magnetic activity.
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)

Equator

Figure 5.2: Sketch of horizontal flows around an active region, measured 1 Mm below
the surface with time-distance helioseismology. (b) Active regions are surrounded
by a ~ 50 m/s converging flow. (a) Zonal flows switch sign near active latitudes
(£5 m/s). (m) Poleward 20 m/s meridional flow. (c) The magnetized plasma rotates
a little faster than the quiet Sun.

Solar-cycle variability of the meridional circulation and differential rotation. At
the surface the flows associated with complexes of magnetic activity are superim-
posed on the “torsional oscillations” that migrate equatorward with an eleven year
period and an amplitude of the order of 5 m/s. It has been suggested that the
“torsional oscillations” may be driven by the Lorentz force due to a migrating dy-
namo wave (Schiissler, 1981) or caused by a thermal effect due to surface magnetic
fields (Spruit, 2003). We have shown that the “torsional oscillations” have both an
east-west and a north-south component (Beck et al., 2002). The east-west compo-
nent of the torsional oscillation shows a shear around the latitude of mean activity
with the same sign at the surface and deeper in the convection zone. The p-mode
travel times reveal residual flows in the meridional plane that diverge from the mean
latitude of activity, tens of megameters below the surface. On the other hand, flows
that converge toward the latitude of mean activity are seen near the surface. This
suggests the existence of two rolls with helical streamlines of opposite handedness
on each side of the latitude of mean activity. Figure 5.3 reviews the observations

and displays the proposed flow geometry of the “torsional oscillations”.
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Figure 5.3: Meridional cut in the northern hemisphere showing longitudinal averages
of the residual flows (with respect to smooth fits to the rotation and meridional
circulation) around the mean latitude of activity (AR). (e) 5 m/s inflow near the
surface (f modes). (d) Outflow as deep as 65 Mm below the surface (p modes). (a)
+5 m/s sheared zonal flow throughout the upper convection zone. Observations
are consistent with the existence of two counter-rotating meridional cells centered
about the mean latitude of activity (dashed), superimposed on the 20 m/s large-scale
meridional circulation.
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Figure 5.4: Tentative sketch of flows under sunspots. (f) Near-surface horizontal
outflow with values up to 1 km/s, called the moat. The horizontal extent of the
moat flow is ~ 30 Mm from the center of the sunspot. (b) Well beyond the moat
is a large-scale ~ 50 m/s inflow, as shown in Fig. 5.2. (g) Under the sunspot is a
~ 1 km/s downflow (Duvall et al., 1996; Zhao et al., 2001). The dashed lines are
proposed model streamlines consistent with (most) observations. The vertical scale
is uncertain.
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Sunspot flows. As mentioned in the introduction, Gizon et al. (2000) have studied
near-surface flows around sunspots. Wave-based sensitivity kernels for horizontal
flows were used in an iterative deconvolution of f-mode travel times (high-resolution
MDI data). Because these results are still preliminary, we shall only mention that
the horizontal outflow around a sunspot, called the moat (e.g. Solanki, 2003), was
detected. This outflow was detected earlier by Lindsey et al. (1996), deeper inside
the Sun. Figure 5.5 shows a map of the horizontal flows near the surface for one
sunspot observed on Dec 6, 1998 (the horizontal spatial resolution is 3 Mm). The
internal structure of flows under sunspots is still largely unknown. Duvall et al.
(1996) and Zhao et al. (2001) have detected downflows below sunspots and Braun
& Lindsey (2003) observe the moat outflow down to a depth of 3 Mm. Fig. 5.4 is an
attempt to show how the flows measured with f-mode time-distance helioseismology

may fit into a consistent picture.
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Figure 5.5: Horizontal flows around a sunspot on Dec 6, 1998, obtained with f-mode

, 2000). Overplotted is the line-of-sight

Gizon et al.
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MDT high resolution) truncated at +0.5 kG. The moat flow beyond
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5.2 Toward Travel-Time Sensivity Kernels

We now have a general recipe (§ 3.2) for solving the linear forward problem, i.e. com-
puting travel-time sensitivity kernels. This recipe is based on a physical description
of the observed wave field. The kernels give the linear dependence of travel-time
perturbations on perturbations to a solar model and they take account of the details
of the measurement procedure. The sensitivity kernels depend on the background
solar model, on the filtering and fitting of the data, and on position on the solar
disk (through the line of sight).

In section 3.3 we have shown how to compute the 2D sensitivity of travel-time
perturbations to source and damping inhomogeneities for surface gravity waves.
This example was important as it shows that kernels can be obtained, using our
recipe, once the physics of the model is fully specified. In particular the source
spectrum and the details of the observation procedure need to be specified at the
start of the problem and appear explicitly in the expression for the travel-time
kernels.

The model with random excitation sources reveals some important details in
the sensitivity kernels that are not accounted for in the single source model. In
particular, the single-source kernels show only ellipse shaped features, while the
distributed-source kernels show both hyperbola and ellipse shaped features. Com-
putations of kernels in the single-source picture are as difficult, both analytically
and numerically, as kernels in the distributed-source picture.

The example we have presented is a simplified model for the solar f mode. Im-
provements to the model would include stratification, spherical geometry, compress-
ibility, and a physical model of excitation and damping. In particular, in a com-
pressible medium the effect of the conversion of p modes into f modes by scattering
could be computed. Despite these limitations, we believe that our 2D example ker-
nels can be useful in studying solar problems using time-distance helioseismology.
The kernels may be interpreted as depth averages over the first few Mm below the
photosphere of the three-dimensional solar kernels (Duvall & Gizon, 2000).

Woodard (1997) performed an analysis of the effect of localized damping on
travel times for acoustic waves; this analysis showed that for a model sunspot, with

radius 10 Mm, the travel-time difference is of order —1 minute, in the case where 1
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is located at the center of the sunspot and 2 is a distance 10 Mm away. For the same
geometry the kernel K., which we have computed, predicts a positive travel-time
difference of 1 s for a 50% increase in damping rate. These two apparently conflicting
results are, however, for different types of waves and quite different models for
the effect of damping inhomogeneities. The damping perturbation employed by
Woodard (1997) can be understood in terms of a reduction in source strength for
sources located behind the sunspot from the observation points, as scattering by
the damping inhomogeneties was neglected. There remains work to be done on this
subject. For example, it is known that absorption by magnetic structures is a strong
function of frequency (Braun et al., 1988; Bogdan et al., 1993). This effect could be
modeled by writing kernels for local changes to the exponent 3 in equation (3.57)
for the damping rate. We plan to do a quantitative analysis of this problem in the
future. Note that perturbations in sunspots are strong and that linear theory may

not be accurate in this case (e.g. Cally & Bogdan, 1997)

The most significant obstacle to the computation of accurate travel-time kernels
is our lack of a detailed understanding of turbulent convection. The excitation and
damping of solar oscillations is due to convection and is thus extremely difficult
to account for in the background model: approximations must be introduced. In
chapter 3 we employed a phenomenological model based on observed properties of
solar convection. An important constraint on the zero-order solar model is that it
must produce a k-w diagram compatible with observations. A further complication
introduced by turbulence is that, in principle, it demands a theory for wave propa-
gation through random media, i.e. a treatment of perturbations that vary on short

temporal and spatial scales.

We have not addressed the computation of three dimensional travel time kernels
in a spherical solar model. Preliminary efforts have shown that such a computation
is feasible, but is demanding (Birch & Kosovichev, 2000). There are a number of
less fundamental issues relating to the interpretation of travel times. We emphasize
that the filter F includes the point spread function of the instrument, which is not
always well known. It is unclear how an inaccurate estimate of the point spread
function affects the interpretation of travel-time measurements. A straightforward

issue is that cross-correlations are typically averaged over annuli or sectors of annuli
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(Duvall et al., 1997); this can easily be accounted for by averaging the point-to-point
kernels described in chapter 3.

The inverse problem, using measured travel times to learn about how the Sun
differs from a model, is an entirely separate issue and beyond the scope of this thesis.
We wish to note, however, that techniques for the 3D inversion of time-distance data
have already been developed (Kosovichev, 1996; Jensen et al., 1998). The errors in
the travel-time measurements, which are essential to solving the inverse problem,
are mainly due to realization noise. The formalism presented in this thesis will be

helpful in estimating these errors.

5.3 Prospects for Asteroseismology

We have shown that the inclination angle, 7, of the axis of rotation of a Sun-like
star can in principle be determined with great precision using the techniques of
asteroseismology. The observational requirement is a long nearly-continuous time
series sampled at a high cadence. The missions COROT and Eddington will provide
such data for a large number of stars, with continuous observation for up to 5 and
36 months, respectively. The Danish project MONS (Kjeldsen & Bedding, 1998)
aims at targeting individual stars for up to 2 months with a high duty cycle. We
have found that it is difficult to estimate the inclination angle for stars with 7 < 30°,
whereby this limit is lower for more rapidly rotating stars. Note however that,
statistically, more than 85% of the stars have ¢ > 30°.

Gough et al. (1995) applied essentially the same method to estimate the inclina-
tion angle of the Sun. Solar p modes were observed continuously in irradiance for
160 days in 1988 by the IPHIR experiment (PHOBOS mission). Gough et al. (1995)
found the ratio between the power in (I = 1,m = 0) modes and (I = 1,m = +1)
modes to be less then 0.0009, i.e. ¢ > 89.96°. They pointed out that at the time of
the observations the mean inclination of the rotation axis of the solar surface was
t = 85°, corresponding to an expected ratio of 0.015. Although this discrepancy
could be interpreted as a depth dependence in the direction of the solar rotation
axis, it is more likely that it is due to a measurement bias. Examination of Fig-

ure 4.4a reveals that the fitting procedure preferentially returns values * ~ 90°
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for inclination angles in the range 80° < i < 90°. Besides, the hypothesis of solar
rotation about a unique axis is consistent with spatially-resolved LOI data (Gizon
et al., 1998). From an astronomer’s point of view, it should be clear that Gough
et al. (1995) were successful in measuring i with a good precision. We also note
that Paunzen et al. (1998) used a somewhat similar diagnostic, i.e. the amplitude
ratio of m = £1 and m = 0 dipole gravity modes, to estimate the inclination of an

oscillating pre-white dwarf star (although their formulas appear to be incorrect).

The precision that can be achieved on the measurement of i depends on each
individual star. First of all, acoustic modes must be excited to a sufficiently high
amplitude. In Sect 4.1 we fixed luminosity amplitudes at their solar value with
respect to the background noise. Houdek et al. (1999) presented estimates of oscil-
lation amplitudes in main-sequence stars derived from model calculations of stellar
convection. They found that velocity amplitudes essentially scale like the mass-to-
light ratio of the star, in agreement with an earlier prediction by Kjeldsen & Bedding
(1995). The noise background may also vary. Here we took S/N = 100, but it has
been shown that a useful estimate of 7 can be obtained when the signal-to-noise
ratio is as low as S/N = 20 (Gizon, 2002).

Another condition for determining i is a sufficiently large stellar rotation rate,
in order to resolve azimuthal modes split by rotation. This condition is met when
the angular velocity of the star, €2, is at least twice larger than the linewidth, T", of
the modes of oscillation. Since I' is a decreasing function of frequency, the analysis
of low-frequency multiplets may be crucial in order to measure the inclination angle
of slowly rotating stars. We refer the reader to the work of Houdek et al. (1999) for

a study of the variation of mode damping with frequency and stellar parameters.

A single realization of the power spectrum will be available for a particular star.
How will we know when a measurement of i is meaningful? A large set of Monte-
Carlo simulations will be essential in assessing the reliability of a measurement. As
we saw in this study, the answer is likely to be very reliable for several outcomes
of the minimization procedure (e.g. large Q* and large i*). In general the fit also
returns an error bar on each estimated parameter which could be used to further
increase the confidence in a measurement. Finally we repeat that the precision on ¢

can be improved by considering more than one multiplet in the power spectrum. As
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a rough estimate, the error on i goes like n /2, where n is the number of multiplets.
The exact number of potentially usable modes depends on the oscillation amplitudes
for a particular star. For the Sun, tens of modes can be employed (Fig. 4.1).

The technique that we have described also provides accurate measurements of
the angular velocity, Q (Fig. 4.9). For active Sun-like stars Q2 may also be deter-
mined by following surface tracers (photometry). By comparing the €2 determined
from oscillations with the angular velocity from tracers, inferences can be made on
the stellar differential rotation. A knowledge of this quantity, particularly for more
rapidly rotating stars, would be of great interest (e.g., for dynamo theories). Al-
ternatively, for those stars for which accurate astrometrically determined parallaxes
are known and from which radii R, have been determined, a comparison of QR, sin
obtained from asteroseismology with v sinz determined spectroscopically could set
limits on the differential rotation. Differential rotation could also be determined seis-
mically by measuring the rotational splitting frequencies of the quadrupole modes

with m = £1 and m = £2 (when i is such that these modes are visible).
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Definition of Travel Time

According to equation (3.5) the travel times 7, (1,2) and 7_(1, 2) are the time lags

which minimize the functions

X.(1,2,t) = /oo dt' f(+t) [C(1,2,¢) — C™'(1,2,¢ F)]” . (A1)

—00
As a result the time derivatives of X evaluated at 73 are zero:

Xi(1,2,7'i) =0. (A2)

Notice that X does not involve a time derivative of the observed cross-correlation
C. In order to obtain the travel-time perturbations 7. we need to linearize around

the zero-order travel times 72, which are defined by
79(1,2) = argmin{ X{(1,2,¢) }. (A.3)
t

The functions X refer to equation (A.1) evaluated for C = C° where C? is the

zero-order cross-correlation in the reference model. Linearizing equation (A.2) about

7L = 19 gives _
6X1(1,2,79)

(57}(1,2) = X%(]_ 2 7—1) .

(A.4)
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The functions 6 X4 are given by

0X:(1,2,t) = i2/ dt’ f(xt"C™(1,2, ¢ F1)0C(1,2,1") . (A.5)

—00

We can then compute X°(79) by straigtforward differentiation of equation (A.1).
The result for 67.(1,2) is thus

o74(1,2) = /OO dt Wi(1,2,6)0C(1,2,1), (A.6)
with
+f(£t)C (t F 79)
We(t) = - : :
[ at [F)CoECre (w72 & fr)Om(t F ) Cret (v 7))
(A.7)

We have supressed the spatial arguments 1 and 2 in the above equation for the sake
of readability. This is the general linearized result for arbitrary C™ and f. The only
assumption is that the perturbation to the cross-correlation is small compared to the
zero-order cross-correlation. Note that we have not written an explicit expression
for 72, which needs to be computed numerically by minimizing X9 (¢) (eq. [A.3]).

In the case where C™ and C” are even in time, 70 = 7°. For the choice C™* = C?,
the zero-order travel times are both zero, 72 = 0. This choice is recommended if a
theoretical model is available to the observer. With C™ = C° the weight functions
W simplify to: _

Ff(£)C°(1,2,1)

Wall 20 = o s oo, 2,00 (4.8)

In the example presented in Section 3.3 we choose C™ = C° and f(t) = Heal(t).



Appendix B

Fourier Convention

Given a function ¢(z,t), of horizontal position  and time ¢, we employ the conven-

tion that the function ¢(x,t) and its Fourier transform ¢(k,w) are related by

q(x,t) = //_Z dk /_Z dw e** 9t Gk, W), (B.1)
jk,w) = ﬁ //_Z de /_Z dt e k@t g (g 1), (B.2)

where k is a two-dimensional horizontal wave vector and w is the angular frequency.
We commonly use the same symbol for ¢ and §: the arguments make clear whether
the function or its transform is intended. We use the notation ¢(k,w) when ¢(k,w)
only depends on the magnitude of k, not its direction, for example in the filter
function F'(k,w). We note that for functions ¢(x,¢) which do not vanish at large
||lz|| or |t| the Fourier transform is not defined. In particular there is a problem
for the case when the observable is not windowed in space or time. In such a case,
q(k,w) is intended to mean the Fourier transform of the function ¢(x,t) truncated
to zero for [t| > T/2 and ||| > \/A/m, where the time interval T and the area
A are both large and finite. This modification enables us to refer to the Fourier
transform of a stationary/homogeneous random function (cf. Yaglom, 1962, for a

rigorous formalism).
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When a function of four arguments, Q(z,t; «’,t'), depends only on the separa-

tions & — &’ and t — ¢’ (translation invariance), we use the following conventions:

Qz—z't—t) = Qz,t;2',t') (B.3)
Qlk,w) = @ // da:/ dt e k=t O(g 1) (B.4)

The above conventions are employed, in our example, for the functions m°(k,w),
G(k,w;z2), and §(k,w).

Finally, we recall the relations

/Zdtei“’t = 271 6p(w), (B.5)
// de ke (9m)? 5o (), (B.6)

which are very useful in rewriting the kernels in Fourier space (Appendix C).



Appendix C

Travel Time Sensitivity Kernels

for the Example

In this Appendix we derive surface gravity wave travel time kernels, K¢ and K7, for
perturbations to local source strength and damping rate respectively. These kernels
connect travel times perturbations, 674, to perturbations to the model:

da(r)

4
67+(1,2) :/ dr K¢(1,2;7) —i—/ dr ()
(4) a (A) Y

K1(1,2;7).  (C.1)

Here da(r)/a is the local fractional change in the source strength and 0v(r)/~y
the local fractional change in damping rate. The spatial integral f(A) dr is a two-
dimensional integral taken over all points 7 on the surface z = 0. From the theory
part, of this paper (§ 3.2) we know that in order to compute kernels we first need to
write the perturbation to the cross-correlation in terms of the functions C* and €7
(see eq. [3.29]):

S5C(1,2,4) = / ar 24U ea(1 2 1) +/ ar e 2 tmy. ()

(4) a (A) Y

The general expression for 0C(1, 2, t) is given by equations (3.25), (3.26), and (3.27).
In our example, however, the superscripts on the Green’s function can be dropped as
the source S is scalar. To obtain €, we use equation (3.27) for Cg and the definition

of the source perturbation 0M (egs. [3.49] and [3.53]). After integrations by parts
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on the source variables in the right-hand side of equation (3.27) and the change of

variables r = (s + §')/2 and u = s — s', we obtain

1
CY (1,2, t;r) = T/dt, dts dtl du m®(u, ts — )

x G 1—r—u/2,t' —t)G"(2—r+u/2,t' —t.+1). (C.3)

The function €7 is obtained from equation (3.26) with £ defined by equations (3.46)
and (3.58). After integrations by parts on the source variables, and a partial inte-

gration on the variable 7, the result is:

1 _
C(1,2,t;7) = T dt' dt" dsdtyds’ dt, di TO(t" — ) m®(s — s',ts — tl)
™

X V2Gh(r—s,t—t)- |G"(1— s t' —t) VuG(2 —r,t' +t —t")

L GN2 st —t) VG -t — t")] , (C.4)

where Gy, denotes the two horizontal components of the vector G. In the space-
time domain these integrals are quite complicated to compute. They, however, are
greatly simplified when written in terms of the Fourier transforms of the various

functions:

CY1,2,t;7) = (277)4/dwdk:dk:’ el A =ik Da—iwt )y 0% [ 4 1) /2, w]
x G (k,w) §" (K, w) (C.5)
€'(1,2,t;7) = (2m) / dw dk Ak’ (eik'AI—i’“"Az—iwt+eik'A2—i’°"A1+iwt)

T (w)m® (k, w) G (k, w) ™ (k,w) k- & G"(K,w)/K . (C.6)
We have used the definitions

§"(k,w) = F(k,w)G"(k,w), (C.7)
G"(k,w) = iwk’G.(k,w;z=0), (C.8)

and the identity Gy, (k,w) = ikG.,(k,w) resulting from equation (3.70). The Green’s
function G, (k,w) is the 2 component of G, given by equation (3.70).

With the assumption that m° is independent of k, the above expressions can be
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simplified to

€ (1,2,w;r) = m’(w) (A, w)I(Asw), (C.9)
C(1,2,w;r) = mi(w)A;-A,
X [[(A, w) M(Ag,w) + I(Ag,w) M*(A,w)].  (C.10)

The integrals I, II, and 1T are given by

I(dw) = (27r)3/°°kdk Jo(kd)G™ (I, w) | (C.11)
Tdw) = (2m)° M) / T hdk L (kd)GR (k)G (hw), (C12)
M(d,w) = (27) / "k (k)" (e, ) (C.13)

The kernels for source strength and damping are then obtained from
K%(1,2,7) = 47rRe/ duw W (1,2, w)€(1, 2, w: ) (C.14)
0

with Wi(1,2,w) given equation 3.66. The kernels, in terms of the integrals I, I,
and II, are reported in the main body of the text (eqs. [3.78] and [3.80]).



Appendix D

Single-Source Kernels for the

Damping Rate

In the single-source picture, we seek an expression for the kernel K7*® which provides
an integral relationship between the one-way travel time §73° (eq. [3.84]) and the

local damping perturbation d(r)/~, i.e.

)

575(1,2) = / ar ) 11 0. (D.1)
(4) v

We first rewrite the single-source definition of travel time (eq. [3.84]) in terms of the

temporal Fourier transform of the signal observed at point 2:

_Re [ dw iw ¢ (2,w) 66(2, w)

a2 [ 2,0 (D2)

575(1,2) =

Given the pressure source pO, located at point 1, and defined by equation (3.85),

the zero- and first-order signals observed at 2 are
?°(2,w) = (27r)4/ kdk Jo(EA)G™ (k,w)O(k,w), (D.3)
0
5p(2,w) = (27)'T°(w) / ar 2T / dks k' ellA1miK-2
(A) v
x G"(k,w)O(k,w) k -k G"(K,w)/k . (D.4)
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Using equation (D.2) we obtain the damping kernel K7™ in the form

*dw w? (2, w) |2 K51, 2;r; w
Kl’ss(1,2;7°) — fO |¢ ( )| + ( )

= , D.5
7 2. 0)P ()
with the function K7™ (single-frequency kernel) defined by
,S8 A A N(Alaw) ]]I(A%w)

KI*(1,2;rw) = Ay - Ay Im [ o (2, 0) (D.6)
In the above equation, the function IV is a one-dimensional integral given by

NV(d,w) = (27)* Fo(w)/ kdk Jy(kd)G"(k,w)O(k,w), (D.7)

0

and the function Il denotes the integral already defined by equation (C.13). Notice
from equation (D.5) that the kernel K7™ is a frequency average of K7™ weighted
by w?|¢°(2,w)[*.

In order to compute the kernel we have to make a choice for the source spectrum,
O(k,w). In general, this is difficult without a priori knowledge of the zero-order
cross-correlation. When comparing the definition of travel time of Appendix A with
the single-source definition (eq. [3.84]), we find that a good match between the two
definitions is obtained when ¢°(2,t) looks like Hea(¢)C°(1,2,¢). This condition is

best met when
kF(k,w)m®(k,w)

2I0(w)
Note that the filter function F'(k,w) appears in equation (D.8). The kernel K™,

Ok,w)=— (D.8)

shown in Figure 3.8, was computed using this choice.



Appendix E

Constraints on Oblique Rotation

of the Solar Core

The axis of rotation of the Sun’s surface is inclined from the normal to the ecliptic
by 7°.25. Is that true also of the rotation of the rest of the Sun? Knowledge of the
direction of the angular momentum is pertinent to studies of the formation of the
solar system. Moreover, Bai & Sturrock (1993) have recently interpreted temporal
variations in the spatial distribution of solar flares as the outcome of the interaction
of the Sun’s envelope with an obliquely rotating core. We report here an attempt
to determine the principal seismic axes of oscillation of the dipole and quadrupole
p modes from LOI data obtained as a component of the VIRGO investigation on
the spacecraft SOHO. We find that formally their most likely orientation is some-
what closer to being normal to the ecliptic than is the axis of the surface rotation.
However, the uncertainty in the determination well encompasses the possibility of
them being parallel to the surface rotation axis, yet it does not reject (at a level
marginally greater than one standard deviation) the possibility that the Sun’s an-

gular momentum is parallel to that of the rest of the solar system.

Rotation splits the degeneracy of oscillation modes in a multiplet (having like
radial order n and degree [). If angular velocity is constant on spheres, a scalar p-
mode eigenfunction is approximately proportional to R[Y;™(0, ¢) exp(—iw,t)] with
respect to spherical polar coordinates (r, 6, ¢) about an appropriate axis P. The

index m denotes the azimuthal order, and Y, is a spherical harmonic function. If
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rotation is about a unique axis R, then P coincides with R. But if R varies with
r, P is a vector average of R(r), weighted with the rotational splitting kernel K
of the mode (Gough & Kosovichev, 1993). When the magnitude Q of the angular
velocity varies with latitude (defined relative to R(r)), K depends on m and, except
in the case [ = 1, the pulsation axis of the multiplet is not well defined. In the
case of the Sun, the latitudinal variation of €2 is small: in the data analysis of
quadrupole modes we report below, we assume that there exists a frame in which
each azimuthal component can still be described geometrically in terms of a single
spherical harmonic, and that the m dependence of the splitting is negligible. If the
oscillation axis P is not coincident with the surface rotation axis S with respect to
which one imagines solar oscillations are analysed, each harmonic projection (I, m’)
with respect to S is actually a linear combination of normal modes, and will exhibit
all the rotationally split frequencies w,, (where m is the true azimuthal order, with
respect to P). The orientation of P cannot be determined from frequencies alone,
however — the frequencies of an (aspherical) object are independent of the direction
from which that object is viewed. To determine P it is necessary to measure the
eigenfunctions. A first attempt at that (Gough et al., 1995), made by estimating in
the IPHIR data the amplitudes of whole-disc projections of blended components of
[ = 1 multiplets, suggested that P might be closer to the normal n to the ecliptic
than is S, but the significance of the measurement is difficult to assess. Here we
report a more sophisticated analysis of modes with [ = 1 and [ = 2 observed with
the LOI (Appourchaux et al., 1997).

The LOI measures radiant intensity s,(t) integrated over a set of 12 pixels p.
The nominal attitude of SOHO is such that the projection of S onto the detector
should coincide with a principal axis of symmetry d of the detector at all times. A
multiplet (I, n) is presumed to be composed of 2/+1 independently randomly excited
modes m, each producing a disturbance of the form x,,(0, ¢,t) = fin(t; wm)Y;"(0, ¢)
about a pulsation axis P. We denote by [,4(t) the inclination of the axis P with
respect to d, and by ag4(t) the azimuth of P relative to the line of sight. During
the short selected interval of observation, the variation of ay(t) and [y(t) is small,
and accordingly we ignore it, replacing «g4(t) and (y4(t) by their averages @y and

B4. This approximation implies that we neglect the hyperfine structure that results
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mode set Qg By

l=1and 15<n <24 5°+£10° 4°.9+£2°5
[=2and 14 <n <24 10° £ 10° 5°.7+1°.6
all 8 £ 7° 5°.5£1°4

Table E.1: Euler angles @y and 3, which define the directions of the pulsation axes
P with respect to d.

from SOHO’s orbit about n (see Goode & Thompson, 1992). The sensitivity of a
pixel p to a mode m can thus be expressed in terms of the Euler angles @y and 3,
by integrating over the pixel the Fourier amplitude &, (0, ¢,w) of z,, weighted with
the limb-darkening function. Now consider a small frequency range, and construct
20+ 1 linear combinations 9y (w), —1 < M <[, of the 12 Fourier transforms §,(w) in
order to isolate each component m. Using a maximum likelihood technique, we fit a
parametric model to the 20+1 complex spectra g5, (w). For each discrete frequency w,
fm(w; W) is presumed to be (a realization of) a centred complex Gaussian random
variable whose variance is Lorentzian with amplitude A,,, linewidth I', and central
frequency wy+m a;, where a; is the mean rotational splitting. The fm are assumed to
be independent random variables. We add independent Gaussian noise to each pixel
with location-dependent variance depending on three undetermined parameters N;.
The parameters (ag, B4, wo, a1, I, Ay, N;) are chosen such that they maximize the
joint probability density function over some frequency interval (frequency bins are
assumed to be independent of each other). Realistic Monte Carlo simulations have

been performed which demonstrate that the estimators are essentially unbiased.

Observations were taken over the four-month interval 1996, July 10 — Nov. 6,
centred about Sept. 8 when the inclination By(t) of S from the axis d was the
greatest (on average, By = 6°.06). During this interval the average position of n is
coincident with d. The angles @, and 3, where determined for each multiplet sepa-
rately. Means and standard deviations are listed in Table E. From the knowledge of
the satellite’s orbit it is also possible to deduce constraints on the fixed azimuth «
and inclination 3 of P with respect to the ecliptic normal n (Fig. E.1). The results

are not inconsistent with P being coincident with S.

We adopt a simple two-zone model. The outer zone, r. < r < R, is assumed to
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Figure E.1: Permitted orientations («, () of the mean pulsation axis P with respect
to the normal n to the ecliptic. The hatched area and the dashed boundary refer
to the 1-0 and 1.5-0 confidence levels respectively, computed under the assumption
that the uncertainties in @, and 3, are independent. The filled circle indicates the
direction of S.

rotate about S with angular velocity determined from higher-degree modes (Koso-
vichev et al., 1997); beneath the convection zone a uniform rate of 435 nHz was
adopted. The inner zone, 0 < r < r., was assumed to rotate uniformly with angular
velocity €. about an axis C. The constraints on («, [3) can then be used to constrain
the obliquity (. of C with respect to S for each value of r.. In this way one can
test, for example, the model of Bai & Sturrock (1993) in which the core rotates at
a rate €. /2m = 454 nHz inclined by 3. = 40°. In this model, we find that the core
radius r. has to be less than 0.24R, in order to be consistent with LOI data.

Subject to the same two-zone model, we can also constrain the orientation (o,
fr) of the axis L of the Sun’s angular momentum with respect to the normal n. In
Figure E.2, the hatched region in the (., 81) plane is the permitted region if o,
and a; are all within one standard deviation of their seismically determined values.
We measured the averaged rotational splitting over the same set of modes to be

a; = 440 £ 7 nHz from one year of data. It is evident that at a level of significance
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12~~~ T [ [ A [
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FROM ECLIPTIC NORMAL
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Figure E.2: Permitted inclinations 3y, of the solar angular momentum when a; = 440
nHz, for r./Rs = 0.25 (light orange), 0.4 (orange) and 0.7 (red). The hatched area
is the permitted region for r. < 0.7R; and 433 nHz < a; < 447 nHz.

only slightly above one standard deviation the possibility of L being perpendicular

to the plane of the ecliptic is not ruled out.
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