Chapter 4

Global Seismology of Sun-like

Stars !

L This chapter is from a paper accepted for publication in the Astrophysical Journal (Gizon &
Solanki, 2003). Section 4.2 was published in Astronomische Nachrichten (Gizon, 2002).
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4.1 Inclination of Stellar Rotation Axes

4.1.1 Introduction

For an Earth-based observer the rotation axis of the Sun is almost perpendicular
to the line of sight. Traditionally, the solar rotation axis has been approximated
to be exactly perpendicular to the ecliptic plane for helioseismic investigations of
spatially-unresolved oscillation data. An exception concerns the search for oblique
rotation of the Sun’s core (Goode & Thompson, 1992; Gough et al., 1995). The
rotation axes of stars are however randomly distributed in space. Since the visibility
of the pulsation modes with various azimuthal orders m is a function of the angle
between the rotation axis and the line of sight, ¢, this angle cannot be ignored in
asteroseismology. The presence of random ¢ values not only affects the method to
measure oscillation mode parameters, but asteroseismology conversely provides us
with the possibility of determining i, a parameter that in general is very poorly
determined. Space missions such as COROT of CNES (Baglin et al., 2001) and
Eddington of ESA (Favata et al., 2000) are expected to deliver the data necessary

to do high-precision asteroseismology on a large number of stars.

The surface rotation rate of a star is one of its fundamental parameters and has
been well studied. The standard method of deducing the rotation rate is to consider
the widths of spectral lines. This technique only gives v sin 7, however, where v is the
equatorial rotation velocity at the stellar surface. Asteroseismology can in principle
provide measurements of the angular velocity, {2, and of the inclination angle 3.
From these three measurements it is possible to determine the stellar radius, another

fundamental parameter, without knowledge of stellar structure and evolution.

Knowledge of 7 is important not just for obtaining improved stellar parameters,
but also in order to determine the masses of extra-solar planets. The standard
technique used to detect such planets is to look for periodic Doppler shifts in the
spectrum of the central star of the extra solar planetary system (Mayor & Queloz,
1995; Noyes et al., 1997; Marcy & Butler, 2000). This technique, however, only re-
turns M, sin i, where M, is the mass of the orbiting body and i, is the inclination of
the normal to its orbital plane relative to the line of sight. Clearly, the mass estimate

obtained in this manner is a lower limit. Since ¢ and ¢, are expected to be similar
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(see below) a knowledge of 7 would help to improve the mass estimates of extra solar
planets considerably and would distinguish also misidentified brown dwarfs in orbits
with small 7, from bona fide planets. In the solar system ¢ and 7, differ by less than
10° for all the planets excluding Pluto. Also, currently favored theories of planetary
system formation predict that the orbital plane of planets should nearly coincide
with the equatorial plane of the central star (Safronov, 1972; Lissauer, 1993). An
alternative technique for detecting planets involves looking for planetary transits in
photometric data. So far this technique has uncovered only a couple of such systems
(Charbonneau et al., 2000; Henry et al., 2000; Udalski et al., 2002; Konacki et al.,
2003; Dreizler et al., 2003), compared to a total of over 100 planets detected using
radial velocities. However, missions such as COROT, Eddington, and Kepler aim
at discovering many such systems. Since for transiting planets i, is known to high
accuracy (Brown et al., 2001), a comparison with the independently measured i of
the central stars would allow a direct test of the theoretical prediction that i, and

1 are very similar. Clearly, there are many reasons to attempt to measure 1.

Here we present a technique employing low-degree non-radial oscillations to de-
termine ¢ for sufficiently rapidly rotating stars. The technique makes use of the fact
that the ratio of amplitudes of the m = £1 and m = 0 components of dipole oscilla-
tions is a strong function of ¢. Similarly, the amplitudes of the peaks in quadrupole
multiplets exhibit different dependences on 2. This technique is thus similar to us-
ing the ratios of o(AM; = +1) to 7(AM; = 0) components of Zeeman-split atomic
transitions to determine the angle of the magnetic field vector relative to the line-
of-sight, a standard procedure in Zeeman magnetometry. By studying solar dipole
modes of oscillation, Gough et al. (1995) were able to measure the inclination of the

Sun’s rotation axis within 5° of the true value.

In this chapter we simulate a large number of realizations of oscillation power
spectra seen in intensity with known values of the stellar rotation and of the in-
clination angle. We then fit a parametric model to each power spectrum with a
maximum likelihood technique to estimate 7, 2, and other mode parameters. The
distribution of the measured values of 7 indicates how precise a measurement can

be. In order to assess the feasibility of the technique we adopt the pessimistic view
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that only a single multiplet, [ = 1 or [ = 2, is observed. In practice, the informa-
tion from tens of modes would be combined to better constrain i. Although we are
investigating a problem which has not been studied before, we employ many results

from helioseismology.

4.1.2 Effect of Rotation on Stellar Oscillations

Stars like the Sun undergo global acoustic oscillations driven by near-surface tur-
bulent convection. The pulsation frequencies w,; of eigenmodes with radial order
n and spherical harmonic degree [ are characteristic of the spherically symmetric
structure of a star (Brown & Gilliland, 1994). For distant Sun-like stars, observa-
tions are mostly sensitive to high-order acoustic modes with [ < 2, i.e. radial, dipole,
and quadrupole p modes. Because low-degree frequencies satisfy a relatively simple
asymptotic relation (Tassoul, 1980) in which the large separation wy, — wyp—1,; and
the small separation wyo — wp—12 depend weakly on n, the degree [ of a multiplet
can in principle be identified without ambiguity in the oscillation power spectrum
(Fossat, 1981). A solar oscillation power spectrum for 200 days of observation of
the total irradiance (Frohlich et al., 1997) is shown in Figure 4.1. Many attempts
have been made to detect p modes on other Sun-like stars. So far they have only
been clearly detected on o Cen A (Bouchy & Carrier, 2001; Schou & Buzasi, 2001;
Bedding et al., 2002).

Rotation removes the (21 4 1)-fold degeneracy of the frequency of oscillation of
the mode (n,[). The nonradial modes of a rotating star are thus labeled with a third
index, the azimuthal order m, which takes integer values from —[ to +/. When the
angular velocity of the star, €2, is small, the effect of rotation on mode frequencies
can be treated as a small perturbation. In the case of rigid-body rotation, and
to a first order of approximation, the frequency of the mode (n, [, m) is given by
(Ledoux, 1951):

Wnim = Wt +mQ (1 — Cyy) - (4.1)

The kinematic splitting, mS2, is corrected for the effect of the Coriolis force through
the dimensionless quantity C,; > 0 whose value depends on the oscillation eigen-
functions of the non-rotating star. High-order low-degree solar oscillations have

Cni < 1072 rotational splitting is dominated by advection. We note that the
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Figure 4.1: Solar oscillation power spectrum for 200 days of observation of the total
irradiance (Frohlich et al., 1997). The data are from the VIRGO experiment aboard
the ESA/NASA Solar and Heliospheric Observatory (SOHO). The global modes
of oscillation are ordered in sequence: (n — 1,1 = 2), (n,l = 0), and (n,l = 1)
with radial order n increasing with frequency. The large frequency separation is
(Wni — wn—1,)/2m ~ 135 puHz and the small separation is (wp =0 — Wn—1,=2)/27 ~
10 pHz.

rotation-induced frequency shift would not be linear in m if the angular velocity
2 were to vary with latitude (e.g. Hansen et al., 1977).

To the next order of approximation, centrifugal forces distort the equilibrium
structure of the star. This results in an additional frequency perturbation (indepen-

dent of the sign of m) which scales like the small parameter

Q2R3

G (4.2)

i.e. the ratio of the centrifugal to the gravitational forces at the stellar surface (Saio,
1981; Gough & Thompson, 1990). Here R denotes the radius of the star, M its mass,
and G the universal constant of gravity. Second-order rotational effects are negligible
in the Sun (Dziembowski & Goode, 1992). These effects are however significant for
faster rotating Sun-like stars (Kjeldsen et al., 1998). Other perturbations, such
as a large-scale magnetic field, may introduce further corrections to the pulsation
frequencies (Gough & Thompson, 1990).

Here we only consider first-order rigid rotation, and substitute w,; + mf for
Wnim- Our purpose is to assess the feasibility of measuring the basic rotation param-
eters (2 and 4. In an inertial frame R’ with polar axis coincident with the angular
velocity vector €2, scalar eigenfunctions are proportional to a spherical harmonic
function Y;™(#', ¢'), where ' and ¢’ are the co-latitude and longitude defined in
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the spherical-polar coordinate system associated with R’. Under the approximation
that the intensity fluctuation due to a mode of oscillation is proportional to a scalar
eigenfunction measured at the stellar surface (such as the Lagrangian pressure per-
turbation), the brightness variations due to the free oscillations of a star may be

written as a linear combination of eigenmodes:

't,0,¢) =R Z At YO, ¢ elmim (4.3)

nl m=-—1

where A,;,, are complex amplitudes, ¢t denotes time, and R takes the real part of the
expression. A more accurate expression for I’ requires an explicit relationship be-
tween mode displacement and light-flux perturbation (e.g. Toutain & Gouttebroze,
1993).

To obtain the intensity that an Earth-based observer would measure, it is con-
venient to transform to an inertial frame R with polar axis pointing toward the
observer, inclined by the angle ¢ with respect to 2. Co-latitude 6 and longitude ¢
are spherical-polar coordinates defined in R. For an appropriate choice of longitude
origins, spherical harmonics expressed in R’ and R are related linearly according to
(Messiah, 1959):

l
= D Y0, 9) ri (i), (4.4)
m'=—1

where the rotation matrix r¥) is real and unitary. According to Wigner’s formula
(see Messiah, 1959) each rotation matrix element can be written explicitly as a
homogeneous polynomial of total degree 2! in the two variables sin(i/2) and cos(i/2).
Inserting equation (4.4) into equation (4.3) we obtain intensity variations expressed

in the frame with polar axis (# = 0) pointing toward the observer:
1t,0,0) =R D Aum Y™ (0,8) 1), (5) enmt. (4.5)
nlmm/

The spherical harmonic projection (I, m') is given by a linear combination of eigen-

modes (I,m). From the above equation, we derive the observed disk-integrated
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intensity signal, I(t):

2m w/2
I(t) = /O do /O A0 1(t: 0, 6) W(0) cosfsin 6, (4.6)

where W (f) is the limb-darkening function. Because the function Y;™ (8, #) is pro-
portional to exp(im’¢), components with m' # 0 vanish upon integration over az-

imuth, and
1) = R Vi At 7oy () €1, (4.7)

nlm

with the visibility factor V; given by
/2
V, = 27r/ Y,2(0) W () cosfsinf df . (4.8)
0

For each (I,n) there are 2/ + 1 visible peaks in the power spectrum; as is expected
for a steady perturbation such as rotation. The quantity V;? is an estimate of the
geometrical visibility of the total power in a multiplet (I, 7) as a function of [. The
solar limb darkening function quoted by Pierce (2000) implies (V1/V5)? = 0.50 and
(Vo/Vy)? = 0.17. These estimates are crude (see Toutain & Gouttebroze, 1993).
However, the ratios V;/Vj are unimportant to the present study as we are interested

in the relative power between azimuthal modes with common values of [ and n.

Assuming that there is energy equipartition between modes with different az-

imuthal order, we write amplitudes A,;,, in the form
Anlm = |Anl| ei¢nlm 3 (49)

where the magnitude |A,| is independent of m, and ¢y, is an arbitrary phase.
Using this assumption, consistent with the solar data, together with equation (4.7),

we find that the dependence of mode power on azimuthal order m is given by

Eim (i) = [rom ()] (4.10)

(1)

Matrix elements r,),

(7) are explicitly given by Messiah (1959) in terms of associated
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Legendre functions, P/™:

(L = |m])!

Em(i) = =) [Pl|m|(cosi)]2. (4.11)

The above equation links mode visibility to inclination angle i (see also Dziembowski,
1977; Toutain & Gouttebroze, 1993). It provides the basic information required to
later extract ¢ from photometric measurements. It is however unknown whether
the key assumption, equation (4.9), remains valid for very fast rotators as rotation
affects convection and therefore the mechanism by which acoustic modes are excited.

For dipole multiplets, [ = 1, the observed mode power (Eq. [4.11]) is given by

€10(i) = cos?i (4.12)
E141(i) = %sinZi. (4.13)

For quadrupole multiplets, [ = 2, we have

1
Er0(i) = Z(3(:os27;—1)2, (4.14)

Eran(i) = gsin2(2i) , (4.15)

82’i2(i) = § SiIl4 1. (416)

8

It is worth noting the symmetries €;,(—%) = Epn(m — 1) = Eun(7). Knowledge of
Eim (1) is not enough to fully specify the direction and sense of the rotation axis, but
only |i| modulo 7. When the rotation axis is aligned with the line of sight (i = 0
mod 7), only the mode m = 0 is visible and rotation cannot be inferred. Notice
also that Y &un(i) = 1, so that &, represents the relative power in the mode m

within a multiplet (n, ).

4.1.3 Modeling Oscillation Power Spectra

In the previous section we studied the intensity variations due to the free oscillations

of a star with an arbitrary orientation of the rotation axis. We found that the
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brightness variations can be approximated by

I(t) = Z V Eim (i) cos[(wn + M)t + @], (4.17)

m=—1

when considering only the contribution from a single multiplet (n, ). The observed
power in the azimuthal component m is given by &;,(i), and ¢,, is an arbitrary
phase. In Sun-like stars, oscillations are however excited by near-surface turbulent
convection. The above model is too simple as it ignores the stochastic nature of
stellar pulsations (Woodard, 1984). Oscillations also have a finite lifetime deter-
mined by their interaction with convection. In this section we give a more realistic

description of the statistical properties of the oscillation signal in Fourier space.

The observed brightness variations of a star are presumed to be given by the
function I(t) recorded over a large observation time interval of length T, at a suffi-
ciently high cadence (say less than 1 min). Since pulsations are forced by turbulence,
the signal is a random sample drawn from some probability distribution. Neglecting
edge effects introduced by the time window, we assume that I(¢) is a stationary
process. We denote by I(w;) the FFT of I(t) sampled at the angular frequency
w;j = 2mj/T. A random variable is fully specified by its expectation value, E, and
higher-order moments (in the sense of ensemble averages). Here, I(w;) is complex
with zero mean, E[I(w;)] = 0, and stationarity implies that frequency bins are

uncorrelated:
E[I*(w;) I(w;)] =0 forj #j'. (4.18)

Foglizzo et al. (1998) showed that low-degree modes are essentially uncorrelated.
This is a consequence of the fact that there is a very large number of excitation events
per damping time. The central limit theorem ensures that mode amplitudes converge
to independent Gaussian distributions. The signal I(w;) can thus be modeled by a

sum of independent complex Gaussian random variables:
I(w;) = Y om(w;) Nen,j + 0" NG . (4.19)

The symbol N denotes a complex Gaussian random variable with zero mean and

unit variance, E[N*N] = 1. The standard deviation of a mode amplitude, denoted
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by the function o,,(w), is large for w near the resonant frequency wy + mS2 (see
below). The distributions N, ; are all independent of each other. The additional
term o"Nj denotes uncorrelated Gaussian noise with standard deviation o®. The
origin of this noise is both stellar (convection) and instrumental (e.g. photon noise).
For simplicity, the noise level, o™, is assumed to be frequency independent over a

small frequency interval around w,;.

In order to obtain o,,(w) one should in principle solve the inhomogeneous wave
equations once a model for wave damping and excitation has been specified. Here,
however, we parametrize the variance o2, in the form

02 (W) =8 & (i) Ly(w —me). (4.20)
The constant S gives the overall amplitude of the power, and the weights &;,,(7) give
the m-dependent visibility as a function of inclination angle i (cf. § 4.1.2). The line
shape, L, (w), is a real positive function which becomes large for w near the resonant
frequency wy;. We choose the standard Lorentzian line profile (e.g. Anderson et al.,

1990) appropriate for describing an exponentially damped oscillator:

1+ (wr_/‘;”’)Q]_l, (4.21)

where the damping rate I' represents the full width at half maximum of L, (w).

Lnl (w) =

Notice that equation (4.21) only gives the positive-frequency part of the spectrum;
the negative-frequency part does not contain extra information and can be deduced
from the relation I(—w) = I*(w).

Since the sum of independent Gaussian random variables is a Gaussian variable,
the Fourier spectrum (Eq. [4.19]) at frequency w; can be written in terms of a single

complex normal distribution, Nj:

1/2

I(wj) = |S Y &um(i) Lu(w; = mQ) + N|  N;. (4.22)

We introduced the notation N = (¢")%. The traditional method to generate a

complex Gaussian distribution is called the Box-Muller method. Given a uniform



124 CHAPTER 4. GLOBAL SEISMOLOGY OF SUN-LIKE STARS

distribution on [0,1], U;, and a uniform distribution on [0,27], ©;, the random

variable

Nj = \/—anj eief (423)

is complex Gaussian with independent real and imaginary parts and unit variance.
From equations (4.22) and (4.23), we see that a realization of the power spectrum
is given by

P(wj) = [I(wy)* = —In(U;) Plwy), (4.24)

where P is the expectation value of the power spectrum,
P(w;) =S € (i) Lu(w; —mQ) + N (4.25)

We now have an expression for generating realizations of a stellar oscillation power
spectrum. Because Ly;(wy;) = 1, it makes sense to refer to S/N as the signal-to-noise
ratio in the power spectrum. Since —In(U;) is an exponential distribution with unit
mean and variance, the probability density function of the random variable P(w,)

is given by

T5) = gy & (‘wwj)) ’ (4.26)

where f(P;) describes the probability that P(w,) takes a particular value P; (Woodard,
1984; Duvall & Harvey, 1986).

Figure 4.2 shows plots of the expectation value of the power spectrum, P(w),
for various values of the inclination angle 7. The left panels in Figure 4.2 are for
dipole multiplets I = 1, and the right panels for quadrupole multiplets [ = 2. In
these plots the parameters are I' = I' and Q = 69, where 'y /27 = 1 pHz and
Qo/2m = 0.5 pHz are characteristic solar values for the line width and the angular
velocity. For noiseless data, the dependence of the power at different frequencies
on ¢ is clearly evident, and it is possible to distinguish between different 7 values
relatively easily.

To illustrate the effect of stochastic excitation, Figure 4.3 shows two realizations,
P(w), of an [ = 2 power spectrum for i« = 30° and i = 80°, together with the

expectation values denoted by the thick curves. A solar-like background noise was
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prescribed (S/N = 100). Although realization noise is important, the two spectra

can be distinguished from each other.

In the previous section, we described a simple statistical model for the stellar
oscillation power spectrum. This model depends on a minimal set of physical pa-
rameters (wy, I, €, i) and the overall signal and noise levels (S,N). In this section,
we describe an algorithm which allows to estimate these parameters from a real-
ization of the power spectrum. We use the maximum likelihood method which is
commonly used in helioseismology (e.g. Anderson et al., 1990; Schou, 1992; Toutain
& Appourchaux, 1994; Appourchaux et al., 1998, 2000).

We consider a section of the spectrum that includes the 2/ + 1 peaks of a given
multiplet (I,n). The spherical harmonic degree [ is either 1 or 2. We denote by A

the set of parameters that we want to estimate:
A={,Qwy, S, N}. (4.27)

Maximum likelihood estimators involve specifying the joint probability density func-
tion for the sample data {P;}. For a given frequency wj, the probability that the
power takes the particular value P; is given by the probability density function, f(FP;)
(see Eq. 4.26). We write f(P;|\) to indicate the dependence on the parameters A.
Because frequency bins are independent, the joint probability density function is
simply the product of f(P;|A) for the index j spanning the frequency interval of
interest. The likelihood function F'(A) is another name for the joint probability

function evaluated at the sample data
FO)=]]r@(N. (4.28)
J

The basic idea of maximum likelihood estimation is to choose estimates A* so as to

maximize the likelihood function. In practice, one minimizes
LA)=—=InF(N). (4.29)

This gives the same result since the logarithm is a monotonic increasing function.

The probability of observing the sample values is greatest if the unknown parameters
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Figure 4.2: Expectation value of the power spectrum, P(w), for dipole and
quadrupole multiplets as a function of the inclination angle ¢. The left panels are
for dipole multiplets, [ = 1, and the right panels are for quadrupole multiplets,
I = 2. The parameters are I' = 'y and Q = 69, where I'/2r = 1 puHz and
Q/2m = 0.5 pHz are characteristic solar values for the line width and the angular
velocity. The bottom panels show the power for the specific values i = 30° (solid
lines) and 7 = 80° (dashed lines). There is no background noise in these plots.
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Figure 4.3: Two realizations of the power spectrum of an [ = 2 multiplet versus
centered frequency (w— wy;)/2m. The stellar rotation is 2 = 62 and the mode line
width is I' = I'g. Panel (a) corresponds to an inclination angle 7 = 30° and panel
(b) is for : = 80°. A signal-to-noise ratio S/N=100 has been prescribed and the
simulation corresponds to 6 months of uninterrupted observations. The expectation
value of the power, P, is overplotted (smooth curves).
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are equal to their maximum likelihood estimates:
A =argmin {L(A) } . (4.30)
A

We use the conjugate gradient method to find the parameters that minimize the
function L.

The method of maximum likelihood has many good properties (e.g. Kendall &
Stuart, 1967; Rao, 1973). The maximum likelihood estimate A* is not biased as the
sample size tends to infinity. Moreover, for large sample size, A* will have an approx-
imate multi-normal distribution centered on the true parameter value A. Maximum
likelihood estimators are also minimum variance estimators. Furthermore when the
model is misspecified, X* will still have a well-defined probability distribution and
will be approximately normally distributed. In our case we have a finite sample
size, since 71" is limited to a few months. There is no guarantee that the maximum
likelihood estimator will be normally distributed or even unbiased. Note also that
the distribution of 7* has to be periodic since £ only depends on |i| mod 7.

In order to derive the correct probability distributions of the likelihood estimates,
we run Monte-Carlo simulations (e.g. Toutain & Appourchaux, 1994). The method
consists of simulating a large number of realizations of a power spectrum and then
fitting each realization to construct the distribution of the measured ;. Monte-
Carlo simulations enable us to determine the bias and the precision associated with
the measurement of each parameter )\;. Ideally we would want to run simulations
for each relevant point in A-space and for varying observation times 7. Because
Monte-Carlo simulations are time consuming, we decide to keep I" and S/N fixed to
their solar values, varying only €2 and 7. For all simulations, the observation time is
T = 6 months.

4.1.4 Results

In Figure 4.4 we show the results for one set of Monte-Carlo simulations. Plotted
are in Figures 4.4a and 4.4c the inclination angle ¢*, and in Figures 4.4b and 4.4d
the angular velocity in solar units, Q* /g, returned by the fit versus the inclination

angle, ¢, that entered the computation of each realization. For this set we simulate
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2000 realizations. Panels (a) and (b) differ from (c) and (d) in the initial guess for
the rotation rate (indicated by the dashed lines). The scale indicates the percentage
of the points falling into a bin. For (a) and (c¢) a bin is 2 deg. For (b) and (d) a bin

is 0.12Q.



130 CHAPTER 4. GLOBAL SEISMOLOGY OF SUN-LIKE STARS

. =2 0=6Q, .
30 12 : : ‘ 30
10 ¢
20 gL 1 20
S o] o —
[e]
10 4F 1 @10
: (b) |
0 0 | I 0
0 20 40 60 80
T (%)
. =2 0=6Q, .
30 12 : : ‘ 30
10
20 gl 1 20
@
c
~. 6 T —
- -
10 4 b /// 1 @10
s
"B (d)
0 0 | 0
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a single [ = 1 triplet and the rotation frequency is {2 = 6{)y. For each value of the
inclination angle ¢ ranging from 0 to 90°, we computed 2000 realizations of the power
spectrum. The initial guesses in w};, ['*, S*, and N* for the fits to the simulated
spectra are randomly distributed in some interval around the true parameter values.
The random initial guess in #* is uniformly distributed between 0 and 90°, whatever
the true inclination angle. For *, we started with two different initial guesses.
The guesses are indicated by the dashed lines in Figure 4.4b (for the results shown
in Figures 4.4a and 4.4b) and 4.4d (for Figures 4.4c and 4.4d). The guess for €
shown in Figure 4.4d is not too dissimilar from an initial guess based on wvsini

measurements.

We note that most ¢* values returned by the fits lie within 4+5° of the true 3.
However, the distribution of 7* is highly non-Gaussian as 7 tends to either 0 or 90°.
The accuracy is lower for small ¢ values in particular if a wrong initial guess of Q*
is made (Figure 4.4c). In this case the fits tend to either i* = 0 or ¢* = 90° for
i < 10°. The inaccuracies in Q* are also largest for small 7, and systematically too

low values are returned if the initial guess is too low (Figure 4.4d).

The reason for this behavior lies in the fact that only the m = 0 component is
visible at i ~ 0 (Figure 2). Hence the oscillation spectrum does not provide any
means of distinguishing between a (rapidly) rotating star observed almost pole on
and a non-rotating (or very slowly rotating) star with arbitrary ¢ value. In this case
the maximum likelihood fit returns the solution closer to the initial guess (compare
Figures 4.4b and 4.4d).

In Figure 4.5 we plot the same as Figure 4.4, but for an [ = 2 mode. On
the whole, the results look similar. At most inclination angles the accuracy in the
measurements of 7* and (2* is higher than for [ = 1. The major exception is 7 in
the range 20-40°. The fitting procedure cannot decide between i* = i, * ~ )
and i* ~ 90°, Q* ~ Q/2. Figure 2 again reveals the cause of this uncertainty. For
1 &~ 20-40° only the m = 0 and m = +1 components have significant power. The
solution with Q* a~ /2 is achieved if the m = £1 components are misidentified
as Am = +2. This is only possible if simultaneously i* ~ 90° is assumed (see
Figure 2). Unsurprisingly, this wrong solution is more commonly obtained when the
initial guess of Q* is closer to /2 than to 2 (Figure 4.5d). For i 2 80° again two
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solutions are obtained, the correct one and 0* ~ 22 combined with * ~ 30°. In

this case the fitting procedure misidentifies the m = +2 peaks as m = £1 peaks.

The most reliable result is obtained by fitting dipole and quadrupole modes
simultaneously. Figure 4.6 shows likelihood estimates for three multiplets [ = 0,1, 2
combined. The ambiguities at ¢ ~ 20-40° and 7 2 80° present in the fits to | = 2
alone are removed, while the scatter in 7* and €2* is considerably smaller than for fits
to l = 1 peaks alone. Only the ambiguity at ¢ < 10° remains. “Medians” and “error
bars” are plotted in Figure 4.6. By construction 2/3 of the points lie between error
bars. Because the distributions of ¢* and 2* are definitely not Gaussian these values

are only indicative; they are not sufficient to assess the measurement precision. Also

*

>0, and

plotted in Figures 4.6¢ and 4.6d are the fitted frequency of the [ = 0 mode, w
the line width, ['*, common to all the modes. The measurement accuracy of these
parameters appears to be independent of the inclination angle 7. Indeed rotation
has no effect on the singlet / = 0. Including an [ = 0 mode in the minimization
procedure helps in turn to measure 2* and ¢* from the dipole and quadrupole modes

by reducing the uncertainty on I'™.

So far we have only considered rapidly rotating stars with rotational splitting
considerably larger than the line width. We now turn to the case 2 = 2{); and
repeat the analysis described above for 2 = 6€2,. The distribution of +* and *
obtained by fitting 750 realizations to [ = 0, 1,2 combined is shown in Figure 4.7.
As expected, the accuracy of the deduced * and 2* values is considerably lower
now than for the more rapidly rotating stars. The individual azimuthal components
in a multiplet are not resolved since 2 = 2I'. For ¢ 2 45° the errors are found to
be around £10° for i* and 5-15% for Q*/Q. At smaller ¢ values the fits tend to
overestimate ¢ and the uncertainty for both * and * becomes excessively large for
decreasing %, but remains unchanged for w}, and I'*. A comparison with Figure 4.7
reveals that the accuracy of these last two quantities is mostly independent of the

rotation rate when [ = 0,1, 2 are fit together.

Although extremely useful, Monte-Carlo simulations require long computations.
A less reliable but straightforward method to obtain a formal error, o, on the
maximum likelihood estimate A} is to expand L about the true parameter value A.

As mentioned earlier, in the limit of infinite sample size, A* tends to a multi-normal
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probability distribution which is asymptotically unbiased,

EN] = A, (4.31)
and has minimum variance. An estimate of o}, is

o = 1/Ch, (4.32)

where Cj; is the k-th element on the diagonal of the inverse, C = H™!, of the

Hessian matrix given by

2L

The formal error oy, called the Cramer-Rao lower bound, is a lower limit on the
error bar associated with the measurement of )\; (e.g. Kendall & Stuart, 1967).
Toutain & Appourchaux (1994) showed that these error bars are useful estimates in

helioseismology.

Figure 4.8 shows the errors ogn; and oq derived from equation (4.32) for a
single [ = 1 mode, plotted as a function of sini and €2/€),. This calculation is
easier to carry out when sin 4 is chosen as an independent parameter instead of 7. A
comparison with Figures 4.6 and 4.7 reveals that the error bars obtained by inverting
the Hessian have the correct magnitude. By construction they are symmetric about
the true parameter values and they cannot describe the asymmetric distribution of
i* displayed by the Monte Carlo simulations (Figure 4.7). Of particular interest
is the dependence of the error bars on ). Figure 4.8 suggests that it is extremely
difficult to determine either 7 or {2 for a star with the solar rotation rate when a

single mode [ = 1 is taken into consideration.

We have also determined error bars from Monte-Carlo simulations for stellar
rotation frequencies in the range 1 < Q/Qg < 10, although restricted to only
1 = 30° and 80°. Medians and error bars are plotted in Figure 4.9 for a simultaneous
fit to three multiplets, [ = 0,1,2. This figure shows that it is realistic to apply
asteroseismic techniques for Q 2> 20, with the results being more reliable for
i = 80° than ¢ = 30°. When azimuthal modes are fully resolved (say © > 3Qg),

error bars are fairly independent of the rotation rate. Note that for + = 30° and
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Figure 4.8: Formal error bars obtained by inverting the Hessian for an | = 1 multi-
plet. In panels (a) and (c) the error bars on i* and Q* versus sini are given for two
rotation rates, Q = 20 (dashed curves) and Q = 62 (solid). In panels (b) and
(d) error bars for i = 30° (dashed) and ¢ = 80° (solid) are plotted versus Q/Qq. A
sample error bar for 2 = 2(); and ¢ = 30° is explicitly plotted. Other parameters
are ' =T, S/N =100, and T = 6 months.
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Figure 4.9: Median and error bars for maximum likelihood estimates i* and (Q* —
)/ deduced from Monte Carlo simulations as a function of rotation rate. Results
are shown for two input inclinations, i = 30° (squares and thin error bars) and
i = 80° (diamonds and thick error bars). Three multiplets [ = 0, 1, 2 are fit together.
I'=Tg, S/N =100, and T = 6 months.

Q2 < 2Qg, the error bars on Q (Figure 4.9b) appear to be decreasing for decreasing
. This is an artifact: we simply do not have enough realizations to describe the
broad distribution of 2* in this range. Also, likelihood estimates i* and Q* appear
to be biased when Q < 2Qg. This is likely to be due to our definition of the median

(we do not take into account the periodic nature of the distributions).
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4.2 Stellar Asphericity

4.2.1 Introduction

Magnetic activity affects the structure of the Sun. These changes are reflected in
the observed shifts of the eigenfrequencies of the global modes of solar oscillations
(Woodard & Noyes, 1985). Mode frequencies increase with magnetic activity: over
the period of the 11-year solar cycle, low-degree modes show fractional frequency
shifts of the order of 10~4. Acoustic wave propagation may be affected directly by the
magnetic field and/or indirectly through thermal and density changes. The study of
high-degree modes has revealed that frequency shifts are caused by structural per-
turbations confined to the near solar surface and localized in latitude (Libbrecht &
Woodard, 1990). The latitudinal dependence can be inferred from the observation
that modes with different azimuthal orders, m, are shifted by different amounts.
Sound-speed asphericity inversions of high-precision helioseismic data show latitu-
dinal variations that match the butterfly diagram (Antia et al., 2001).

Thanks to Doppler imaging (e.g. Rice, 2002) the spatial distribution of starspots
on a rapidly rotating star can be recovered from a series of high-resolution spectral
line profiles. Many stars are found to exhibit large polar cap features. Theoretical
work by Schiissler & Solanki (1992) indicates that magnetic flux should emerge at
high latitudes for fast rotators. However, axisymmetric features such as polar spots
do not introduce wavelength variability in the line profiles. For this reason, doubts

have been raised about their reality.

Can we learn about the surface distribution of magnetic activity on a star other
than the Sun by studying the frequencies of its global modes of oscillation? For
distant stars, only modes with spherical harmonic degrees [ < 3 can be observed.
As a result wave-speed asphericity inversions will have poor resolution in latitude.
In this section we ask whether it might be possible to discriminate between two sim-
ple activity configurations: an equatorial band and a polar cap. Asteroseismology
will heavily rely on the long and continuous observations provided by the future

European space missions COROT and Eddington.
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4.2.2 Asphericities

We consider a rotating Sun-like star subject to near-surface structural perturbations
introduced by magnetic activity. For perturbations that are steady in an inertial

frame, the frequencies of oscillations may be written as

(rot)
nlm

+ SwiAR) (4.34)

Wnim = Wnt + ow nlm

Here the central frequency w,,; includes all spherically symmetric distortions. The
(rot)
nlm ?

(AR) The activity perturbations

nlm *

rotation-induced frequency splitting is denoted by dw and the frequency pertur-
bation due to near-surface magnetic activity is dw

have to be azimuthally symmetric with respect to the rotation axis.

In the case of a rigidly rotating star with angular velocity €2, and up to a sec-
ond order of approximation, the m-dependent rotational frequency perturbation is
approximated by (Dziembowski & Goode, 1992; Kjeldsen et al., 1998):

2 p3

ro Q
dwlio) = m(1 = Cu) Q2+ g Wi (4.35)

where R is the stellar radius, M is the stellar mass, G is the universal constant
of gravity, and C,,; is the Ledoux constant whose value depends on the oscillation
eigenfunctions of the non-rotating star. The second term in Eq. (4.35) describes
the Pp-distortion of the stellar surface due to centrifugal forces, with @, given by
(Kjeldsen et al., 1998):

2[4 P@Rr @R e

Im — 1 4.
¢ [P @) da (430

The P/™ are associated Legendre functions and P, is a second-order Legendre poly-

nomial.

There is no definitive theory for estimating the frequency shifts introduced by
near-surface magnetic activity. Here, we separate the physics from the geometry,
and parameterize the frequency perturbation in the form

5w(AR) =~ Whl €Enl Glm . (437)

nlm



140 CHAPTER 4. GLOBAL SEISMOLOGY OF SUN-LIKE STARS

In this expression, €, gives the overall (unspecified) amplitude of the fractional
frequency shifts. In the Sun, ¢ ~ 107%. The m-dependent coefficient G, is a
geometrical weight factor that depends on the latitudinal distribution of surface
activity:
Gim = / Y™ (0, 6)[2 sinfdode (4.38)
AR

where AR refers to the axisymmetric area covered by magnetic “active regions”. The
Y, are normalized spherical harmonics, and 6 and ¢ are spherical-polar coordinates
defined in the inertial frame with polar axis pointing in the direction of the rotation

axis.

For a given multiplet ({,n), the mode frequencies wy,,, can be expressed in terms

of a unique set of 2/ + 1 so-called a-coefficients:

20+1

Wnim = Z a; (TL, l) ?Sl) (m) ) (439)
j=1

where the polynomials ‘J’gl) (m) form an orthogonal set. The standard polynomials
used in this expansion are describe by Schou et al. (1994). For quadrupole multiplets,

the expansion up to as is:
Wnam = Wna +may(n,2) + (m? — 2) ag(n,2) + - (4.40)

The coefficient a; relates to the first-order effect of rotation, with a; ~ €2 in the case
of rigid-body rotation. The coefficient as is a measure of asphericity and includes
magnetic and second-order rotational effects. Rotational oblateness implies as < 0.
Because wave-speed is increased in active regions, an equatorial band of activity
would tend to reduce the effective oblateness, i.e. to increase ay. Polar activity, on
the other hand, decreases the value of as. In the Sun, activity migrates equatorward
as the cycle develops and the coefficient as is about 35 nHz higher at solar maximum

than at minimum (Appourchaux, 2002).
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Figure 4.10: Maximum likelihood estimates of 7, {2 and a; deduced from an | =
2 multiplet versus the true inclination angle. The star is solar-like with angular
velocity €2 = 5Q). The negative value of as is entirely due to rotational oblateness
(no magnetic perturbation was introduced). Observation time 7" = 6 months.

4.2.3 Equatorial Band vs. Polar Cap

The precision of the measurement of the asphericity parameter as depends on the
input stellar parameters and is limited by realization noise (stellar pulsations are
forced by turbulence). Like before we simulate a large number of realizations of an
oscillation power spectrum for a given stellar configuration, then extract oscillation
parameters using a maximum likelihood technique, and derive the distribution of
the measured values of ao.

For this preliminary study we consider a solar-like star with solar mass and radius
and uniform angular velocity 2 = 5{), where (2o, = 0.5 uHz. Mode visibility is a
function of the inclination angle, 7, between the line of sight and the stellar rotation
axis. Ignoring activity-related changes in the mode eigenfunctions, the observed

power in individual m-components is given by:

(= |m])!

T+ m) [P™(cosi)]” . (4.41)

Eim (1) =
Each mode is assumed to have a Lorentz profile with full width at half maximum
[' = 1 pHz, and the signal-to-noise ratio in the power spectrum is S/N = 20, i.e.
one fifth of the solar value. The observation time interval is 7" = 6 months. As
mentioned earlier we restrict our attention to two basic configurations: a polar cap
45° < A < 90° and an equatorial band —8.4° < A < 8.4°, where A = 7/2 — 0 is
the latitude. Activity covers the same area in both cases. The amplitude of the

magnetic perturbation, €, remains a variable parameter with values up to 1073, For
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Figure 4.11: Maximum likelihood estimates of the asphericity parameter as versus
inclination angle for an [ = 2 multiplet. In the left panel, activity is restricted
to an equatorial band, and in the right panel to a polar cap. The activity-related
fractional frequency shift is e = 5 x 10~%. Solid lines refer to the true as.

each inclination angle, we simulate 1000 realizations of the power spectrum for a
single [ = 2 multiplet.

Using a maximum likelihood technique (e.g. Toutain & Appourchaux (1994)),
we fit a parametric model to each simulated power spectrum, which depends on w,»,
Q, ag, I'; 7 and the overall signal and noise levels. Figure 4.10 shows, for € = 0, the
distributions of the estimates of 7, {2, and as returned by the fit, as a function of
the true inclination angle 7. The fit works reasonably well for ¢ > 40°. For ¢ < 20°
rotation cannot be inferred with sufficient precision. In the range 20° < i < 40°,
the m = £1 modes are sometimes misidentified as m = £2 modes. Rotational
oblateness can be retrieved for i > 40°.

Figure 4.11 shows the values of ay returned by the fit when the activity pertur-
bation is switched on. For e = 5 x 10™* and 7 > 40°, it is possible to distinguish
a polar cap of activity from an equatorial band of activity. Note that the estimate
of a; may be significantly biased. There are two reasons for this bias: (1) all 5
modes are not visible simultaneously and (2) the model of the power spectrum is
misspecified (we do not fit for a4). Figure 4.12 shows that for i = 60° the parameter
as can be measured from a single | = 2 multiplet with a precision of 450 nHz. The

distinction between the two configurations can only be made if € > 5 x 107
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Figure 4.12: Mean and standard deviation of measured ay versus € at inclination
angle i« = 60° and for [ = 2. Equatorial band of activity (diamonds) and polar
cap (triangles). Solid lines refer to the true ao. The dashed line is the rotational
oblateness value (e = 0).
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We have seen that stellar oscillations may contain measurable information about
the latitudinal distribution of stellar activity. Stellar rotation must be large enough
(individual m-components must be resolved), stellar activity must be strong enough
(say €>5eg), and the inclination angle of the star must be large enough (say 7 > 40°).

Both rotational oblateness and aspherical magnetic perturbations contribute to
the value of the parameter a;. In order to detect the asphericity due to activity
alone, it is necessary to remove the oblateness due to rotation. To do so, one must
estimate Q2R3 /GM. Hopefully, Q can be measured from the frequency splittings and
the mean stellar density M/R? can be deduced from the large frequency separation
Wnt — Wn1, o< /R3/M (Brown & Gilliland, 1994).

The present study is however not appropriate for a long-lived patch of activity
that would be localized in longitude, because such a perturbation is unsteady in the
inertial frame of the observer. The signature of an unsteady magnetic perturbation
in oscillation power spectra is rather complicated. An example for the Sun is pro-
vided by Gizon (1998) who studied the perturbation arising from the presence of a
large rotating “sunspot”. In this case the power spectrum of a given multiplet (I,n)

displays (I + 1)(2] 4+ 1) peaks, most of which cannot be resolved.



