Chapter 1

Altering the background state

Here, we describe the artificially convectively stabilized model used in our computations. The dimensionless radial co-ordinate is denoted by r, where r expresses fractions of the solar radius $R_{\odot}=6.959894677\times 10^{10}$ cm. For r<0.98, background properties as prescribed by model S (Christensen-Dalsgaard et al., 1996) are used. In the range $0.9998 \ge r \ge 0.98$, the empirical formulae:

$$\rho_0 = 4.1522194 \left[0.998989 - r + 4.36138(r - 0.98)^{2.1} \right]^{2.009828}, \tag{1.1}$$

$$p_0 = 2.7392767 \times 10^{15} \left[0.998989 - r + 4.36138(r - 0.98)^{2.1} \right]^{3.009828}, \quad (1.2)$$

$$g = -\frac{1}{\rho_0 R_{\odot}} \frac{dp_0}{dr},\tag{1.3}$$

$$\Gamma_1 = \max(\Gamma_1^S, 1.507550),$$
(1.4)

where Γ_1^S is the first adiabtic index of model S, are implemented. In the region $1.002 \ge r \ge 0.9998$, an isothermal layer is utilized:

$$\rho_0 = 4.5260638 \times 10^{-7} \exp[7690.7995(0.9998 - r)]$$
 (1.5)

$$p_0 = 1.0252267 \times 10^5 \exp[7690.7995(0.9998 - r)]$$
 (1.6)

$$g = 24998.23 (1.7)$$

Density (ρ_0) is expressed in units of g cm⁻³, pressure (p_0) in dynes cm⁻², gravity (g) in cm s⁻², the first adiabatic index (Γ_1) is dimensionless, and the sound speed (c) in

units of cm s^{-1} is given by:

$$c = \sqrt{\frac{\Gamma_1 p_0}{\rho_0}}. (1.8)$$