Appendix B
Code verification

We demonstrate the accuracy of the pseudo-spectral spatio-temporal numerical scheme
using a number of tests. Before delving into the verification details, it is important to
understand the parameter regimes of the waves and the limiting factors controlling
the simulation timestep. The highest frequency of waves of interest to us are of the
order of 6 mHz, corresponding to a timescale of about 167 seconds. The simulation
timesteps - 4 seconds for the spherical calculations and 2 seconds for the Cartesian
case, are significantly smaller than the period of the oscillations. The calculations
are evidently temporally highly over resolved; compared to the 4-10 points per wave-
length (ppw) quoted by Hu et al. (1996) and Berland et al. (2006), the simulations
operate at between 40-80 ppw. Similarly, as shown in Figure B.1, radial resolution is
quite sufficient. In fact, the eigenfunctions of the modes contain a rather small num-
ber of nodes (10 - 30 depending on the mode) in comparison to the actual number of
grid points. The reason for the excessive spatial resolution is the need to capture the
rapid density (pressure) variation with radius. Therefore, the limiting factor in terms
of the timestep or CFL number is the large number of density (pressure) scale heights
in the computational domain, which is why the spatial and temporal resolutions are
so high.

Having stated this, it is important to demonstrate that we are indeed in a high-
accuracy regime. Firstly, we demonstrate in Figure B.2 that the boundary conditions

cause the error convergence rate of the compact finite differences to drop to fifth
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Figure B.1 Resolution in the radial direction as a function of the non-dimensional
radius; the solid line shows the grid spacing of the simulation. The wavelength in the
radial direction is calculated from equation 2.7. We only display the grid spacing of a
small fraction of the solar model, which actually extends from r = 0.2R; to 1.002R,
(nrqq = 400). The wavelength becomes a non-trivial fraction of the solar radius by
about r = 0.8 R, and the resolution monotonically increases with decreasing radius.
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order. Although not shown here, the convergence rate is entirely unchanged when the
radial de-aliasing filter, described in § 2.5.2, is applied in conjunction with the finite
differences. Next, to demonstrate the accuracy of the spatial scheme in its entirety
(i.e., when used with radial de-aliasing and the temporal scheme), we simulate the 1-D
propagation of a Gaussian wavelet in a box with reflecting boundary conditions. The
grid-spacing in the calculation follows the constant travel-time criterion developed in
§ 2.5.1. The background model is chosen to be an adiabatically stratified, truncated
polytrope with index m = 1.5, gravity g = —2.775 x 10* cm s~2e,, reference pressure
Pref = 1.21 x 10° g em™! s72 and reference density py.; = 2.78 X 1077 g cm™?, such

that the pressure and density variations are given by,

z

Po(2) = Prey <——) mH, (B.1)

20

and

(o) = g (-2 (B.2)

20
The photospheric level of the background model is at z = 0, with the upper boundary
placed at a depth of zg = 768 km. This model is similar to the stratification prevalent
in the outer layers of the Sun (e.g., Bogdan et al., 1996). Because error convergence
rates are very sensitive and easily masked by small errors such as the locations of
the comparison points of solutions, we start with a highly resolved 721 point grid
and downsample by successively higher rates (every second point, every third point,
and so on). The solutions obtained on this sequence of grids are compared with the
highly resolved case to obtain the error convergence rate. The lower boundary of
the simulation is placed at z = —20.876 Mm, with wall-like boundary conditions on
both ends (v = 0,0,p = —pg, at the boundaries). The timestep of the simulation
was chosen to be At = 0.05 seconds. The experiment is graphically displayed in

Figure B.3 and the error convergence rate is shown in Figure B.4.
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Convergence rate of finite differences
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Figure B.2 Spatial convergence rate of the compact finite differences with fifth-order
accurate boundary conditions. The solid line shows the accuracy of the scheme, while
the dashed line is the theoretical fifth-order accuracy curve.

B.0.1 Eigenfunctions

For the polytrope described above, it is possible to determine the eigenfunctions
analytically (e.g., Bogdan & Cally, 1995). This will assist us in verifying that the
spatial scheme is able to recover the eigenfunctions accurately. The first step is to set

down the equations to be solved:

dp(z,t) = —0,(pov) (B.3)
po0v(2,t) = —0.p— pg (B.4)
Op(z,t) = —cgpodzv + povy, (B.5)

where p refers to density, c refers to sound speed, the 0 subscript refers to background
properties of the model, z is the spatial coordinate and ¢ time. Differentiating equa-
tion (B.4) with respect to time and substituting for time derivatives of density and

pressure from equations (B.3) and (B.5) respectively, we obtain the following:

p002v(2,t) = —0,(—capo0,v + povg) + 0, (pogv). (B.6)
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Figure B.3 Experiment to determine the spatial error convergence rate. The initial
condition, a Gaussian wavelet in velocity, is shown in panel (a). In (b), the temporally
evolved wavelet at time ¢ = 2 min is displayed. Simulations are performed with
varying numbers of grid points, n = 721, 361,181,145, and 121, so that each grid
is a downsampled version (i.e., every other point, every third point etc.) of the
n = 721 case. Errors are computed at £ = 2 min using a downsampled version of
the n = 721,¢ = 2 min solution as a template (panel b). In panels (c) and (d), the
differences between the n = 121 solution and the downsampled n = 721 template at
t = 12 min are displayed; it is seen that the difference, interpreted as the error, is
greater in the unfiltered case in panel (d) than in the filtered version in panel (c),
where the filter is applied to dealias variables in the radial direction (§ 2.5.2). The
difference between (c) and (d), which although appears harmless, continues to grow,
eventually overwhelming the simulation unless a de-aliasing filter is applied frequently.
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Spatial error convergence rate
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Figure B.4 Spatial error convergence rate (with radial dealiasing) based on the exper-
iment of Figure B.3; the time step was At = 0.05 seconds. The solid line is the error
of the compact finite differences and the dashed line is a theoretical sixth-order accu-
racy accuracy curve. It is somewhat surprising that the scheme obeys a sixth-order
accuracy law despite the use of fifth-order boundary conditions. Partly, the reason
could be that the problem is a consistent initial-boundary value problem, i.e. v =0
and 0,p = —pg at the boundaries.
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Next we define the Eulerian pressure and velocity fluctuations to be, respectively:

p(z,t) = / dwP(z,w)e ™t (B.7)
v(z,t) = / dwV (z,w)e ™, (B.8)
where,
~ (w—wp)?
P(z,w) = e 222 p*(z,w), (B.9)
~ w—w, 2
V(iz,w) = e v*(z,w). (B.10)

Substituting these expressions into equation (B.6), we have:

—w?poz2v* = 0,(c3po0sv*), (B.11)

mtl 2 = ¢2s, and p,, p., ¢ are the

where once again, s = —z/zg, po = pes™, Po = PeS
density, pressure and sound speed square at s = 1. Equation (B.11) is simplified to
obtain:
o2
502v* + (m + 1)0,v* + ZU* =0, (B.12)
where o = 2wzg/¢. Equation (B.12) is solved to obtain the analytical expression for

the eigenfunction:
v* = As™™2 ] (as'?) + BsT™2Y,, (as'?). (B.13)

The constants A and B are determined by enforcing the boundary conditions v*(s =
1) = 0 and v*(s = D) = 0. From these conditions emerge a sequence of resonant
frequencies, «, which can then be used to obtain the eigenfunctions of the resonant

modes. The eigenfunction for pressure is related to the one for velocity according to:

- 2
i c
p' == |povtg+ Lo (B.14)
W 20
2ip.¢
t = ﬂsm[mv* + s0sv"]. (B.15)
a
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To obtain eigenfunctions from the calculations, we first excite and simulate wave
propagation in the above-described cavity. Temporal transforms of the entire dataset
are computed at each spatial location; resonant modes are then isolated by analyzing
large amplitude regions in the power spectrum. These frequencies are compared to
the analytically predicted values to ensure that these are indeed resonant modes.
Having done so, the temporal spectrum is multiplied by a frequency-window function
to retain power only in the region of interest and inverse Fourier transformed. The
spatial extent of the eigenfunction of interest is then observed at temporal points that
correspond closely to the period of the mode. However, spatial error convergence
rates are difficult to measure from this experiment because the eigenfunction signal is
diluted by neighbouring modes due to the finite temporal window of the simulations.
Moreover the accuracy with which the resonant frequency can be measured is bounded
by the time length of the calculation. For the eigenfunction shown in Figure B.5,
a resonant mode with ¥ = 6.6111 mHz was isolated using an extremely narrow,
four-point box-car type frequency filter. Simulations with varying grid spacings all
showed a peak in the power spectrum at frequency of 9 yHz away from the analytical

prediction (frequency resolution ~ 22uHz, from a 12-hour simulation).

B.0.2 Efficacy of the transmitting boundary

As described in § 2.2, we use the transmitting boundary conditions of Thompson
(1990) with an adjoining sponge (e.g., Lui, 2003) to ‘prepare’ the waves for the
boundary. The main reason for using this prescription as opposed to other possi-
bilities (Giles (1990); Poinsot & Lele (1992); see Colonius (2004) for a review) is the
ease of implementation and efficiency of the method.

To test if these boundary conditions change the eigenfunction in any significant
manner and to ensure that to large extent, they are indeed non reflecting, we perform
1D calculations of wave propagation through a background similar to that of § B.0.1.
Tests of eigenfunctions corresponding to the full 3D spherical case are made difficult
by the lack of analytical solutions, especially for those corresponding high-/, high

frequency wave modes. Moreover, since ADIPACK allows a specific set of boundary
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Eigenfunction comparison
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Figure B.5 Comparison of eigenfunctions for a resonant mode of frequency v = 6.6111
mHz, obtained analytically (solid line) and through simulation (dot-dash line) with
n = 121. At higher resolutions, the two curves are virtually indistinguishable and
hence are not shown here. Including the two boundaries, the eigenfunction contains
only eleven nodes, far smaller than the number of grid points. With fewer (< 80)
points, the system develops instabilities because of the steep density gradient.
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condition options (different from the ones implemented in § 2.2), we are unable to
place bounds on the error in capturing these modes in simulations that use a solar-like

model as the background state in conjunction with the sponge.

However, in the 1-D situation discussed above, we give the problem a realistic spin
by stitching an isothermal atmosphere to the polytrope so that the acoustic cut-off
frequency is raised, providing a natural reflection region for the waves. Moreover,
having computed the eigenfunctions of the interior (Eq.[B.13]), we relax the zero-
velocity condition on the upper boundary while still enforcing a zero-velocity condition
on the lower boundary. Waves whose frequencies are lower than the acoustic cutoff are
reflected back into the interior while an evanescent non-propagating region develops
in the isothermal atmosphere. Thus, we can determine the effect of the boundary
conditions on the simulated eigenfunctions by comparing them with their analytical

counterparts.

B.0.3 Evanescent behaviour

Let us assume an isothermal evanescent region with constant sound-speed ¢y with

exponentially decaying density and pressure profiles:

pe = pee FotA/H (B.16)
PDe = pcef(zO“Lz)/H, (B.17)
T. = T, (B.18)

with x = 0 corresponding to the ‘photosphere’ of this model, and H to the scale
height in the atmosphere. Differentiating equation (B.4) w.r.t. time and substituting

for time derivatives of density and pressure from equations (B.3) and (B.5),

pediv = =0, [pegv — c3ped.v] + 0:(pey’) (B.19)
2

—wly = %(82,06)(821)) + c2otv. (B.20)

(B.21)
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Again, we define v(z,t), p(z,t) as

p(zt) =

v(z,t) =

I
/

where P,(w,t) and V,(w,t) are given by

we obtain the following solution for A,

A w?
M- 4=
H+c§

A

Wq

APPENDIX B. CODE VERIFICATION

o0

dwP,(w,t)e —iwt
o
0 ~

dwV,(w, t)e™™",
o

(w—wp)?

e @ p(w,z)

(w=wg)®
e s vy (w, 2)

Be)\z—z/H

Be*?
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2H
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(B.22)

(B.23)
(B.24)

B.25
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B.27
B.28
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(B.29)

(B.30)

(B.31)

We obtain two solutions while determining A, and we reject the solution whose energy

density o pv® grows without bound. In this situation, the relation between P,(w, )

and V,(w, t) is given by:

Ve(w, t)

(B.32)
(B.33)

For boundary conditions, we use normal velocity and Eulerian pressure matching
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across the boundary:

vto= vl (B.34)

P E = gl B (5.35)
w w

pto= P (B-36)

When writing the velocities in the following form, we will have only the pressure

equation to solve:

vto= Aﬂe_)‘zos_m/Z[Jm(asl/Q) + BV (as'/?)] (B.37)
PcTl

vt = A e )] (@) + BYn(a)], (B.38)
PcT]

pi = AeMotsn/H[ ] (0) 4+ BY,,(a)], (B.39)

(B.40)

where 3, A are the unknown constants we must determine. Matching p} =p*ats=1

gives us the following equations:

Az 20PcC W

po= A g (0) + mBYi(o)

o (ema(@) + oy () + 2 (~mYiu(a) + aYT;L(a))} L (B4
P o= —Ae"\z":—; mdm(Q) + . (@) + B(mYn(a) + Y ()],  (B.42)
- e ] =
P = e )
ko= JQgw/H (B.45)

To determine the resonant modes of this model, we use the definition of § from
equation (B.43) and set equation (B.37) to zero at s = D. Having then recovered the

resonant frequencies, the corresponding expressions for pressure and velocity in the
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interior (pure spatial components) may be obtained by evaluating:

vt o= AL eMeokn/Hgmmi2 T (051/2) 4 B (asY/?)], (B.46)
PcC
Pt = —AgeMotR/HmIN21 L (0st?) 4+ BY, 1 (as'?)). (B.47)

The acoustic-cutoff frequency, w,, of the model (D > s > 1) is given by:

_ coVm? + 11

P (B.48)

We

The model for this particular test is parametrized by m = 1.5, zp = 768 km,

D = 90.6198, ¢y = 8.51715 km/s, py = 1.21 x 10° dynes/cm?, py = 2.78 x 107 g/cm?,
H = zy/(m+1) km, and g = 0.1416 km/s?. Plotted in Figure B.6 are the analytical
(dotted line) and the simulated (solid line) eigenfunctions. The sponge is placed
adjacent to the upper boundary (located 1232 km above zp), shown in Figure B.7.
As can be seen the presence of the sponge does not affect the interior parts of the
acoustic eigenfunction. There is an amplitude error near the upper-most region of the
polytrope due to the combined influence of the boundary condition and the sponge

but the nodes remain mostly unaffected.

A rough test of the efficacy of the boundary conditions is shown in Figure B.8,
where an initial Gaussian-shaped velocity impulse is allowed to propagate outward.
Panel a shows the situation at £ = 10 min, and the successive panels show the im-
pulses at later instants in time. The amplitude in panel d is of the order of 1075,
significantly smaller than in panels a through c. Together with the test of Figure B.6,
the boundary condition seems to allow outward propagating waves to leave the com-
putational domain while leaving the eigenfunctions relatively undisturbed. A check
of this sort was applied to choose the sponge for the real simulations (quite similar in
magnitude and structure to the one in Fig. B.7). Since the polytrope + isothermal
stratification near the surface is very similar to the model used in the simulations,
and since the sponges are quite similar in structure, we expect that the eigenfunc-
tions in the simulations are also well retrieved while the sponge damps the outward

propagating waves.
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Eigenfunction comparison
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Figure B.6 Simulated (solid line) and analytical (dot-dash line) eigenfunctions for
v = 1.68 mHz, for the model described above. It is seen that the boundary conditions
and sponge do not affect the eigenfunction over the region of interest; although there
is an amplitude error of a few % in the upper-most layers of the polytrope, the interior
nodes are oblivious to the boundary conditions. This eigenfunction was obtained from
a 24-hour simulation wherein the waves were constantly excited over a small region
in the interior.
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Figure B.7 The sponge (solid line) and the upper boundary of the polytrope (and lower
boundary of the isothermal atmosphere) at s = 1 (dot-dash line). In simulations with
the altered solar model, the sponge is slightly sharper (spatially) and pushed a little
farther outward.
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Figure B.8 Efficacy of the transmitting boundary. The initial condition is a Gaussian-
shaped velocity impulse. Panel a shows the situation at £ = 10 min, and the successive
panels show the impulses at later instants in time. The amplitude in panel d is of the
order of 107°, significantly smaller than in panels a through c. Together with the test
of Figure B.6, the boundary seems to do a relatively good job of removing outward
propagating waves while the interior portion of the eigenfunction is seen to be mostly
undisturbed.
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B.0.4 Spherical Harmonics and the optimized R-K scheme

Because analytical solutions in spherical geometry are difficult to come by, we con-
structed a simplified problem wherein wave propagation on the 2-D spherical surface
(of radius R = 1) are studied. Provided background density, pressure are constant at

all points on the surface, an analytical solution may be arrived at:

op = =V.v, (B.49)
ov = —Vp, (B.50)
p = pc, (B.51)

where the notation of the previous section applies here. The equations (B.49) to

(B.51) are then simplified to obtain the following equations:

Oip—cV?p = 0, (B.52)
lmaac
p(ea o, t = 0) = Z a'le;m(oa ¢)a (B53)
0
lmaz
p(0,6,t) = > amY;"(0, ¢)cos(wimt), (B.54)
0

wm = c/I(l+1). (B.55)

Thus, the prescribed initial condition, first decomposed into the spherical-harmonic
domain in equation (B.53), is evolved in time according to equation (B.54), where each
spherical-harmonic coefficient oscillates at the frequency given by equation (B.55).
Then, by choosing an initial condition that is completely captured by the spherical
harmonics (in this case, p(6, ¢,0) = cosf), one can demonstrate the temporal error

convergence rate, as shown in Figure B.9.

Finally, to show that spherical-harmonic error convergence turns exponential when
a function is fully represented, we take the function f (6, ¢) = cos'?#sin® ¢ and esti-
mate the L, error in computing the latitudinal derivative (—12cos!! #sin #sin® ¢) at

various spherical-harmonic bandwidths (see Figure B.10).
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Temporal error convergence rate
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Figure B.9 Error convergence rate of the temporal scheme. The solid line is the error
of the second-order five-stage scheme of Hu et al. (1996) and the dashed line is the
theoretical second-order accuracy curve.

B.0.5 Measuring reflection phases

A concern with altering the background solar model is the extent of change in reflec-
tion phases and the size of the acoustic cavities. In order to measure the phases from
simulations, we invoke Duvall’s law (Duvall, 1982) which is an observational method
to characterize the dispersion relation of the p modes. Because it is a difficult proce-
dure to directly estimate the resonant frequencies from the simulations (requirements
of temporally lengthy simulations), we use the frequencies produced by ADIPACK
(Christensen-Dalsgaard & Berthomieu, 1991) as a proxy. Because ADIPACK has
only a limited set of boundary condition options, the modes at higher frequencies
which are more sensitive to the type of upper boundary condition are not represented
well. We show in Figure B.11 that the modes with frequencies v < 3.5 mHz lie on the
p-mode ridges while there are systematic errors at higher frequencies. Based on the
results of (Duvall, 1982), we expect resonant modes of different n, , and w to collapse

on to a single curve. A full theoretical treatment of this result may be found in (e.g.,
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Spherical harmonics: error convergence rate
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Figure B.10 Error convergence rate plotted against the spherical-harmonic bandwidth,
lmaz- The solid line displays the spherical-harmonic error in evaluating the latitudinal
derivative and the dashed line shows the exponential convergence behaviour at high
bandwidth. The onset of exponential convergence in the case of (sine/cosine) Fourier
series occurs when the grid resolution reaches approximately 7 points per wavelength.
We expect a similar effect to apply to the spherical harmonic basis. Since the number
of latitudes mn;,; must satisfy n;,; > 42, and because l,,,, = 19 is sufficient to capture
the function —12 cos' #sin @ sin® ¢, we expect the onset of exponential convergence
to occur at Ny = Uz ~ 60. The vertical dot-dash line indicates this location in the
figure.
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Figure B.11 Power spectrum from a simulation. The dots show frequencies as es-
timated by ADIPACK (Christensen-Dalsgaard & Berthomieu, 1991). At lower fre-
quencies, we observe a good match between the predicted and simulated dispersion
relations, while the agreement is not quite so good at higher frequencies.

Christensen-Dalsgaard, 2003). In Figure B.12 b, we see that indeed, the modes do
collapse onto a curve, but with a reflection-phase constant « of 1.05, as compared to
a = 1.13 for the solar frequencies (panel a). The value of « in the solar case was
chosen to minimize the spread between a fifth-order polynomial fit (the dot-dashed
line in Figure B.12 a) to the frequencies; it appears that altering the solar model has
changed the size of the acoustic cavity and shifted reflection phases to the tune of
0.08 radians or about 4.58°, contributing to a 7% error per reflection. These phase
shifts result in systematic changes in the travel times of the p modes, as shown in
Figure B.13 (private communication, Olga Burtseva and Shukur Kholikov). The error
is small enough that conclusions drawn from these differential studies are probably

valid.
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Duvall Law for solar model Duvall Law for altered model
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Figure B.12 Duvall’s Law (Duvall, 1982) for a solar model (panel a) and the altered
model (panel b). Resonant modes (obtained using ADIPACK) of the artificial model
used in the simulations collapse onto a single curve as seen in b. a = 1.05, minimizes
the spread in the altered model, while o = 1.13 is the optimal value for the solar
frequencies (panel a). The spread in panel a is defined relative to a fifth-order poly-
nomial fit (dot-dash line) to the solar frequencies. The error in the reflection phase
is 7%.
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Figure B.13 Envelope (group) travel times for differing numbers of bounces; simulated
or artificial data (ART) and GONG data (GONG). Due to the altered solar model, a
systematic difference between the travel times associated with real and artificial data
is observed. In each of the comparisons, the modes of the simulated data possess
lower travel times (private communication, Olga Burtseva and Shukur Kholikov).



