Appendix C

Kernels and Phase speeds

C.1 Scaling Kernels

Since it is numerically impossible to capture a delta function, we define the anomalies by the following sharply decaying functions,

$$\frac{\delta c^2}{c^2} = 0.1 \left\{ 1 - \frac{1}{1 + \exp[8.2(1-r)]} \right\},\tag{C.1}$$

and

$$\frac{\delta a}{a} = -\left\{1 - \frac{1}{1 + \exp[8.9(1 - \tilde{r})]}\right\},\tag{C.2}$$

where $r = \sqrt{x^2 + y^2 + z^2}$ has units of Mm, and (0,0,0) is the center of the perturbation (it is vertically localized at the level of the photosphere). We use the notation of Gizon & Birch (2002) to describe a source perturbation in equation (C.2), where a is the strength of the unperturbed source and the deactivated source is located around the point (x_0, y_0, z_0) , with $\tilde{r} = \sqrt{(x - x_0)^2 + (y - y_0)^2}$ (units of Mm also) and $z_0 = -200$ km. Since the f mode is the diagnostic agent in this case, we assume that the anomaly is essentially 2D in nature. To transform travel-time shifts to kernel magnitudes for the sound-speed perturbation case, consider the function from equation (C.1) applied to equation (3.7). Assuming the kernel varies much slower than

the perturbation, we can rewrite equation (3.7) as:

$$\delta \tau_{\text{mean/diff}}(\mathbf{r}) = K_{\text{mean/diff}}(\mathbf{r}, 0; \Delta) \int \int \int_{\Omega} \frac{\delta c^2}{c^2} (\mathbf{r}', z) d\mathbf{r}' dz, \tag{C.3}$$

which when integrated merely becomes the finite volume of the perturbation in equation (C.1). A similar 2D area integration (z = -200 km) is carried out for the source perturbation. Calculating these integrals, the kernel for the sound-speed perturbation (in units of s/Mm³) is

$$K_{\text{mean/diff}}(\mathbf{r}, 0; \Delta) = 4.164 \ \delta \tau_{\text{mean/diff}}(\mathbf{r}),$$
 (C.4)

and for the f-mode source kernel (in units of s/Mm²),

$$K_{\text{mean/diff}}(\mathbf{r}, 0; \Delta) = -0.3056 \ \delta \tau_{\text{mean/diff}}(\mathbf{r}).$$
 (C.5)

C.2 Phase Speeds

Eleven filters of mean phase-speed v and width δv are used for different ranges of annulus radii Δ , shown in Table C.1. The first column gives the annulus index, the last column gives the center t_0 of the window function used to measure first-bounce travel times (see text).

Table C.1. Annuli and Phase-Speed Filter Parameters

index	$\begin{array}{c} \text{mean } \Delta \\ \text{(Mm)} \end{array}$	$\Delta (\mathrm{Mm})$	$v \ (\mathrm{km\ s^{-1}})$	$\delta v \ ({ m km \ s^{-1}})$	t_0 (min)
1	6.20	03.7, 04.95, 06.20, 07.45, 08.7	16.40	2.63	19.00
2	8.70	06.2, 07.45, 08.70, 09.95, 11.2	19.28	2.63	19.17
3	11.60	08.7, 10.15, 11.60, 13.05, 14.5	22.26	2.63	20.00
4	16.95	14.5, 15.72, 16.95, 18.17, 19.4	27.24	3.68	25.00
5	24.35	$19.4,\ 21.87,\ 24.35,\ 26.82,\ 29.3$	35.73	3.94	27.50
6	30.55	$26.0,\ 28.27,\ 30.55,\ 32.82,\ 35.1$	40.06	3.94	29.17
7	36.75	$31.8,\ 34.27,\ 36.75,\ 39.22,\ 41.7$	43.25	3.94	30.83
8	42.95	$38.4,\ 40.67,\ 42.95,\ 45.22,\ 47.5$	49.20	3.94	33.33
9	49.15	$44.2,\ 46.67,\ 49.15,\ 51.62,\ 54.1$	55.80	4.46	35.00
10	55.35	50.8, 53.07, 55.35, 57.62, 59.9	59.25	4.46	36.67
11	61.65	56.6, 59.12, 61.65, 64.18, 66.7	64.37	4.46	38.33