
Chapter 2

Time-Distance Measurement and

Inversion Methods

2.1 Time-Distance Measurement Procedure

Time-distance helioseismology was first introduced by Duvall et al. (1993, 1996),

and then greatly improved and widely used in the later studies (see section §1.3.3

for introductions on the major results obtained in the past years. In this chapter,

I present the detailed procedure of doing time-distance measurement and inversion

problems. The following description is more like a technical note, without including

many derivations and theories that can be found in Giles (1999). One should be able

to reproduce time-distance measurement by following the descriptions in this chapter,

together with some parts of codes and parameters presented in Appendix A.

2.1.1 MDI Data

The Michelson Doppler Imager (MDI) is an instrument dedicated to helioseismology

studies aboard the spacecraft Solar and Heliospheric Observatory (SOHO), which

was launched in December, 1995. SOHO was placed in orbit of Lagrange point L1

between the Earth and Sun, thus, MDI provided helioseismologists an unprecedented
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16 CHAPTER 2. TIME-DISTANCE MEASUREMENT AND INVERSION

data quality, free of day and night shifts and free of seeing. Since 1996, MDI has pro-

vided continuous (with occasional interruption) coverage of medium-l Dopplergrams,

full-disk campaign data for a couple of months each year and many high-resolution

Dopplergrams, along with magnetic field observations, which are essentially useful

to monitor solar activity and are broadly used by the solar community around the

world.

The high-resolution MDI Dopplergrams have a spatial resolution of 1.′′25, or 0.′′625

per pixel, which is corresponding to 0.034 heliographic degree per pixel at the center

of the solar disk. High resolution data only cover a fraction of solar disk. The full-

disk Dopplergrams cover the whole solar disk with 1024× 1024 pixels, with a spatial

resolution of 2.′′0/pixel, or 0.12 heliographic degrees per pixel. In every year following

the launch of SOHO, MDI had a campaign period lasting a couple of months or longer,

transmitting down continuous full-disk Dopplergrams that are extremely valuable for

helioseismic studies. But, due to the limitation of telemetry, this cannot be done all

year long. Therefore, MDI has a Structure observation mode, in which the full-disk

data are reduced to 192× 192 pixels by the onboard computer and then transmitted

down every minute. Details on data parameters, data acquisition and transmission

are described by Scherrer et al. (1995).

The observation cadence for all the different observational modes is one minute.

The one minute cadence gives a Nyquist frequency of 8.33 mHz when doing Fourier

transforms, which is fairly good for helioseismology research.

2.1.2 Remapping and Tracking

The Sun is a sphere, and all points on the Sun’s surface can be located by their

spherical coordinates. It is more convenient to transform the solar region of interests

to a Cartesian coordinate system for local helioseismology studies. There are various

remapping algorithms for different purposes, and the one used throughout this disser-

tation is Postel’s projection, which is designed to preserve the great circle distance of

any points inside the region to the center of the remapped region. It has been shown
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that if the remapped region is not very large, Postel’s projection is good at minimiz-

ing the deformation of the power-spectrum and is optimal for local helioseismological

studies (Bogart et al., 1995).

Usually, a few to tens of hours of continuous Dopplergrams with one-minute ca-

dence are used for helioseismic studies. In order to keep tracking oscillations of specific

locations, the differential rotation rate of the Sun should be removed from the ob-

servations. One of the two commonly used tracking rates is the latitude dependent

Snodgrass rate (Snodgrass, 1984):

Ω/2π (nHz) = 451− 55 sin2 λ− 80 sin4 λ (2.1)

where λ is latitude; the other tracking rate is a solid Carrington rotation rate: 456

nHz, which is corresponding to the rotation rate of magnetic features at the latitude

of 17◦. However, if using the tracking command fastrack, it should be noted that

for a specific tracked region, even if one chooses Snodgrass rate to be removed, the

actual rotation rate removed is uniformly the Snodgrass rate at the center of the

tracked region rather than a latitude dependent rate. This factor should be taken

into consideration when tracking before time-distance analysis, and a tracking over

very long time should be avoided to prevent the distortion of high latitude regions

after tracking. A datacube is thus ready for use with the first dimension as longitude,

second dimension as latitude and the third one as time sequence.

The magnitude of Doppler velocities introduced by solar rotation and by super-

granular flows is often much larger than the stochastic oscillations on the solar surface.

So, usually, the background image which is obtained by averaging all images of the

studied time period is subtracted from every Dopplergram.

2.1.3 Filtering

As in all problems of signal processing, filtering is an essential part of the time-distance

measurement.

Surface gravity waves, also known as the fundamental mode (f -mode, the lowest

ridge in the k-ω diagram shown in Figure 2.1a), have different origins and different
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Figure 2.1: (a) The power-spectrum diagram obtained from 512-minute MDI high
resolution Dopplergrams; (b) An example of the power-spectrum diagram after f -
mode and phase-velocity filtering. This example is corresponding to a case of annulus
range: 1.◦190− 1.◦598, with the phase-velocity filter centered at a speed of ∼ 25 km/s.
Both diagrams are displayed after taking a logarithm of the acoustic power.

properties with the pressure modes (p-modes) that are studied throughout this dis-

sertation. Therefore, the f -mode should be filtered out from the k-ω diagram firstly.

The locations of the f -mode and p1 ridges in the k-ω diagram can be approximated

with polynomial forms of (Giles, 1999):

l0 ≈ R�k0 = 100ν2

l1 ≈ R�k1 =
4∑

k=0

ckν
k c = {17.4,−841, 95.6,−0.711,−0.41}

(2.2)

where the cyclic frequency ν ≡ ω/2π is measured in milliHertz. A filter is then
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constructed by use of Gaussian roll-off with full transmission halfway between the f -

and p1- ridges, and no transmission at and below the f -ridge. The f -mode signals

are thus filtered out by applying this filter to the k-ω power spectrum.

The phase-velocity filter has turned out to be a very useful tool to strongly improve

the signal-noise ratio when the annulus radius is rather small, and this makes mapping

the travel times with certain spatial resolution possible. All the waves with the same

ratio of ω/kh travel with the same speed and travel the same distance between bounces

off the solar surface, where kh is the horizontal wavenumber. Therefore, in the Fourier

domain, we can design a phase-velocity filter that has a desired phase speed ω/kh,

which is equal to the travel distance divided by the corresponding travel time that can

be computed from the ray-approximation based on the solar model, and filter out all

other waves which do not have the same phase speed. Such a filter is designed to have

a Gaussian shape, with full pass on the line with desired slope, and the full width

at half maximum chosen like given in Appendix A. An example of a two-dimensional

k-ω diagram obtained from 512-min high resolution MDI data after f -mode filtering

and phase-velocity filtering is shown in Figure 2.1. All the necessary parameters for

phase-velocity filtering for different annulus ranges used in my study are presented in

Appendix A. In practice, the k-ω power spectrum has three dimensions, and one can

easily imagine the shape of the three-dimensional phase-velocity filter.

2.1.4 Computing Acoustic Travel Time

The computation of temporal cross-correlation functions between the signals located

at two different points on the solar surface is the essential part of time-distance

measurement to infer the travel time of acoustic waves from one point to the other

through the curved ray paths beneath the solar surface. After the filtering is carried

out in the Fourier domain, the datasets are transformed back to the space-time domain

by the inverse Fourier transform. Suppose f is a set of time-sequence signals on

the solar surface, T is the observation duration, then the temporal cross-correlation
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Figure 2.2: Cross-correlation functions for the time-distance measurements. In the
upper plot, the gray scale denotes the cross-correlation amplitude as a function of
time lag τ and distance ∆. The lower plot shows one cross-correlation function (solid
line) for ∆ = 24.◦1, and its fitting function (dashed line). This plot is adopted from
Giles (1999).
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function between two different locations r1 and r2

Ψ(r1, r2, τ) =
1

T

∫ T

0
dt f(r1, t) f(r2, t + τ) (2.3)

can be computed. But in practice, the cross-correlation function between two points

is often too noisy to be useful; it is practical to compute the cross-correlation function

between the signals of a central point and the average signals of all points inside an

annulus with a specific distance range to the central point.

Figure 2.2 shows a time-distance diagram and an example of the cross-correlation

function for a specific distance. For the case of center-annulus cross-correlation, the

part with positive time lag τ is interpreted as the travel time of outgoing waves from

the center to its surrounding annulus, and the part with negative lag is interpreted as

the travel time of ingoing waves from the surrounding annulus to the central point.

Kosovichev & Duvall (1996) have shown that the cross-correlation function for

the time-distance measurement is approximately a Gabor function having a form of:

Ψ(∆, τ) = A cos[ω0(τ − τp)] exp
[
− δω2

4
(τ − τg)

2
]

(2.4)

where ∆ is the distance between the two points, i.e., ∆ = |r1 − r2|, A is the cross-

correlation amplitude, ω0 is the central frequency of the wave packet, τp and τg are

the phase and group travel times, and δω is the frequency bandwidth. Among these

parameters, A, ω0, τp, τg and δω are free parameters to be determined by fitting the

cross-correlation function computed from real data by applying a non-linear least

squares fitting method. The subroutine used for the non-linear least squares fitting is

based on the code mrqmin in §15.5 of Numerical Recipes in FORTRAN 77: the Art

of Scientific Computing (Second Edition); or alternatively, the procedure lmfit.pro

provided by IDL can be used directly. An IDL code to perform the fitting by use of

lmfit.pro is given in Appendix A. In practice, it turns out that the phase travel time

τp is often more accurately determined than the group travel time τg in the fitting

procedure, and will be used to represent wave travel time throughout this dissertation

unless specified otherwise.
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2.1.5 Constructing Maps of Travel Times

For one specific location, after outgoing and ingoing travel times are computed, one

can derive the mean travel time variations and travel time differences for this location:

δτ oi
mean(r, ∆) =

τ+ + τ−

2
− 〈τ〉, δτ oi

diff(r, ∆) = τ+ − τ− (2.5)

where τ+ and τ− indicate the outgoing and ingoing travel times, respectively, and

〈τ〉 represents the theoretical travel time for this specific annulus range. δτ oi
mean and

δτ oi
diff are the measurements which are going to be used directly to do inversions to

infer the sound-speed variations and flow fields of the solar interior. If we move the

central point to another location, and repeat the above procedure, the δτ oi
mean and

δτ oi
diff can be measured for this point. Thus, we can select every pixel inside the region

of interest to calculate the corresponding travel times, and obtain a map of the travel

times, as shown in Figure 2.3(a) and (b).

Above, the center-annulus cross-correlation is computed to derive mean travel

times and travel time differences. In order to have more measurements as inputs to

do inversions, we divide the circular annulus into four quadrants, corresponding to

East, West, North and South directions. The cross-correlation functions between av-

erage signals inside these quadrants and the signal of the central point are computed,

respectively, and then the East-center and center-West functions are combined to

derive the West-East travel time differences δτwe
diff . Similarly, the North-South travel

time differences δτns
diff are derived. It is often thought that δτwe

diff is more sensitive to

the West-East velocity and δτns
diff more sensitive to the North-South velocity. The

maps for δτwe
diff and δτns

diff can also be made in the same way as δτ oi
diff , examples are

shown in Figure 2.3(c) and (d). Usually, the maps for mean travel times δτ oi
mean are

used to do inversions for interior sound-speed variation; the maps for δτ oi
diff , δτwe

diff and

δτns
diff are combined as inputs to do inversions for subsurface flow fields.

We then change the annulus radius to repeat all the above procedures to make

another set of measurements. Since the ray path of small annuli reaches shallow solar

interiors and the ray path of long annuli reach the deep interiors, the appropriate
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Figure 2.3: The maps of travel times for a solar region including a sunspot: (a) Mean
travel times δτ oi

mean; (b) Outgoing and ingoing travel time differences δτ oi
diff ; (c) East-

and West-going travel time differences δτwe
diff ; (d) North- and South-going travel time

differences δτns
diff . The annulus ranges used to obtain these maps are 1.◦19− 1.◦598.
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combinations of annulus choices can cover the depths from the solar surface to ap-

proximately 20 – 30 Mm in depth. Inversions are then applied on such measurements

to derive the sound-speed structure and flow fields at different depths.

2.2 Ray-Approximation Inversion Kernels

In order to do time-distance inversions, we need to have inversion kernels that could

be derived from a solar model. In this section, I describe how to derive the inversion

kernels based on the ray-approximation, and the compare ray-approximation kernels

and wave-approximation kernels.

2.2.1 Ray Paths

The acoustic waves traveling downward from the solar surface are continuously re-

fracted due to the increasing acoustic propagation speed with the depth. Eventually,

the waves will turn around and return toward the surface, where they get reflected

back from the layer with acoustic cutoff frequency ωac. The acoustic modes with

wavelengths small compared to the solar radius R� are amenable to ray treatment

(Gough, 1984). Throughout this dissertation, the ray-approximation is employed to

make inversion kernels though the derivation of wave-approximation kernels is cur-

rently under development (Birch et al., 2001; Gizon & Birch, 2002). The following

content and equations on the ray-approximation largely follow the contents in D’Silva

& Duvall (1995).

In polar coordinates, the ray equation for the acoustic mode (ν, l) is

dr

rdθ
=

vgr

vgh

, (2.6)

where vgr and vgh are the radial and horizontal components of the group velocity, and
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they are expressed as

vgr = ∂ω
∂kr

= krω
3c2

ω4 − k2
hc

2ω2
BV

,

vgh = ∂ω
∂kh

= khωc2

(
ω2 − ω2

BV

ω4 − k2
hc

2ω2
BV

)
,

(2.7)

where the radial and horizontal wavenumbers kr and kh are given by the local disper-

sion relations

k2
r = 1

c2 (ω2 − ω2
ac)− k2

h

(
1− ω2

BV

ω2

)
,

k2
h = L2

r2 =
l(l + 1)

r2 .

(2.8)

In the above equations, ωBV is the Brunt-Väisälä frequency, given by

ω2
BV = g

(
1

Γ1

d ln p

dr
− d ln ρ

dr

)
, (2.9)

where Γ1 = (∂ ln p/∂ ln ρ)s is the adiabatic index and g is the gravity at radius r. The

acoustic cutoff frequency ωac is given by

ω2
ac =

c2

4H2
ρ

(
1− 2

dHρ

dr

)
, (2.10)

where Hρ is the density scale height

Hρ = −
(

d ln ρ

dr

)−1

. (2.11)

Once we have all the above equations for the ray approximation, by use of the

solar model S (Christensen-Dalsgaard et al., 1996) in practice, we can compute the

ray paths for certain acoustic waves with certain acoustic frequency ω and spherical

harmonic degree l. The one-skip distance is obtained by integrating the ray equa-

tion (2.6) for an initial position (r1, θ1). The integration is carried on till the mode

turns around at the turning point (r2, θ2), where the Lamb frequency
√

l(l + 1)c/r

approaches ω and kr goes to zero. The one-skip distance, or the travel distance of
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Figure 2.4: A diagram of several ray-paths, showing the different modes of rays reach
different depths of solar interior. This plot is adopted from Christensen-Dalsgaard
(2002).

the ray, is defined as the angular distance between photospheric reflection points:

∆ = 2|(θ2 − θ1)|. (2.12)

After the ray-path is determined, and the phase velocity at specific locations is

known, the corresponding phase travel time can be computed from

τp =
∫
Γ

kds

ω
=

∫
Γ

ds

vp

(2.13)

where Γ is the ray path. Although this is a simple equation, it is the basis for solving

time-distance inversion problems.
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2.2.2 Travel Time Perturbation

The following content largely follows the descriptions in Kosovichev et al. (1997). In

the ray-approximation, the travel times are only sensitive to the perturbations along

the ray paths. The variations of travel times obey Fermat’s Principle (e.g., Gough,

1993)

δτ =
1

ω

∫
Γ
δk ds (2.14)

where δk is the perturbation of the wave vector due to the structural inhomogeneities

and flows along the unperturbed ray path Γ.

In the solar convection zone, the Brunt-Väisälä frequency ωBV is small compared

to the acoustic cutoff frequency and the typical solar oscillation frequencies, and will

be neglected in the following derivations. Thus, after considering the effects caused

by the presence of magnetic field, the dispersion relation can be simplified as

(ω − k · v)2 = ω2
ac + k2c2

f , (2.15)

where v is the three-dimensional velocity and cf is the fast magnetoacoustic speed

c2
f =

1

2

(
c2 + c2

A +
√

(c2 + c2
A)2 − 4c2(k · cA)2/k2

)
(2.16)

where cA = B/
√

4πρ is the Alfvén velocity, B is the magnetic field strength and ρ is

the plasma density. To first-order in v, δc, δωac, and cA, equation (2.14) becomes

δτ± = −
∫
Γ

[±n · v
c2 +

δc

c

k

ω
+

δωac

ωac

ω2
ac

c2ω2

ω

k
+

1

2

(
c2
A

c2 −
(k · cA)2

k2c2

)
+ ε

]
ds (2.17)

where n is a unit vector tangent to the ray, and δτ± denotes the perturbed travel

times along the ray path (+n) and opposite to the ray path (−n). In equation (2.17),

ε represents some other contributions that are difficult to quantify, such as phase

differences caused by wave reflection and observing errors in Dopplergrams. The

effects of flows and structural perturbations can be separated by taking the difference
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Figure 2.5: Vertical cuts of ray-approximation inversion kernels. (a) Sound-speed
kernel for measurement δτ oi

mean; (b) Vertical velocity kernel for measurement δτ oi
diff ; (c)

Horizontal velocity kernel for measurement δτ oi
diff . These kernels are corresponding to

the annulus ranges 1.◦598 to 2.◦414.

and the mean of the reciprocal travel times:

δτdiff = −2
∫
Γ

n · v
c2

ds, (2.18)

δτmean = −
∫
Γ

[
δc

c

k

ω
+

δωac

ωac

ω2
ac

c2ω2

ω

k
+

1

2

(
c2
A

c2 −
(k · cA)2

k2c2

)
+ ε

]
ds. (2.19)

Equation (2.18), though simple, provides the link between the measured travel

time differences and the solar interior velocity, and thus gives us a useful tool to
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determine the solar subsurface flow fields. Ideally, equation (2.19) can be used to de-

rive the sound-speed perturbation structures, and the anisotropy of the term with cA

may be used to derive the Alfvén velocity, hence the magnetic field strength. Despite

the efforts by Ryutova & Scherrer (1998), no significant progress has been made to

disentangle the effects caused by the presence of the magnetic field from the sound-

speed perturbation. One useful idea, which I tried, is to make more measurements of

travel times in different directions, that is, in addition to the measurements of τoi, τwe

and τns, we can make the travel time measurements of quadrants northeast-southwest

and northwest-southeast. Therefore, more information on anisotropy is obtained, and

those measurements help change the inversion problem from being under-determined

to be well determined. However, we now have effects from sound-speed variation, flow

fields and Alfvén speed perturbation, the combination of which makes the inversion

problem very complicated and difficult to solve. Clearly, more efforts could be made

in order to make such an inversion possible, and make the derivation of subsurface

magnetic field strength possible, which should be very interesting.

2.2.3 Ray-Approximation and Wave-Approximation Kernels

Based on the equations presented in the above two sub-sections and by use of the so-

lar model S (Christensen-Dalsgaard et al., 1996), we compute the ray-approximation

inversion kernels for both sound-speed perturbations and three-dimensional flow ve-

locities.

The computation of the ray-approximation kernels closely resemble the procedure

of time-distance measurements. Say, for the case of center-annulus measurement,

we compute the ray paths and phase travel times from the central point to all the

points inside the surrounding annulus, then the paths and travel times are averaged

onto grids with the same spatial resolution as the measurements. Corresponding

to the measurements of δτ oi
diff and δτ oi

mean, the sensitivity kernels for the sound-speed

perturbation, horizontal velocities (vx and vy) and vertical velocity (vz) are computed

respectively, as shown in Figure 2.5. The inversion kernels for the vx, vy and vz are

also obtained in the same way for measurements of δτwe
diff and δτns

diff , the plots of which
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Figure 2.6: An artificial sunspot model and the inversion results. The gray scale rep-
resents the sound-speed variations. Upper: the surface layer (left) and a vertical cut
(right) of an artificial sunspot model that is to mimic the results presented by (Koso-
vichev, Duvall, & Scherrer, 2000). The forward problem is performed based on this
model to derive the mean travel times, which are then used to do inversions. Lower:
the inversion result from Fresnel-zone approximation (left) and ray-approximation
(right) kernels. This plot is adopted from Couvidat et al. (2004).
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are not shown. Therefore, for each measurement of δτ oi
diff , δτwe

diff , and δτns
diff with each

different annulus range, we have a set of inversion kernels corresponding to vx, vy and

vz.

It is natural that the ray-approximation may not be the best approximation of the

acoustic waves inside the Sun, and the Fresnel-zone approximation (Jensen, Jacob-

sen, & Christensen-Dalsgaard, 2000) and Born-approximation (Birch & Kosovichev,

2000) are currently under development. Birch et al. (2001) pointed out that for

perturbations with radii larger than the first Fresnel-zone, the Born and ray approxi-

mations are nearly equivalent; for smaller scale perturbations, the ray approximation

may overestimate the travel times significantly. But considering the fact that large

amounts of data are involved in measurement and inversion, together with the choice

of different regularization types and regularization parameters, it is not immediately

clear how the inversion results differ based on different inversion kernels.

Recently, Couvidat et al. (2004) made some intensive comparisons between inver-

sion results based on sensitivity kernels obtained in the ray-approximation and the

Fresnel-zone approximation. Different kinds of artificial sound-speed variation struc-

tures to simulate sunspot models were made, and the forward problem was performed

to derive mean travel times. Then inversions were carried out by utilizing both ray-

approximation and Fresnel-zone approximation inversion kernels. The comparison of

inversion results shows that, for the sound-speed perturbation, both kernels reveal

similar interior structures with similar accuracy in the solar layers shallower than

a depth of approximately 15 Mm. Below 15 Mm, however, the ray-approximation

can hardly reveal the deeper structures where the Fresnel-zone approximation still

works. Figure 2.6 shows one example. It was concluded that the use of Fresnel-zone

kernels should not invalidate the results obtained from ray-approximation, provided

that the inverted structures lie entirely within the scope of ray-path kernels used.

Although the wave approximation inversion kernels for velocities have not been avail-

able for comparison, it may be true that similar conclusion can be drawn as for the

sound-speed perturbations.
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2.3 Inversion Techniques

2.3.1 LSQR Algorithm

Equations (2.18) and (2.19) have shown us the connection between the measured

travel times and solar interior properties: sound-speed variations and flow fields. We

rewrite these two equations here, dropping the insignificant (presumably) terms in

the mean travel times equation:

δτdiff = −2
∫
Γ

v(r) · n
c2
0(r)

ds (2.20)

δτmean = −
∫
Γ

δc(r)

c2
0(r)

ds (2.21)

We can divide the three-dimensional region into rectangular blocks, and study the

properties inside the blocks as a discrete model. Assume that the sound-speed per-

turbation, δc/c, and the ratio of flow velocity to the sound-speed, v/c, are constant in

each block and remain unchanged during the observation period, then we can linearize

the above equations to obtain:

δτλµν
mean =

∑
ijk

Aλµν
ijk

δcijk

cijk

, (2.22)

δτλµν
diff =

∑
ijk,α

Bλµν
ijk,α

vijk,α

cijk

, (2.23)

where Aλµν
ijk and Bλµν

ijk,α are the inversion kernels obtained by the ray-approximation

based on the descriptions in the last section. Here, λ and µ label the points inside

the observed area, and ν labels different annulus ranges, and in most cases of this

dissertation is 1 ≤ ν ≤ 11; i, j and k are the indices of the blocks in three dimensions;

and α denotes the three components of the flow velocity.

If transforming matrix Bλµν
ijk,α into a square matrix, one side of this matrix is,

typically, as large as 128×128×11×11×3, so equations (2.22) and (2.23) are typical

large sparse linear equations which can be solved in the sense of least squares. LSQR

is an algorithm proposed by Paige & Saunders (1982) to solve the linear problems
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Ax = y or least squares problems min||Ax − y||2. This algorithm was later widely

used in geophysical inverse problems, and helioseismological inverse problems (e.g.,

Kosovichev, 1996).

The LSQR algorithm is based on the bidiagonalization procedure of Golub &

Kahan (1965), and it is analytically equivalent to the standard method of conjugate

gradients. It was demonstrated to be more reliable than other algorithms when

the coefficients matrix A is ill-conditioned, which is actually the case of our inverse

problems. The great advantage of the LSQR algorithm is that it is an iterative

method and avoids the computation of the inverse of a large sparse matrix (which is

often unstable and involves a great amount of computation). In practice, it is only

required for the users to provide the computation of Ax and AT y for each step of the

iteration. This algorithm also has a build-in zero-th order regularization, or damping

coefficient, which is to minimize ||x||2 and ||Ax− y||2 at the same time. We have not

found a way to incorporate the first-order or second-order Tikhonov regularization

into this algorithm easily and efficiently, except to do that externally by providing an

additional dimension of coefficient matrix A.

Because of the extremely large size of the matrices involved, the computation

burden of the inversion is also very heavy. Fortunately, it was found that the direct

matrix multiplications of Ax and AT y, the core part of the computation and where

the most computation time is spent, can be converted into convolution problems,

which expedite the computations by a factor of about 20 times in my computations.

Later, BLAS library and FFTW package for fast Fourier transforms were employed

in the inversion code, which reduced the computation time from the original a couple

of days down to a couple of minutes.

There are a few other issues which should be addressed about LSQR algorithm,

such as the ability to detect deeper structures, vortical flows, cross-talk, and the

spatial resolution. I plan to incorporate such discussions into following chapters when

dealing with the particular inversion problems.
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2.3.2 Multi-Channel Deconvolution (MCD)

As pointed out in last section, the very large matrix multiplication Ax can be trans-

formed into a convolution. Therefore, it it possible to solve the least square problem

in the Fourier domain, which may expedite the computation speed and also provide us

an alternative way to do inversions. A multi-channel deconvolution (MCD) technique

was developed and have been used in solving local helioseismic problems (Jacobsen

et al., 1999; Jensen, Jacobsen, & Christensen-Dalsgaard, 1998).

In the following, I derive the equations for the case of sound-speed perturbations,

the equations for three-dimensional velocities can be derived similarly, but with one

more dimension. As shown in the last section, we have obtained the discrete equation

(2.22) for the sound-speed perturbation:

δτλµν
mean =

∑
ijk

Aλµν
ijk δsijk (2.24)

where I use δsijk to replace δcijk/cijk. By considering the measurement procedure

of time-distance, this equation is actually equivalent to a convolution, which is then

simplified as a direct multiplication in the Fourier domain:

δτ̃ ν(κλ, κµ) =
∑
k

Ãν
k(κλ, κµ)δs̃k(κλ, κµ) (2.25)

where δτ̃ , Ã and δs̃ are the Fourier transforms of δτ, A and δs, respectively; κλ, κµ are

the wavenumbers in the Fourier domain corresponding to λ, µ in the space domain.

For each specific (κλ, κµ), the equation in the Fourier domain is a direct matrix

multiplication:

d = Gm (2.26)

where

G =
{
Ãν

k(κλ, κµ)
}
, d =

{
δτ̃ ν(κλ, κµ)

}
, m =

{
δs̃k(κλ, κµ)

}
Thus, we have a large number of small linear equations in the Fourier domain. If

all these small linear equations can be solved to obtain m for all (κλ, κµ), then the

two-dimensional m can be inverse Fourier transformed back to the space domain to
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obtain all the values of δsijk that we are seeking.

Equation (2.26) is a small linear complex equation that can be solved in numerous

ways. Here, we adopt the method given by Menke (1984), and solve the equations

by:

m =
(
GHG + ε2V

)−1
GHd (2.27)

where GH is the conjugate transpose of G, ε can be viewed as a damping parameter,

and V is a diagonal matrix chosen as

V =



1 0 0 . . . 0

0 c2
c1

0 . . . 0

0 0 c3
c1

. . . 0
...

...
...

. . .
...

0 0 0 . . . cN

c1


where cN is the sound-speed at the N -th layer from the solar model used.

Just like the damping coefficient λ used in the LSQR algorithm, the choice of ε

in MCD is somewhat arbitrary. Often, many artificial tests are performed to choose

a reasonable value of ε in practice. Since each small linear equation is solved in the

Fourier domain, the first-order or second-order regularization can only be applied in

the vertical direction. But on the other hand, because it is in the Fourier domain,

the reasoning and effects of applying first- or second-order regularization is vague.

2.3.3 Comparison of LSQR and MCD

Previously, it was argued that MCD had great advantage in computing time over

iterative solvers such as LSQR (Jensen, Jacobsen, & Christensen-Dalsgaard, 1998).

However, after I utilized the convolution to compute the matrix multiplication, and

incorporated the BLAS library and FFTW package into the LSQR technique, the

computing time advantage of MCD was gone. Currently, both codes can finish the

computation of a typical inverse problem (say, 128 × 128 in horizontal and 11 in

vertical direction) within a couple of minutes on a Pentium IV machine with a speed

of 2.0 GHz and a memory of 1.0 GB. The computation time increases with the same
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Figure 2.7: Comparison of LSQR algorithm and MCD inversions on the subsurface
flow fields of a sunspot. The maps are obtained at the depth of 0 – 3 Mm. In each
image, lighter represent downward flows and darker represent upward flows. Arrows
in the graph represent horizontal flows, with longest arrow as 1 km/s approximately.
Horizontal scales are in units of Mm.

ratio as the increase of the size of the three-dimensions of the inverted region, provided

that the memory requirement does not exceed the computer’s memory limit.

Then, the next issue is to compare the accuracy of results obtained by these two

different inversion techniques. We applied both LSQR and MCD techniques on the

same time-distance measurements of a sunspot to derive the subsurface flow fields that

will be shown in Chapter 3. Figure 2.7 shows a comparison of the three-dimensional

flow fields obtained at the depth of 0 – 3 Mm. Clearly, both horizontal velocities and

the vertical velocities agree very well with each other. The correlation coefficients

between the three dimensional velocities obtained by these two different techniques

are all above 95% at different depths shallower than 12 Mm.

The differences between these two inversion techniques may come from the choice

of damping coefficients: λ for LSQR and ε for MCD. LSQR solves the equation itera-

tively in the space domain, and MCD solves the problem in Fourier domain, whereas
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the choice of damping coefficient can hardly agree with each other. Our comparison

shown above may and may not reflect the best match of these two regularization

parameters.
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