INFERENCE OF SOLAR SUBSURFACE FLOWS BY TIME-DISTANCE HELIOSEISMOLOGY

A DISSERTATION SUBMITTED TO THE DEPARTMENT OF PHYSICS AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

> Junwei Zhao March 2004

© Copyright by Junwei Zhao 2004 All Rights Reserved I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy.

> Philip H. Scherrer (Principal Advisor)

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Vahé Petrosian

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Alexander G. Kosovichev

Approved for the University Committee on Graduate Studies.

iv

Abstract

The inference of plasma flow fields inside the convection zone of the Sun is of great importance. On the small scales, this helps us to understand the structure and dynamics of sunspots and supergranulation, and the connections between subsurface flows of active regions and coronal activity. On the large scales, it helps us to understand solar magnetic cycles and the generation and decay of solar magnetic fields. In this thesis, the flow fields in the upper convection zone are inferred on both large and small scales by employing time-distance helioseismology.

A detailed description of time-distance measurements is presented, together with the derivation of the ray-approximation kernels that are used in data inversion. Two different inversion techniques, the LSQR algorithm and Multi-Channel Deconvolution, are developed and tested to infer the subsurface sound-speed variations and threedimensional flow fields. The subsurface flow field of a sunspot is investigated in detail, converging flows and downdrafts are found below the sunspot's surface. These flows are believed to play an important role in keeping the sunspot stable. Subsurface vortical flows found under a fast-rotating sunspot may imply that part of the magnetic helicity and energy to power solar flares and CMEs is built up under the solar surface. A statistical study of numerous solar active regions reveals that the sign of subsurface kinetic helicity of active regions has a slight hemispheric preference.

On the large scales, latitudinal zonal flows, meridional flows and vorticity distribution are derived for seven solar rotations selected from years 1996 to 2002 from SOHO/MDI Dynamics data, covering the period from solar minimum to maximum. The zonal flows display mixed faster and slower rotational bands, known as torsional oscillation. The residual meridional flows, after the meridional flow of the minimum year is subtracted from the flows of each following year, display a converging flow pattern toward the active zones in both hemispheres. The global vorticity distribution is largely linear with latitude, mainly resulting from the solar differential rotation. In addition, a linear relation between the rotation rate of the magnetized plasma and its magnetic field strength is found: the stronger the magnetic field, the faster the plasma rotates.

Acknowledgment

I feel grateful for the generosity, kindness and patience of many people towards me during these years of my study at Stanford University. First of all, I thank my adviser Phil Scherrer, who continues to offer me various advice, understanding and support. I thank Sasha Kosovichev and Tom Duvall, whose help made the studies inside this dissertation possible, whose knowledge, suggestions and insights were incorporated into this dissertation. I also thank Aaron Birch, Rick Bogart, Doug Braun, Sebastien Couvidat, Laurent Gizon, Rasmus Larsen, Charlie Lindsey, Yang Liu, Jesper Schou and those I may forget to mention, whose frequent or occasional discussions with me helped me progress in my study, more or less. I thank Keh-Cheng Chu and Brian Roberts, who are always ready and skillful to help me solve all kinds of computer problems. Additionally, I thank Jeneen Sommers, whose kind help facilitated my life at Wilcox Solar Observatory.

On the other hand, I thank my family, without whose support I could hardly have made through my study. I thank my parents, who always support and understand me, and forgive me being so far away from their sides for so many years. At last but not least, I thank my wife Ting, whose love and patience that I can never ask for more, for supporting me through all these years. The life at Stanford, including both happiness and sadness, both comfort and hardship, both laughter and depression, will be cherished as beautiful lifelong memories for both of us.

viii

Contents

Abstract			\mathbf{v}			
Acknowledgment			vii			
1	Intr	oducti	ion			
	1.1	Motiva	ation	1		
	1.2	Globa	l Helioseismology	5		
	1.3	Local	Helioseismology	7		
		1.3.1	Ring-Diagram Helioseismology	8		
		1.3.2	Acoustic Holography	9		
		1.3.3	Time-Distance Helioseismology	11		
	1.4	Result	s Contained in this Dissertation	12		
2	Tim	ne-Dist	ance Measurement and Inversion	15		
2	Tim 2.1	n e-Dist Time-I	ance Measurement and Inversion Distance Measurement Procedure	15 15		
2	Tin 2.1	n e-Dist Time-1 2.1.1	ance Measurement and InversionDistance Measurement ProcedureMDI Data	15 15 15		
2	Tim 2.1	ne-Dist Time-1 2.1.1 2.1.2	ance Measurement and InversionDistance Measurement ProcedureMDI DataRemapping and Tracking	15 15 15 16		
2	Tin 2.1	ne-Dist Time- 2.1.1 2.1.2 2.1.3	ance Measurement and InversionDistance Measurement ProcedureMDI DataRemapping and TrackingFiltering	 15 15 16 17 		
2	Tim 2.1	ne-Dist Time-1 2.1.1 2.1.2 2.1.3 2.1.4	ance Measurement and Inversion Distance Measurement Procedure MDI Data Remapping and Tracking Filtering Computing Acoustic Travel Time	 15 15 16 17 19 		
2	Tim 2.1	ne-Dist Time-1 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5	ance Measurement and Inversion Distance Measurement Procedure MDI Data MDI Data Remapping and Tracking Filtering Computing Acoustic Travel Time Constructing Maps of Travel Times	 15 15 16 17 19 22 		
2	Tim 2.1 2.2	ne-Dist Time-1 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 Ray-A	ance Measurement and Inversion Distance Measurement Procedure MDI Data MDI Data Remapping and Tracking Filtering Computing Acoustic Travel Time Constructing Maps of Travel Times pproximation Inversion Kernels	 15 15 16 17 19 22 24 		
2	Tim 2.1 2.2	ne-Dist Time-1 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 Ray-A 2.2.1	ance Measurement and InversionDistance Measurement ProcedureMDI DataMDI DataRemapping and TrackingFilteringComputing Acoustic Travel TimeConstructing Maps of Travel TimesProximation Inversion KernelsRay Paths	 15 15 16 17 19 22 24 24 		
2	Tim 2.1 2.2	ne-Dist Time-1 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 Ray-A 2.2.1 2.2.2	ance Measurement and Inversion Distance Measurement Procedure MDI Data MDI Data Remapping and Tracking Filtering Computing Acoustic Travel Time Constructing Maps of Travel Times Inproximation Inversion Kernels Ray Paths Travel Time Perturbation	 15 15 16 17 19 22 24 24 27 		

••••••	32
	32
(MCD)	34
Э	35
:	39
	39
	40
	41
	43
ure	43
	44
	48
:	53
	53
	54
	54
Mees Observatory	56
nd Inversion	58
	58
on	58
ce	61
	63
	64
	64
	66
	67
ty ,	71
	71
	72
ci [.]	city

	5.3	Statistical Results	76			
		5.3.1 Mean Kinetic Helicity vs Latitude	76			
		5.3.2 Kinetic Helicity vs Magnetic Strength	77			
	5.4	Discussion	79			
6	Dee	ep Structure of Supergranular Flows 8	33			
	6.1	Previous Observations	33			
	6.2	"Cross-talk" Effects in Inversion	34			
	6.3	Inversion for Supergranules	35			
		6.3.1 Supergranular Flows	35			
		6.3.2 Depth of Supergranules	37			
	6.4	Discussion and Summary	39			
7	Glo	Global Dynamics Derived from Synoptic Maps 91				
	7.1	Introduction	91			
	7.2	Data Reduction	93			
	7.3	Variations with Solar Cycle	96			
		7.3.1 Torsional Oscillation) 6			
		7.3.2 Meridional Flow	 7			
		7.3.3 Vorticity Distribution $\ldots \ldots \ldots$)1			
	7.4	Residual Flow Maps)3			
	7.5	Discussion and Conclusion)5			
8	Rot	tational Speed and Magnetic Fields 11	1			
	8.1	Introduction	11			
	8.2	Data Reduction	12			
	8.3	Results	14			
	8.4	Discussion	18			
9	Sun	nmary and Perspective 12	21			
	9.1	Summary	21			
	9.2	Perspective	23			

		9.2.1	Artificial Data from Numerical Simulation	123
		9.2.2	Wave Approximation $\ldots \ldots \ldots$	124
		9.2.3	Deep-focus Time-distance Helioseismology	125
		9.2.4	Connections between Subsurface Flows and Coronal Activity .	125
\mathbf{A}	Pro	cedure	s of Doing Time-Distance	127
	A.1	Data I	$Preparation \dots \dots$	127
	A.2	Filteri	ng	128
	A.3	Cross-	Correlation and Fitting	129
в	Dee	p-Focu	is Time-Distance	133
	B.1	Deep-f	Cocus Time-Distance Measurement	133
	B.2	Inversi	on Combining Surface- and Deep-Focus	135
Bi	Bibliography 138			

List of Tables

5.1	Summary of data for the analyzed active regions in the northern hemi-	
	sphere	74
5.2	Summary of data for the analyzed active regions in the southern hemi-	
	sphere	75
A.1	Parameters used to perform the phase-velocity filtering	129
B.1	Parameters to perform the deep-focus time-distance measurement	134

xiv

List of Figures

1.1	Migration of the faster zonal bands	7
1.2	Cross sectional cuts of a ring-diagram power spectrum $\ldots \ldots \ldots$	9
1.3	Far side acoustic images of an active region	10
2.1	Power spectrum diagram after phase-speed fitting	18
2.2	Cross-correlation functions for the time-distance measurements	20
2.3	Maps of travel times for a solar region including a sunspot $\ . \ . \ . \ .$	23
2.4	A diagram of several ray-paths	26
2.5	Vertical cuts of ray-approximation inversion kernels	28
2.6	An artificial sunspot model and the inversion results. \ldots \ldots \ldots	30
2.7	Comparison of LSQR algorithm and MCD inversions $\ . \ . \ . \ .$	36
3.1	A magnetogram, Dopplergram and continuum graph of the studied	
	sunspot	41
3.2	An experiment on our inversion code	42
3.3	Sound-speed variations below the sunspot	44
3.4	Flow fields at three different depths	45
3.5	Vertical cut of the flow fields through sunspot center $\ \ . \ . \ . \ .$	47
3.6	Cartoon showing both subsurface sound-speed structures and flow pat-	
	terns of the sunspot	48
3.7		
0.1	The cluster sunspot model	49
3.8	The cluster sunspot model	49

4.1	MDI magnetogram showing the path of the small sunspot	55
4.2	$TRACE 171 \text{\AA}$ observation of this active region	56
4.3	Transverse photospheric magnetic field	57
4.4	Test results from noise-free artificial data	59
4.5	Sound-speed variation maps and the photospheric magnetogram $\ . \ .$	60
4.6	Flow fields obtained at two different depths for two days $\ldots \ldots \ldots$	62
4.7	Tangential components of velocity relative to the center of sunspot	63
4.8	Inversion errors estimated from Monte Carlo simulation	65
4.9	Flow fields derived after masking the sunspot center	67
5.1	Latitudinal distribution of average kinetic helicity	76
5.2	Scatter plot of the mean magnetic strength as a function of mean mag-	
	nitude of kinetic helicity	78
6.1	An example of inversion tests to show cross-talk effects	86
6.2	Horizontal flows of a supergranule from inversion results $\ \ . \ . \ . \ .$	87
6.3	Correlation coefficients between the divergence of each depth and the	
	divergence of the top layer	88
7.1	Rotation, zonal flows, meridional flows and vorticity distribution de-	
	rived from CR1923	95
7.2	Zonal flows at two depths for different Carrington rotations	98
7.3	Meridional flows and residual meridional flows for different Carrington	
	rotations	99
7.4	Vorticity and residual vorticity distributions for different Carrington	
	rotations	102
7.5	Synoptic maps of residual flows for CR1923 and CR1975	103
7.6	Large scale flow maps for a large active region AR9433	105
8.1	An example of the horizontal flow maps overlapping the corresponding	
	magnetograms	113
8.2	Scatter plot of residual East-West velocity versus magnetic field	115

8.3	Residual rotational velocity versus magnetic field strength for all stud-	
	ied Carrington rotations	116
8.4	Residual rotational velocity versus magnetic field for leading and fol-	
	lowing polarities	117
B.1	Schematic plot of surface- and deep-focus time-distance	134
B.2	Inversion results from combination at the depth of $0-3~\mathrm{Mm}$	135
B.3	Inversion results from combination at the depth of $6-9~\mathrm{Mm}$	136

xviii