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Abstract

The Sun is permeated by acoustic oscillations. The findings in this dissertation ad-

dress the characteristics of the source exciting these waves and is consistent with the

following proposed excitation mechanism: blobs of hot gas continually rise in the outer

layer of the convection zone where they are cooled and collapse. This volume change

results in monopolar emission of sound. Cool, dense parcels of gas then accelerate

downward into the intergranular lanes and lead to dipolar acoustic emission due to the

monopole source. Finally, the void left behind by the downflow is filled by horizontal

flow resulting in Reynolds stresses which produce quadrupolar emission. During this

process of acoustic excitation by turbulent convection there is photospheric darkening

seen in the intensity observations.

Power spectra of these oscillations obtained with the Michelson Doppler Imager

instrument on-board the Solar and Heliospheric Observatory are asymmetric about

their central peaks. At frequencies above the acoustic cutoff frequency, the asym-

metry is reduced. Surprisingly, a reversal in asymmetry is seen, along with a high

frequency shift between velocity and intensity; where the velocity power drops off

rapidly compared to the intensity power. The observed phase difference between ve-

locity and intensity jumps in the vicinity of an eigenfrequency and is not 90 degrees

as predicted by adiabatic theory of oscillations below the acoustic cutoff frequency.

The granulation signal is partially correlated with the oscillations, observed as

photospheric darkening, and is related to the strength of the acoustic source. A

model to explain the observed power spectra and the phase difference shows that the

correlated signal is higher in intensity than in velocity. A novel asymmetric formula

is derived and used to fit the power spectra, thus allowing accurate determination
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of the eigenfrequencies, resulting in more precise information about the solar interior

and rotation. Finally, different types of excitation sources at various depths are

studied, and a best match with observations occur when monopole and quadrupole

acoustic sources are placed in the superadiabatic layer at a depth of 75 km below the

photosphere where the turbulence is most intense and consistent with the proposed

excitation mechanism.
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Chapter 1

Introduction

Solar oscillations have been used to study the structure and rotation of the Sun.

They were first observed by Leighton (1960) to have a period of about five minutes.

A theoretical explanation of their existence was given ten years later by Ulrich (1970)

and, Leibacher and Stein (1971). They described them as standing waves trapped

inside the Sun. About five years later Deubner (1975) observed that the power in

these oscillations as a function of frequency and horizontal wavenumber lies along

ridges. With the discovery of these oscillations the field of helioseismology was born

and since then has blossomed into an exciting new field of astrophysics.

The 1995 launch of the Solar and Heliospheric Observatory (SOHO space mission)

provided near continuous observations free from atmospheric turbulence that made

possible the results in this thesis. With the advent of better data that was not

available in the past, several exciting techniques emerged and the Sun is beginning

to share its secrets.

Oscillations are trapped in the Sun. Studying them enables us to infer the struc-

ture and properties of the Sun. Broadly speaking, solar oscillations consist of two

kinds of waves. The acoustic or p modes are waves in which pressure is the restoring

force. The other kind are internal gravity waves, the g modes, in which gravity is the

restoring force. The g modes have not been unambiguously detected so far. A special

case that deserves mention is the fundamental mode, the f mode, which is a surface

gravity wave having no radial nodes.

1



CHAPTER 1. INTRODUCTION 2

In this thesis, we study the observed properties of the oscillation spectra of p

modes. These oscillations are observed as fluctuations in intensity and line-of-sight

velocity. They produce motion of gas particles and cause Doppler shifts of absorption

lines. The pressure fluctuations of these modes are related to the intensity fluctu-

ations. Various parts of the absorption line are formed in different layers of the

atmosphere. Hence, the height of the observations depends on the position in the

absorption line at which measurements are made. In the Michelson Doppler Imager

(MDI) instrument on board the Solar and Heliospheric Observatory (SOHO) the ob-

servations are made 300 km above the photosphere, in the Nickel I 6768 Å absorption

line (Scherrer et al., 1995).

In the next chapter an explanation of the line asymmetry puzzle which was first

observed by Duvall et al. (1993) is given. The power spectra of the oscillations

is not symmetrical, but exhibits varying degrees of asymmetry. Numerous people

have studied this phenomenon (Gabriel, 1992, 1993, 1995), (Abrams and Kumar,

1996), (Roxburgh and Vorontsov, 1995), (Rast and Bogdan, 1998), without finding a

solution to the puzzle. Recently Roxburgh and Vorontsov (1997) proposed a solution.

They suggested that there is velocity overshoot of the granulation which reverses the

asymmetry in the velocity power spectrum. However, observations tend to support

the fact that the reversal of asymmetry occurs in intensity rather than the velocity

power spectrum. This work proposes that the reversal is explained by the presence

of correlated noise due to the granulation which happens to be large in the intensity

fluctuations (Nigam et al., 1998). This conclusion is explained in chapter 2 of the

thesis. At frequencies above the acoustic cutoff frequency, waves propagate and are no

longer trapped in the cavity. Due to the presence of correlated noise, a high frequency

shift between the velocity and intensity power spectrum is predicted by the model.

This is supported by MDI observations.

In chapter 3 the phase difference between velocity and intensity helioseismic spec-

tra is discussed. This was first observed by Deubner and Fleck (1989) from ground

based measurements and later by Straus et al. (1998) from the SOHO instrument.

No satisfactory explanation has been provided for the phase jumps in the vicinity of

an eigenfrequency. According to theory the phase is constant and should not jump.



CHAPTER 1. INTRODUCTION 3

This unusual behavior of the phase is explained by the same model that explains the

reversal of asymmetry. It is the interaction of the oscillations with the background

that results in this peculiar phase difference (Nigam and Kosovichev, 1999a).

Chapter 4 deals with the derivation of an asymmetrical fitting formula using a

simple potential well model (Nigam and Kosovichev, 1998). It takes into account the

correlated noise that is responsible for the reversal in asymmetry. This formula is used

to determine the eigenfrequencies of the p modes, which can then be used to study the

solar structure and rotation. In the past, eigenfrequencies were generally determined

by fitting a symmetrical Lorentzian profile to the asymmetric power spectra. Clearly,

this resulted in errors, as is demonstrated in the chapter. The formula is tested on

low degree p modes and is found to perform quite well (Toutain et al., 1998).

All this leads to the natural question as to how p modes are excited. This is dealt

with in chapter 5. The results in chapters 2 and 3 combine in a self consistent manner

to answer this question. We apply Lighthill’s formulation (Lighthill, 1952), (Stein,

1967), (Goldreich and Kumar, 1988), (Kumar, 1994) and decompose the source into

monopole, dipole and quadrupole types. A very simple model of turbulence is assumed

with regards to the mathematical framework. We find that a model based on a simple

representation of turbulent convection is consistent with the observations suggesting

that the source of oscillations may be turbulent convection. The oscillations appear to

be excited in the superadiabatic layer 75 km below the photosphere by a combination

of monopole and quadrupole sources (Nigam and Kosovichev, 1999b). The monopole

source results from the mass or entropy fluctuations while the quadrupole results from

the Reynolds stresses. The monopole source is the dominant one. The dipole source

as a result of the Reynolds stress forces is ruled out by the observations.

Finally, chapter 6 concludes the thesis pointing to future directions of research,

which follow as extensions of the work presented here.

The thesis uses numerical models to represent the Sun. Studies are made by

comparing the computations from these models with the observed quantities. By

doing this a better insight into the physical processes that work in the Sun can be

gained. I briefly explain below the main observational and theoretical techniques used

in this thesis.
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1.1 Observations

The observables derived by the MDI instrument that are used here are the Doppler

velocity, line depth and the continuum intensity. It will be worth describing briefly

how this is accomplished. MDI records filtergrams which are images of the solar

photosphere in selectable, well-defined narrow wavelength bands. The observables

are computed by the instrument since there is insufficient telemetry to transmit the

number of filtergrams required to compute these observables at a given cadence and

resolution. Due to this fact, the actual observables are derived quantities based on

multiple sets of filtergrams at five fixed wavelengths separated by 75 mÅ, denoted by

F0 through F4. F0 being nearly continuum, F1 and F4 centered on the wings and F2

and F3 centered about the core of the center-of-disk Ni I 6768 Å line (Scherrer et al.,

1995). The filtergrams are combined onboard by an image processor to produce the

velocity, intensity and line depth measurements which are shown in Figure 1.1, and

are discussed below.

A flexible observing parameter is the resolution. Some studies have been done

with integrated light spectrum over the entire disk (low resolution), and some other

cases have been more successfully done with an imaged (high resolution) map of the

Sun. The issue of resolution depends on the practical objective for a given set of

observations.

1.1.1 Doppler velocity

Velocity measurements usually consist of sampling the intensity of the desired spectral

absorption line at a slightly redshifted and an equally blueshifted wavelength. These

values may then be converted to Doppler wavelength shift using some measure of the

difference between intensities. In other words, the Doppler measurement relates to

a differential measurement in a Fraunhofer line. Since the solar spectrum lines are

rather narrow, typically even a small redshift will give a large intensity difference. This

causes the Doppler measurements to be extremely sensitive. Doppler measurements

are fairly stable, but the effects of solar rotation are significant and care must be

taken to extract them. The velocity imposed by solar rotation is on the order of 2
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Figure 1.1: Typical power spectra for solar oscillations of angular degree l = 200 in
Doppler velocity, in (cm/sec)2 (top), continuum intensity, in (CCD counts per sec)2

(middle) for the same 3-day period of 21-23 July 1996 and line depth (bottom) for a
3-day duration of 17-19 July 1996 from the MDI full disk data. The leftmost peak
of the velocity spectrum corresponds to the f mode. The other peaks in the spectra
correspond to acoustic (p) modes.
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km/sec, while the p mode oscillations have a typical velocity of about 50 cm/sec per

mode.

MDI derives an estimate of the Doppler velocity from a ratio of differences of

filtergrams F1 through F4:

α> = [(F1 + F2)− (F3 + F4)]/(F1 − F3) (1.1)

α< = [(F1 + F2)− (F3 + F4)]/(F4 − F2) (1.2)

where the first ratio, equation (1.1), is used with a positive numerator while the latter

equation (1.2) is used to calculate the Doppler velocity when the numerator is less

than or equal to zero. The Doppler shift is calculated from a tabulated nearly linear

function of the filtergram difference ratios. This measurement has several noteworthy

properties:

1) It is essentially blue wing minus red wing intensity divided by continuum minus

line center intensity so it is quite insensitive to variations in the slopes of the wing

intensities. The purpose of this measurement is to get a proxy measure that is nearly

linear over a large dynamic range. The line core actually crosses F2/F3 near the limbs

(Scherrer et al., 1995).

2) It is independent of linear gain and offset variations in the intensity measurements.

1.1.2 Line depth

The line depth proxy is the continuum minus line center intensity. It is estimated

from the four filtergrams by:

Idepth =
[
2[(F1 − F3)

2 + (F2 − F4)
2]

]1/2
(1.3)

The formula has similarities to the Doppler calculation since it involves subtracting

filtergrams. Any brightness offsets in the filtergrams due to granulation tend to cancel

in the line depth and Doppler measurements. Therefore there are similarities between

velocity and line depth power spectra (see Figure 1.1).
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1.1.3 Continuum intensity

Intensity measurements have the advantage of being perhaps one of the easiest mea-

surements to take. No fancy calibrations are required. Intensity measurements are

also less likely to need correction for rotation of the Earth/Sun. However, the fluc-

tuation in intensity due to small oscillations is only on the order of 1 ppm (part-

per-million), so the measurement is very sensitive to any kind of signal degradation.

That is why these measurements are so sensitive to granulation, atmospheric turbu-

lence and cloud interference from the Earth’s surface. Many of these problems are

alleviated with spaceborne observations.

The MDI proxy for the continuum intensity near the Ni-I absorption line of the

measurements is computed with all five filtergrams according to the equation:

Icont = 2F0 + Iave + Idepth/2 (1.4)

where Iave is the average of the four filtergrams, F1 through F4. This formula is

different from the previous two measurements in that there is the (2F0 + Iave) term

which contains the sum of the filtergrams. Any brightness offset due to granulation

in the filtergrams doesn’t cancel in the intensity measurement.

1.1.4 Integrated light techniques

Integrated light techniques used by MDI, which sums CCD pixels have been deployed

previously by the IRIS (International Research on the Interior of the Sun, adminis-

tered by the Université de Nice, France) instrument (Fossat, 1991). Instruments in

this category use integrated sunlight and so they measure the average surface velocity

over the solar disk. They view the Sun as a star and study p modes of very low degree

(l = 0,1,2). These techniques are unable to study higher degree modes because higher

l modes have nearly equal areas of the disk which are receding and approaching ef-

fectively canceling out any velocity signal when averaged over the entire disk. Since

there is no spatial resolution with this technique, there is no way of isolating out

which mode is being measured.
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1.1.5 Imaging techniques

The imaging techniques take advantage of modern CCD detectors to record velocity

(or intensity) measurements on a discrete grid over the visible disk. These techniques

have been used by the MDI instrument (Scherrer et al., 1995), where the CCD is a

10242 grid. This method returns a slew more data and allows resolution of individual

modes and analysis of their surface patterns. Usually for imaged methods, a Doppler

measurement is used for its superior signal/noise ratio.

1.2 Data processing

The various steps involved are recording the oscillation (using either intensity or

Doppler velocity measurements), calibrating and correcting the data, splitting the

recorded oscillations into their component spherical harmonics and then analyzing

the resonant frequencies of each individual harmonic.

Step 1: Record the data using either velocity or intensity, which are computed

from the filtergrams.

Step 2: Calibrate all the data. Correct the data for known effects like instrument

drifting, solar rotation, etc. Remove from the velocity a model of the spacecraft mo-

tion and solar rotation.

Step 3: Isolate the contribution from each spherical harmonic. This involves mul-

tiplying the data set at a particular time by one of the spherical harmonics functions

(Y m
l , where l is the angular degree and m is the azimuthal order) and integrating over

the disk (Christensen-Dalsgaard, 1994). The resultant is the contribution from that

spherical harmonic degree to the velocity/intensity distribution over the disk. Since

one observes less than half of the Sun, the spherical harmonic functions are no longer

orthogonal, and the modes we isolate are not exactly what we intend to, but a slight

mixture of neighboring modes as well. As a result of this, leakage has to be taken
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into account. The result from this step is a series of coefficients: one for each har-

monic considered at each time step. The time series are then detrended and gap filled.

Step 4: Convert the time series to frequency (power) spectrum. This is a Fourier

transform (Bracewell, 1986) of each mode in time. The result is a spectrum showing

the frequency content of each mode.

In general, a power spectrum is plotted only for each degree, l. This is because the

modes with different m but same l are almost identical. The m modes cause small

peak splittings, which is used in the analysis of internal rotation rates. There is also

a radial order, n, which we have not taken into account yet, since it is not visible

from the surface. Each peak in the power spectrum corresponds to a different radial

order n for the same degree, l.

The best possible frequency resolution is inversely proportional to observing time

and lifetime, therefore observations should be made for as long as time permits.

This is important for two reasons: firstly, since g modes have long periods and low

amplitudes, and in order to get a strong spectrum, long observation times are required.

A second reason is that Fourier analysis assumes an infinite time series, and discrete

ends to that produce undesirable effects. Data must be recorded often in order to get

a good sampling of the oscillations. This reduces aliasing problems. From the above

discussion it is clear that observations must be recorded for as long and continuous

a period as is possible. Several strategies have been used to achieve the above task.

Observations from the South pole have been carried out in the past, where the Sun

is visible for longer periods of time. Another solution is a network of observing sites

around the globe spaced so that their observing times overlap each other to produce

one continuous data set. A third method that is being tried is to observe from space,

unobstructed by atmospheric effects.
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1.3 Mode physics

The Sun’s surface is found to be in a state of continuous motion when measured by

the different instruments. There are flares and other bizarre phenomena happening

on the surface. However, measurements of either the velocity or intensity across the

solar disk shows that it is oscillating in a periodic way.

These oscillations, although very complex, are actually combinations of millions

of resonant modes of vibration. Each mode is vibrating at a specific frequency caused

by waves of that frequency resonating in different cavities in the Sun. These cavities

are not gaps and walls in the Sun, like those found in buildings. But rather they are

defined by a combination of both the solar interior properties and the wave frequency.

Only inside a particular cavity are the conditions right for a certain wave to propagate

stably; outside the boundaries, it either is reflected back or decays exponentially.

Solar p modes are sound waves trapped in the cavity. As sound waves propa-

gate into the Sun their sound speed increases due to an increase of temperature.

This causes them to refract continually until they are reflected back to the surface

of the Sun (Christensen-Dalsgaard, 1994). At the surface the solar properties change

abruptly, and waves whose wavelength is smaller than the density scale height prop-

agate, while others get reflected and are trapped in the cavity.

Because the amplitude of the oscillations observed are small compared to their

wavelength, their properties can be studied by means of a linear theory. Therefore,

the oscillations can be decomposed into a linear combination of many resonant modes.

The frequencies of these modes are in turn related to the structure of the interior of the

Sun, and may be calculated using physics of stellar interiors (Christensen-Dalsgaard,

1994).

The mathematical framework used to study these oscillations are the usual equa-

tions of hydrodynamics. Even though we know that this is not true, to simplify

matters we assume a non-rotating, non-magnetic and spherically symmetric Sun.

The equation of continuity which expresses the conservation of mass becomes

∂ρ

∂t
+∇ · (ρv) = 0 (1.5)
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where ρ is the density, t the time and v the velocity.

The equation of motion (Newton’s second law) is

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p + ρfb (1.6)

where p is the pressure, fb the body forces. Among the possible body forces we

consider only gravity g.

If the motion occurs adiabatically then p and ρ are related by

Dp

Dt
= c2

(
Dρ

Dt

)
(1.7)

where c2 = γ1p/ρ is the sound speed, γ1 is the adiabatic exponent and D/Dt is the

material derivative, following the motion of the fluid element; given by

D

Dt
=

∂

∂t
+ v · ∇ (1.8)

This is contrasted with the local derivative ∂/∂t at a fixed point. The first three

equations (1.5)-(1.7) form the complete set of equations for adiabatic motion.

The observed solar oscillations have very small amplitudes (maximum velocity of

a superposition of millions of p modes at the surface is about 500 m/sec) compared

with the characteristic scales of the Sun, therefore they can be treated as small pertur-

bations around an equilibrium state. We also assume that the equilibrium structure

is static compared to the oscillation time scale (p modes have a period of about 5

minutes) and that there are no velocities.

Thus by representing each field variable f(r, t) = f0(r)+f ′(r, t), where f0(r) is the

equilibrium state and f ′(r, t) is a small Eulerian perturbation, that is the perturbation

at a given point r, we linearize the above equations about the equilibrium state by

expanding them in the perturbations and retaining only terms that do not contain

products of the perturbations.

The equations (1.5)-(1.6) of continuity and motion become

∂ρ′

∂t
+∇ · (ρ0v

′) = M(r, t) (1.9)
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ρ0
∂v′

∂t
+∇p′ + ρ′g0 = F (r, t) (1.10)

The right hand sides of the equations are the source terms which drive the os-

cillations. In deriving the above equations the Cowling approximation was applied,

with the neglect in the perturbation of the acceleration due to gravity (Christensen-

Dalsgaard, 1994). Here M and F are the mass and force sources and are given by:

M = −∇ · (ρ′v′) (1.11)

F = −ρ′
∂v′

∂t
−∇ · (ρ0v

′v′) (1.12)

It is convenient to transform the above equations expressing the Eulerian pertur-

bations in terms of the Lagrangian perturbations, which are perturbations following

the motion of the fluid. They are related as

δf(r) = f ′(r0) + δr · ∇p0 (1.13)

where δf is the Lagrangian perturbation of the field variable f and δr is the fluid

displacement. The velocity v is given by the time derivative of the displacement δr

The equation for adiabatic motion becomes

δp = c2
0δρ (1.14)

where c0 is the equilibrium sound speed, which is computed from a solar model.

The fluid displacement can be written in terms of the spherical harmonics Y m
l (θ, φ)

δr = 2
√

πRe

[(
ψr(r), ψh(r)

∂

∂θ
,
ψh(r)

sin θ

∂

∂φ

)
Y m

l (θ, φ) exp(iωnlt)

]
(1.15)

where r is the distance from the center, θ is the colatitude (angle from the polar

axis), φ is the longitude and ψr and ψh are the radial and horizontal components of

the displacement. The angular frequency ωnl is complex and contains the effect of
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the damping. In this thesis viscous damping is considered.

Carrying out the spherical harmonic decomposition of the equations of mass and

momentum leads to the following ordinary differential equations, with the subscripts

nl dropped in the angular frequency ω and the subscript 0 dropped from the equilib-

rium variables:
dψr

dr
+ ψr

(
2

r
+

d ln ρ

dr

)
+

ρ′

ρ
− l(l + 1)

ρr2ω2
p′ = S1 (1.16)

dp′

dr
+ gρ′ − ω2ρψr = S2 (1.17)

The sources S1 and S2 are

S1 =
1

ρω2

∫
dt exp(−iωt)

∫ dΩ

ρ
Fh (1.18)

S2 = −
∫

dt exp(−iωt)
∫

dΩ Fv (1.19)

where Ω is the solid angle, Fh and Fv contain the horizontal and radial component of

the forces and are given by:

Fh =

[
1

r

∂Y m∗
l

∂θ
Fθ +

1

r sin θ

(
∂Y m∗

l

∂φ

)
Fφ − ∂2M

∂t2

]
(1.20)

Fv = Y m∗
l Fr (1.21)

where F = (Fr, Fθ, Fφ) and * is the complex conjugate.

The above equations (1.16) and (1.17) can be rewritten involving Lagrangian

perturbations (Gough, 1993) and become:

dξ

dr
+

(
2

r
− L2g

ω2r2

)
ξ +

(
1− L2c2

ω2r2

)
δp

ρc2
= S1 (1.22)

dδp

dr
+

L2g

ω2r2
δp− gρf

r
ξ = S2 (1.23)

where L2 = l(l + 1), ξ = ψr and the discriminant f is
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f = 2 +
ω2r

g
+

r

Hg

− L2g

ω2r
(1.24)

where H−1
g is the scale height of the gravitational acceleration and is

H−1
g = −d ln g

dr
(1.25)

By differentiating equation (1.23) with respect to r and using equation (1.22) to

eliminate dξ
dr

and then using equation (1.23) to eliminate ξ, an equation for δp is

obtained:

d2δp

dr2
+ H−1

u

dδp

dr
+

[
1

c2

(
ω2 +

g

h

)
− L2

r2

(
1− N2

s

ω2

)]
δp = S12 (1.26)

where H−1
u and Ns are

H−1
u = H−1 + H−1

f + H−1
g + 3r−1 (1.27)

N2
s = g

(
H−1

u − g

c2
− 2h−1

)
(1.28)

and h−1 = H−1
g + 2r−1 is the scale height of g

r2 and H−1
f is the scale height of f .

It is convenient to reduce equation (1.26) into more compact form by means of

the transformation (Gough, 1993)

δp =

(
gρf

r3

)1/2

Ψ := uΨ (1.29)

d2Ψ

dr2
+ K2Ψ = S (1.30)

where S = S12/u, is given by

S(r, ω) =

[
c1

dS2

dr
+ c2S2

]
+

[
c3

dS1

dr
+ c4S1

]
, (1.31)

where c1, c2, c3 and c4 depend on the solar model and are given in Appendix A.1 and

K is
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K2 =
ω2 − ω2

cs

c2
+

l(l + 1)

r2

(
N2

s

ω2
− 1

)
(1.32)

where ωcs is

ω2
cs =

c2

4H2
u

(
1− 2

dHu

dr

)
− g

h
(1.33)

Here H−1
u is the scale height of the factor u defined in equation (1.29). Medium l

oscillations are confined to the outer convective layers of the Sun, hence the effect of

spherical geometry can be neglected. In the plane-parallel approximation ωcs reduces

to ωc the acoustic cutoff frequency and Ns reduces to N the buoyancy frequency,

which are given below:

ω2
c =

c2

4H2

(
1− 2

dH

dr

)
(1.34)

N2 = g
(

1

H
− g

c2

)
(1.35)

where H−1 is the density scale height:

H−1 = −d ln ρ

dr
(1.36)

The solutions to this reduced wave equation (1.30) are evanescent if K2 < 0, and

waves propagate when K2 > 0. The two frequencies define the cavities in the Sun.

It follows from the constraint K2 > 0 that there are two different types of cavities,

where the p and g modes propagate. This can be easily seen if we rewrite K as:

K2 =
ω2

c2

(
1− ω2

+

ω2

) (
1− ω2

−
ω2

)
(1.37)

This makes it clear that there are two separate propagation zones: where the wave

frequency ω > ω+, and where ω < ω−. These boundary frequencies ω+ and ω− are

given by

ω2
+ =

1

2
(S2

l + ω2
cs) +

[
1

4
(S2

l + ω2
cs)

2 −N2
s S2

l

]1/2

(1.38)
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ω2
− =

1

2
(S2

l + ω2
cs)−

[
1

4
(S2

l + ω2
cs)

2 −N2
s S2

l

]1/2

(1.39)

where Sl is the Lamb frequency and is

S2
l =

c2L2

r2
(1.40)

In the interior of the Sun, the equations (1.38) and (1.39) can be approximated

by:

ω2
+ ≈

c2l(l + 1)

r2
(1.41)

ω2
− ≈ N2 (1.42)

Waves that propagate in the region defined by ω > ω+ are called p modes, and

those that resonate in the ω < ω− region are called g modes. Waves with frequency

in the range ω− < ω < ω+ are evanescent. A plot of the solar potential ν+ and ν− is

shown in Figure 1.2

1.3.1 P modes

P modes are standing pressure waves trapped in the Sun. They propagate stably in

the region of the Sun defined by ω > ω+.

For p modes,

K2 ≈ ω2 − ω2
+

c2
(1.43)

The upper limit of this region is essentially when the wave frequency equals the

acoustic cutoff frequency, and depends only on the speed of sound c and the density

scale height H. For p modes the discriminant f > 0 in equation (1.24) (Gough, 1993).

Once a wave reaches the point where its frequency equals this cutoff frequency, it

is sharply reflected back inward. This cutoff point is fairly constant, between about

0.98 and 0.99 solar radii. However, it does have a finite upper limit in the outer layers
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Figure 1.2: Solar potentials ν+ = ω+/2π and ν− = ω−/2π as a function of depth h for
for angular degree l = 1000. Depth 0 indicates the photosphere and negative depths
are below the photosphere.

of the Sun. If a wave has a frequency greater than ωc then it will not be reflected

back into the Sun. This constrains the p modes to have resonant frequencies lower

than a specific value, set by the stellar structure.

The inner boundary of the p mode propagation cavity is caused by an increase

in sound speed, c, towards the center of the Sun due to increase in temperature. As

c increases, the inner edge of the wave (closer to the core of the Sun) moves faster

than the outer edge, causing the wave to gradually refract towards the surface. As

the wave propagates deeper into the Sun, the wave is continually refracted until it is

completely reflected. This inner turning point is described by the Lamb frequency Sl.

High frequency p modes include waves with ω > ωc, νc = ωc/2π = 5.2 mHz. These

waves propagate and are not trapped by the photosphere. It was therefore a surprise

to find p mode ridges continue above the acoustic cutoff. The explanation by Kumar

and Lu (1991) states that waves are emitted isotropically from a source near the top
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of the convection zone. Waves that propagate directly from the source interfere with

the waves that are reflected from below due to the continual increase in sound speed.

This interference is responsible for the observed high frequency ridges and this is true

for the ridges above l = 200 as well. These high frequency waves suffer some amount

of reflection in the solar atmosphere.

Note that this inner turning point does depend on the mode degree. For higher

degree modes, the turning point will be nearer to the surface than for low degree

modes. This is important, because it tells us how far a mode of particular degree

penetrates into the interior of the Sun. Low order, low degree waves penetrate the

deepest of all the modes. High degree (l > 60) don’t penetrate any deeper than the

convective layer, whereas low degree modes travel deeper down up to about 0.05 solar

radii. Radial modes (l = 0) propagate right through the core (Christensen-Dalsgaard,

1994). The lower and upper turning points are shown in the plot of the solar acoustic

potential ν+ = ω+/2π in Figure 1.2.

1.3.2 G modes

G modes are rather mysterious. They hide deep within the solar interior and have

not yet been observed. The main restoring force for these modes is buoyancy. The

waves are essentially oscillations of packets of gas moving around their hydrostatic

equilibrium position. If some initial disturbance perturbs the gas from equilibrium,

it may rise above the equilibrium position only to find that its density is then greater

than the new surroundings. The gas then sinks back down, but overshoots the equi-

librium position, until it is in a region where its density is less than the surrounding

gas. The packet is then forced up, and so on... The frequency of these waves is the

buoyancy frequency.

G modes, like the p modes, are trapped within a cavity in the solar interior. These

waves oscillate in a region defined by ω < ω−. The upper limit of this region is the

bottom of the convective layer, since in the convection zone the gravity waves are no

longer stable.

The inner limit of the g mode cavity is defined by the buoyancy frequency N . The
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lower turning point occurs when ω = ω−, or in other words when the wave frequency

equals the buoyancy frequency. In the stable g mode region, ω− is less than N . But

as the wave travels towards the center, the gravitational acceleration reduces to the

point till N = ω−. This is the turning point. Therefore g modes are nothing but

standing internal gravity waves. For g modes f < 0 (Gough, 1993).

Gravity modes can be trapped either beneath the convection zone or in the atmo-

sphere (Christensen-Dalsgaard, 1994). A single mode can exist in both regions; how-

ever, the evanescent decay is so great through the turbulent convection that extremely

weak coupling between the atmosphere and the interior is likely to be destroyed by

turbulence. Thus for practical purposes the interior modes and the atmospheric

modes can be regarded as distinct.

G modes have much longer periods than the p modes (Christensen-Dalsgaard,

1994). Typical g mode periods are of the order of 165 minutes. Many observations

have been done to detect these modes, but because of their very long periods and

low amplitudes (as they are localized around the core of the Sun), the data and

interpretations are full of ambiguities.

1.3.3 F mode

The p and g modes are separated by a mode with no radial node, whose frequency lies

between those of the p and g modes. This mode can exist only when l 6= 0. Cowling

called it the f mode, for fundamental gravity mode (Christensen-Dalsgaard, 1994).

The f mode is a special type of the g mode. It is the surface gravity wave that

exists at the interface of fluids of differing density. The f mode propagates without

compression, so it produces no pressure fluctuations. It has been observed in both

the velocity and intensity observations, but not in line depth. The reason why it is

present in intensity is not well understood. Since the f mode is a surface gravity wave,

it has proved useful to study the surface magnetic fields, the constraining of the solar

radius and other interesting surface effects. Moreover the frequencies of the f mode

depend only on their wavelength and on gravity, but not on the internal structure of

the layer, in particular the density. Its dispersion relation is given by ω2 = gk, where
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g is the acceleration due to gravity computed from the solar model and k = L/RSun is

the wave number and RSun is the solar radius. The f mode satisfies the discriminant

f = 0 (Gough, 1993). The displacement eigenfunction decays exponentially with

depth from the solar surface, which is an indication that the mode is concentrated

in the uppermost layers of the Sun, particularly when k is large. Since the f mode

propagates horizontally, it can be used to study supergranules and horizontal flow

fields.

So, the Sun is observed to resonate at certain harmonic frequencies. Which fre-

quencies are resonant is a combination of the frequency of the wave and the size of

the cavity it is trapped in. Waves of millions of frequencies are excited in the inte-

rior of the Sun, but the specific structure of the Sun selects which exact frequencies

are resonant. These frequencies are a measure of the interior structure of the Sun.

Studying the p, g and f modes together would be useful in solving the mysteries of

the Sun.

Before proceeding to discuss the excitation and damping of p modes, it will be

worthwhile to review Lighthill’s theory of sound generation.

1.4 Lighthill’s theory

Sir James Lighthill in 1952 propounded his theory of sound generation due to fluid

flow, with rigid boundaries. According to his theory sound is generated by a conver-

sion of kinetic enery into acoustic, as a result of fluctuations in the flow of momentum

across fixed surfaces.

The propagation of sound in a uniform medium, without sources of matter or

external forces is governed by the equation of continuity and linearized equation of

momentum

∂ρ

∂t
+

∂

∂xi

(ρvi) = 0, (1.44)

∂

∂t
(ρvi) + c2

0

∂ρ

∂xi

= 0 (1.45)
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Eliminating the momentum density ρvi from equations (1.44) and (1.45) leads to

∂2ρ

∂t2
− c2

0∇2ρ = 0 (1.46)

Here ρ is the density, vi is the velocity in the xi direction and c0 is the sound speed

in the uniform medium.

On the other hand, the original equation of momentum in an arbitrary continuous

medium under no external forces in Reynolds’s form is

∂

∂t
(ρvi) +

∂

∂xj

(ρvivj + pij) = 0 (1.47)

Here pij is the compressive stress tensor, representing the force in the xi direction

acting on a portion of fluid, per unit surface area with inward normal in the xj

direction. The other term ρvivj is the momentum flux tensor, that is the rate at

which momentum in the xi direction crosses unit surface area in the xj direction.

This equation can be obtained from the momentum equation in the familiar Eulerian

form by adding a multiple of the equation of continuity, equation (1.44). Physically,

this equation represents the fact that the momentum contained within a fixed region

of space as changing at a rate equal to the combined effect of (i) the stresses acting

at the boundary pij and (ii) the flow across the boundary of momentum-bearing fluid

due to ρvivj.

Hence the equations of an arbitrary fluid motion can be rewritten as the equa-

tions of propagation of sound in a uniform medium at rest due to externally applied

fluctuating stresses, namely, as

∂

∂t
(ρvi) + c2

0

∂ρ

∂xi

= −∂Tij

∂xj

(1.48)

∂2ρ

∂t2
− c2

0∇2ρ =
∂2Tij

∂xi∂xj

(1.49)

where the instantaneous applied stress at any point is

Tij = ρvivj + pij − c2
0ρδij (1.50)
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Equations (1.48) and (1.49) are the basic equations of the theory of aerodynamic

sound generation (Lighthill, 1952).

It has been pointed out in Lighthill’s paper that all effects such as the convection

of sound by the turbulent flow, or the variations in the sound speed within it, are

taken into account, by incorporation as equivalent applied stresses, in equations (1.48)

and (1.49). Thus outside the airflow the density satisfies the ordinary equations of

sound, with out the stress Tij in equations (1.45) and (1.46), and the fluctuations

in density, caused by the effective applied stresses within the airflow, are propagated

acoustically. These stresses are responsible for the quadrupolar emission of sound.

The theory of sound generated aerodynamically was extended by Lighthill (1953),

to take into account the statistical properties of turbulent airflows, from which the

sound radiated (without the help of solid boundaries) is called aerodynamic noise. The

quadrupole distribution is shown to behave as if it were concentrated into independent

quadrupoles, one in each average eddy volume.

1.5 Excitation and damping of p modes

P modes have a period of about 5 minutes and are believed to be excited as a result

of granulation in the outer turbulent convective zone (Goldreich and Keeley, 1977).

The granulation turnover time is roughly 5 minutes, which suggests that p modes

are excited as a result of granulation. The maximum amplitude of a superposition

of velocity oscillations is small compared to the other characteristic scales of the

Sun, and is about 500 m/sec. The convective currents randomly excite different

frequencies within the Sun. Any given resonant oscillation gets damped and dies out

after a lifetime of anywhere from hours to years, then is reexcited at some later time

by the same random motion of the convective currents.

The linearized hydrodynamic equations derived in the previous sections ade-

quately describe the excitation of p modes. The right hand side of the continuity

equation (1.9) contains the mass term (monopole source), the momentum equation

(1.10) has a force term (dipole source) on the right hand side. The force term contains

the turbulent Reynolds stress, which is responsible for the quadrupole source. These
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sources could be produced by fluctuations in entropy. The physical significance of

each of these sources along with their role in p mode excitation is discussed in the

following subsections.

1.5.1 Monopole source

The monopole source results by forcing the mass in a fixed region of space to fluctuate

(Crighton, 1975). By this kinetic energy is coverted into acoustic energy. A way of

achieving this in linear acoustics is to suppose that sources of mass are distributed

throughout the fluid, injecting fluid mass at a given rate. The right hand side of the

linearized continuity equation describes the mass source. A time dependent mass flux,

e.g., popping a balloon, cracking a finger, radially pulsating sphere etc. results in a

monopole source. Entropy fluctuations due to radiative cooling at the solar surface

are responsible for the monopole source in the Sun.

1.5.2 Dipole source

The dipole source results by forcing the momentum in a fixed region of space to

fluctuate. This type of source is exactly equivalent to an external force distribution

acting on the fluid (Crighton, 1975). The right hand side of the linearized momentum

equation contains the force, which acts as the dipole source. The monopole and

dipole terms are related in the Sun, since an increase in entropy will cause both an

increase in the volume of the gas (the monopole part) and, because of the gravitational

field, a change in the momentum of the gas (the dipole part). A time-varying force

(momentum flux) is responsible for dipole emission such as sound from a musical

string or a tuning fork or the force due the Reynolds stresses in the Sun.

1.5.3 Quadrupole source

The quadrupole source results by forcing the rates of momentum flux across fixed

surfaces to vary, as when sound is generated aerodynamically with no motion of

solid boundaries. In a theoretical treatment, the real fluid, in which highly-nonlinear
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motions may occur, is replaced by a fictitious acoustic medium, in which only small

amplitude linear motions occur. If this medium is acted upon by an external stress

system, then exactly the same density fluctuations will be produced. This is the

basis of Lighthill’s theory. The quadrupole stress distribution is derived from dipoles

in exactly the same way as the dipole from a monopole by a limiting process. A

quadrupole is formed by taking the limit of two adjacent equal and opposite dipoles.

Thus, there are two characteristic directions associated with a quadrupole: one the

direction of the individual dipoles, the other the direction in which the dipoles are

separated. Since there are three components of each direction, there are nine possible

independent orientations of the quadrupole axes. These divide into a group of three

longitudinal quadrupoles in which the dipoles or monopoles are arranged in a line and

in which both characteristic directions coincide, and a group of six lateral quadrupoles

with mutually perpendicular characteristic directions (Crighton, 1975). Now, two

equal and opposite adjacent forces constitute a stress; a pressure type stress in the

longitudinal case, a shear stress in the lateral case. Internal stresses with no associated

mass or momentum flux as in the case of free turbulence is responsible for quadrupolar

emission of acoustic waves. In the Sun Reynolds stresses act as quadrupole sources.

For Lighthill’s theory to be valid, the physical conditions should be such that

wave motions, satisfying the homogeneous wave equation, do emerge at sufficiently

great distances from the unsteady flow. Therefore, Lighthill’s theory reduces to the

ordinary acoustic theory at all points outside the region of unsteady flow.

1.6 Why is this problem important?

By studying the excitation of p modes one learns the underlying physics of excitation

and about the source of these modes. This is then useful in deriving a fitting formula

to accurately determine the p mode eigenfrequencies by fitting the observed velocity

and intensity power spectra. An accurate determination of the frequencies will in

turn have an effect on the inversions to determine the solar structure and rotation

rate.



Chapter 2

The Line Asymmetry Puzzle
(Part of this chapter is published in ApJ 1998, 495, L115)

Line asymmetry is closely linked to the excitation of p modes. Observations of Duvall

et al. (1993) have indicated that the power spectrum of solar acoustic (p) modes

show varying amounts of asymmetry. In particular, the velocity and intensity power

spectra revealed an opposite sense of asymmetry. There was scepticism about the

result (Abrams and Kumar, 1996), and it was even believed to be an error in the

experiment. However, the new MDI data presented here confirm the result and, in

addition, allow us to study the variations of asymmetry among modes of various

angular degrees and frequencies.

The variations in the asymmetry have important implications in helioseismology

where the eigenfrequencies are generally determined by assuming that the line profile

is symmetric and can be fitted by a Lorentzian. This leads to systematic errors in

the determination of frequencies and, thus, affects the results of inversions.

Several authors have studied this problem theoretically and have found that there

is an inherent asymmetry when the solar oscillations are excited by a localized source

(Gabriel, 1992); (Duvall et al., 1993); (Roxburgh and Vorontsov, 1995); (Abrams

and Kumar, 1996); (Nigam et al., 1997). Physically, the asymmetry is an effect of

interference between an outward direct wave from the source and a corresponding

inward wave that passes through the region of wave propagation (Duvall et al., 1993).

However, the precise cause for the asymmetry and its relation to the Sun’s acoustic

25
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source have not been pinned down in the past. We briefly describe the observations,

formulate a theoretical model and from it suggest an explanation for the difference in

asymmetries between velocity and intensity and finally estimate the depth and type

of the sources that are responsible for exciting the solar p modes.

2.1 Observations

To compare the asymmetry in velocity and intensity spectra we computed spherical

harmonic transforms (SHTs) of full disk velocity and intensity images from the MDI

instrument (Scherrer et al., 1995). These SHT’s were gap filled, Fourier transformed

to make power spectra, shifted in frequency according to a solar rotation law, and

averaged over the angular order m. To simplify the comparison we chose the days

July 21 to July 23, 1996 for which simultaneous velocity and intensity images were

available. The results for oscillations of angular degree l = 200 are shown in Figure

2.1.

From these two power spectra that have been normalized with respect to the

maximum power we see that the p mode peaks of the velocity spectrum have negative

asymmetry (more power on the low frequency end of the peak) while the peaks of

the intensity spectrum have positive asymmetry (more power on the high frequency

end of the peak). In the velocity spectrum (Figure 2.1a), the asymmetry is strongest

for low frequency (low radial order) modes and becomes negligible around and above

the acoustic cutoff frequency (≈ 5.2 mHz). However, the asymmetry in the intensity

oscillations (Figure 2.1b) increases with frequency for modes below the acoustic cutoff

frequency, and then gradually decreases at higher frequencies. The intensity spectrum

shows a higher noise level compared to the velocity spectrum.

Also in Figure 2.2 with the model of the additive background subtracted a notable

shift in the peaks at the high frequency part of the intensity spectrum is seen in

relation to the same part of the velocity spectrum. This frequency shift is particularly

strong at and above the acoustic cutoff frequency. This is due to the fact that around

the acoustic cutoff frequency, a transition from the dominance of well resonance to

source resonance takes place (see section 2.2.3).
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Figure 2.1: Normalized power spectra for solar oscillations of angular degree l = 200:
a) Doppler velocity and b) continuum intensity for the same 3-day period of 21-23
July 1996. The leftmost peak of the velocity spectrum corresponds to the f mode.
The other peaks of both spectra correspond to acoustic (p) modes of radial order
from 1 to 21 (from the left to the right). The vertical dotted lines in both panels
indicate the locations of the p mode maxima in the velocity power spectrum to show
that a relative shift in frequency occurred at and above the acoustic cutoff frequency
(≈ 5.2 mHz).
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Figure 2.2: Normalized high frequency velocity (solid curve) and intensity power
spectra (dashes) of Figure 1 with the model of the background subtracted. The
relative shift in frequency is apparent.

The other modes in the medium-l range (50-300) and in the high-l range (300-1000)

show similar properties of the line asymmetry. While the degree of the asymmetry

varies across the spectrum, we have not yet detected a change in the sense of asym-

metry with l. For l = 200 and higher there is reversal of asymmetry for the f mode

in the velocity and intensity spectra just as in the case of p modes.

2.2 Why is the asymmetry reversed?

2.2.1 Numerical model of mode excitation

We assume that solar acoustic waves are generated by turbulence in the convection

zone, and apply Lighthill’s (1952) method described in chapter 1, in which the acous-

tic sources of various multipole orders are transferred to the right hand side of the
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wave equation (Moore and Spiegel, 1964), to calculate the velocity and pressure per-

turbations. We also assume that the observed intensity variations recorded by the

MDI instrument correspond to Lagrangian pressure (or temperature) perturbations

(Duvall et al., 1993); (Abrams and Kumar, 1996).

The background state is assumed to be spherically symmetrical, and all the per-

turbations are time harmonic. Dissipation is modeled by viscous damping. Then,

using a standard decomposition onto spherical harmonics (Gough, 1993); (Gabriel,

1993) we transform Lighthill’s equations of motion, continuity and energy (the full

non-adiabatic problem is at least of the fourth order) into a simplified single second-

order wave equation (see equation (1.30) in chapter 1)

d2Ψ

dr2
+

[
ω2 − ω2

c

c2
− l(l + 1)

r2

(
1− N2

ω2

)]
Ψ = S[f , q], (2.1)

where Ψ is proportional to the Lagrangian pressure perturbation δp (Gough, 1993), r

is the radius, ω is the frequency, ωc is the acoustic cutoff frequency, c is the equilibrium

sound speed, N is the equilibrium buoyancy frequency, S is a combination of source

terms that include the fluctuating Reynolds stress force, f and the mass source, q.

In this research, we consider a source given in equation (2.2) that is a combination

of monopole (mass source) and dipole (Unno, 1964). The dipole part results when

a monopole source is in a stratified medium and also from the radial and horizontal

components of the Reynolds stress force. The radial component of the force is more

dominant than its horizontal counterpart for data of medium angular degree l. The

expression for S is proportional to the sum of q, f and their respective derivatives with

respect to r. This type of composite source gives a good match with the MDI intensity

and velocity data, and is given by (see chapter 1 equation (1.31) and Appendix A.1,

equation (A.9))

S(r, ω) =

[
c1

dS2

dr
+ c2S2

]
+

[
c3

dS1

dr
+ c4S1

]
, (2.2)

where c1, c2, c3 and c4 depend on the solar model. S1 is a source that contains the

mass term and the horizontal component of the Reynolds stress force. S2 contains
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the radial component of the Reynolds stress force. S1 scales as ω−2 while S2 does not

contain ω explicitly as discussed in Kumar (1994).

The Green’s function GΨ(r, rs) of equation (2.1) for a delta-function source at

r = rs using a standard solar model (Christensen-Dalsgaard et al., 1996), is found

numerically using finite differences. The Sommerfeld radiation condition is applied

above the upper turning point to ensure outgoing waves and GΨ(r, rs) = 0 at r = 0

as the perturbations are negligible much below the lower turning point. Damping

is added by making the frequency complex, the imaginary part having the damping

coefficient. Since the source is close to the surface, where dissipative effects vary with

position, the damping coefficient is a function of position. Two kinds of damping,

spatial, similar to Abrams and Kumar (1996), and temporal damping, were inves-

tigated. It is found that they have very little effect on line asymmetry. Damping

basically effects the line width. The resulting system is a complex tridiagonal matrix

equation which is solved by a standard routine (see Appendix A.2 for the numerical

solution). To compare with the observations we multiplied the Green’s function with

a suitable source function and then added noise that was correlated with this source

in a frequency dependent manner.

2.2.2 Effect of correlated noise

For the solar potential of the simplified model, the real part of the Green’s function

for the pressure perturbation is calculated from equation (2.1) and shown in Figure

2.3. It has been normalized with respect to its maximum value. The corresponding

imaginary part is plotted in Figure 2.4. The intersection of the dashes with the

Green’s function (solid line) in Figure 2.3 correspond to points of zero amplitude,

which result when there is no driving by the source.

The Lagrangian perturbations are then calculated from the Green’s function for

a single source location and source type by multiplying by a suitable source function

and adding solar noise. The noise is assumed to consist of a part cp(ν) that is

correlated with the source function s(ν), while np(ν) forms the uncorrelated additive

background. One then obtains for the pressure perturbation
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Figure 2.3: Real part of the normalized Green’s function for solar p modes of angular
degree l = 200 produced by a composite source located at a depth, d = 75 km
beneath the photospheric level and an observing location robs = 300 km above the
photosphere, where the observed spectral line is formed, for pressure perturbation.
Intersection of the dashes with the Green’s function (solid line) correspond to the
zero points. The correlated noise shifts these zero points and causes a reversal of
asymmetry

p(ν) = s(ν)[cp(ν) + Gp(ν)] + np(ν) (2.3)

and the velocity perturbation is found in a similar manner. Equation (2.3) is a simple

model of the observed solar signal, that includes the correlated noise. Here Gp is

proportional to GΨ.

The asymmetry in velocity and intensity power spectra is of opposite sense because

a component of the solar noise that is correlated with the source is present. The

correlated component of the noise must remain below a certain threshold to preserve

the asymmetry obtained by the above model in the velocity power spectrum yet

be large enough to reverse the asymmetry in the intensity spectrum (Nigam et al.,
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Figure 2.4: Imaginary part of the normalized Green’s function for solar p modes of
angular degree l = 200 produced by a composite source located at a depth, d = 75
km beneath the photospheric level and an observing location robs = 300 km above the
photosphere, where the observed spectral line is formed, for pressure perturbation.

1998). The source position rs from the origin is kept fixed and the power spectrum

is computed from equation (2.3) for the pressure perturbation. It is found that the

correlation cp(ν) reverses the asymmetry found in Gp(ν) when computing the power

spectrum as seen from Figure 2.4b. This is due to the fact that cp shifts the zero

points in Gp(ν). The uncorrelated noise plays no role in the reversal of asymmetry.

The intensity and velocity fluctuations are computed from the absorption line that

is formed at a particular height in the solar atmosphere. The spectral line is effected

by the p mode oscillations and the solar granulation, which modulate and shift the
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Figure 2.5: Normalized theoretical power spectra for solar p modes of angular degree
l = 200 produced by a composite source: a) velocity spectrum (solid line) with
additive uncorrelated noise (dashed line) and b) pressure spectrum (solid line) with
additive correlated (dotted line) and uncorrelated noise (dashed line). The normalized
correlated noise is multiplied by a factor of 5.



CHAPTER 2. THE LINE ASYMMETRY PUZZLE 34

line. It is thus the granulation overshoot that forms the correlated component of the

noise as it transports the effect of the source directly onto the line in the atmosphere.

It also excites the solar oscillations in the intergranular lanes (Rimmele et al., 1995).

Without adding correlated noise no reversal in asymmetry can be brought about

between intensity and velocity in this simplified second order problem. The full prob-

lem incorporating non-adiabatic effects and radiative transfer in an inhomogeneous

turbulent medium is at least of the fourth order (Gabriel, 1998) and was discussed

in Kumar (1994). However, the full problem remains unsolved and is a subject of

future investigation. The effect of correlated noise may be built into the framework

of the general problem, but is not present in the simplified second order equation.

Therefore, we add noise to determine our solution.

For the theoretical velocity power spectrum (Figure 2.5a) corresponding to a delta-

function source, the bound states (modes below the acoustic cutoff frequency ≈ 5.2

mHz) show marked asymmetry that decreases with increasing frequency, while for the

pressure power spectrum (Figure 2.5b), their asymmetry increases with frequency.

The peaks of the bound states are close to the eigenfrequencies if damping is small as

is the case for p modes. The leaky states (modes above the acoustic cutoff frequency)

have less asymmetry and their peaks are mainly determined by the source position.

They convey little information about the solar cavity as compared to the bound

states. In Figure 2.6 we capture the high frequency shift that is present in the

observations. Comparing the theoretical profiles with those in the observations, we

find from Figures 2.1 and 2.5 that the profiles differ from the observations close to

3 mHz. Also, from Figures 2.2 and 2.6 we find that the power contrast (ratio of the

maximum to minimum power) for the velocity spectrum is well reproduced but that

for the pressure it is smaller than in the observations. This is due to the fact that

we have used a simplified model of mode excitation and correlation. The correlation

coefficient cp for simplicity has been assumed to be a constant. Pressure and velocity

perturbations for sources extended over a range of depths can then be calculated from

the respective Green’s function by linear superposition.

It is important to note that the narrow range of the acoustic source depth (75±50

km) found by comparing the theoretical and observed spectra coincides with the
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Figure 2.6: Normalized theoretical high frequency velocity (solid curve) and pressure
power spectra (dashes) of Figure 2.4 with no additive uncorrelated noise. Correlated
noise with coefficient cp greater than a threshold value of 0.04 is responsible for the
relative frequency shift that is present in the observations.

region of superadiabatic convection in the solar model (see Chapter 5). This region

represents the highly unstable upper boundary layer of the convection zone where

the convective motions are most violent. The extent of the source was determined

by comparing the high frequency peaks of the theoretical spectra with those of the

observations (Kumar and Lu, 1991), for a range of source depths.

2.2.3 Simple model of asymmetry

Solar p modes are formed by resonances of the acoustic cavity beneath the Sun’s

surface. The shape and size of the cavity depends on the stratification. However,

some basic features of line asymmetry can be explained by approximating the cavity

as a rectangular potential well V (r) of width a with an infinite potential at the lower

turning point r = 0, and a finite height at the upper turning point r = a (Stein, 1966);
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(Nigam and Kosovichev, 1996); (Abrams and Kumar, 1996). This height corresponds

to the square of the acoustic cutoff frequency ν2
c (νc ≡ ωc/2π) while the width a relates

to the angular degree l of the mode. For simplicity the effects of stratification have

been neglected. The sound speed, c, is assumed to be constant in this problem. The

effect of damping is included in the complex frequency ω2
1 = (ω2 + iωΓ), the factor Γ

representing the damping coefficient and ω is the frequency. A delta-function source

is placed at r = rs inside the cavity. So, we write the reduced wave equation for the

pressure perturbation:

d2Ψ

dr2
+

ω2
1 − V (r)

c2
Ψ = δ(r − rs) (2.4)

where Ψ is proportional to the pressure perturbation.

Equation (2.4) is solved analytically (see Appendix A.3), using the boundary

condition that Ψ = 0 at r = 0 and applying the Sommerfeld radiation condition far

away from the upper turning point r = a. This gives the Green’s function GΨ for Ψ

(which is proportional to the pressure perturbation) at a particular observing point

r = robs; this can be taken to be at the upper turning point r = a without loss of

generality. If we define ω2
2 = (ω2

c − ω2
1), the Green’s function can be written as (see

Appendix A.3, equation (A.62))

GΨ(ω1) =
−c sin(ω1rs/c)

ω1cos(ω1a/c) + ω2sin(ω1a/c)
e−ω2(r−a)/c (2.5)

In equation (2.5) the exponential term drops out when the observing point is at r = a.

Equation (2.5) can be written as

GΨ(ω1) =
Ns

Dw

(2.6)

where Ns is the numerator of the Green’s function which contains the effect of the

source and Dw is the denominator of the Green’s function which contains the effect

of the cavity.

The power spectrum can be calculated from the above equation, by taking the

absolute square of the numerator and denominator. In the numerator the maximum
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power occurs at the source resonance frequencies ωs, as in Figure 2.7, while in the

denominator the minimum power occurs at the well resonance frequency ωw, which

is the eigenfrequency (see Appendix A.4). The two separate resonances are due to

interference, which in the simple problem are separable. At the frequency ωw the

denominator is proportional to the damping coefficient, and this results in the peaks

seen in the power spectra. It is the mismatch between these two power spectra

from the numerator (solid curve in Figure 2.7) and the denominator (dotted curve in

Figure 2.7) that makes the overall power spectra asymmetric (solid curve in Figure

2.8). Examination of the two effects separately shows that there is no asymmetry in

either of them. A combination of the two effects leads to asymmetry. The maximum

value of the power from the Green’s function is close to the eigenfrequency. In the

neighborhood of an eigenfrequency there are three cases that can arise: (i) Source

resonance frequency ωs < ωw, this leads to negative asymmetry (ii) ωs = ωw, this leads

to zero asymmetry (symmetry) and (iii) ωs > ωw, his leads to positive asymmetry. A

physical measure of asymmetry is naturally the difference ωs−ωw. The eigenfrequency

is a characteristic of the cavity and doesn’t depend on the source position and nor on

the particular representation of the acoustic disturbance.

One can also think of the source resonance in terms of zero points, which are

the frequencies ωz for which the numerator power is zero. If we look at the Green’s

function, it is at these frequencies the function is zero (see Figures 2.7 and 2.8). At

these frequencies ωz, the overall power is zero. By adding correlated noise Ncor in

equation (2.6), we get

GΨ + Ncor =
Ns + NcorDw

Dw

(2.7)

In equation (2.7) the numerator changes with respect to equation (2.6) , while

the denominator remains the same. Due to this the zero points get shifted and hence

reverse the asymmetry in the power spectrum of |GΨ + Ncor|2
Reversal of asymmetry can also be brought about by changing the source location

rs or changing the source type. The asymmetry reverses whenever the source crosses a

node of the eigenfunction. Moving the source deeper and keeping everything else fixed
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Figure 2.7: Normalized power (solid curve) from the numerator of the Green’s function
containing the effect of the source and no correlated noise. The dashes represent the
effect of the correlated noise on the numerator, while the dotted curve is due to the
well resonance, the reciprocal of the denominator of the Green’s function are plotted
as a function of the dimensionless angular frequency, ωa/c. The peak is close to the
eigenfrequency. The normalization is done with respect to the maximum value of the
dotted curve.

reverses the asymmetry. Likewise, changing the source type (eg. monopole to dipole)

also reverses the asymmetry. However, without adding correlated noise, these effects

reverse the asymmetry in both the velocity and the pressure spectra simultaneously.

This does not explain the puzzle.

2.3 Summary

In this chapter, we have given a possible explanation for the puzzle about the opposite

sense of asymmetries between intensity and velocity power spectra. This will have

an implication on the fitting and determination of eigenfrequencies from the observed
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Figure 2.8: Normalized power with respect to the maximum (solid curve) without
correlated noise of the Green’s function, as a function of the dimensionless angular
frequency, ωa/c. Adding correlated noise shifts the zero points (the frequencies where
the power is zero) in the power spectra and reverses the asymmetry (dashed curve).

spectra, which will in turn effect the inversions.

From our model we see that the intensity and velocity power spectra have opposite

sense of asymmetry, because the solar noise is partly correlated with the source that

is responsible for exciting the solar oscillations. The solar noise is made up of two

parts: one which is correlated to the source and the other is the additive uncorrelated

background. This also explains the appreciable frequency shift at and above the

acoustic cutoff frequency, for the high frequency pseudo-modes, which are in fact

responsible for the asymmetry of the bound states.

For a composite source the source depth is found to be in a thin layer 75 ± 50

km below the photosphere. It is remarkable that the theoretical spectra matches the

observations when the source is placed within the superadiabatic layer, thus pinning

down the location, extent and the nature of the source.



Chapter 3

Phase and Amplitude Differences
(Part of this chapter is published in ApJ 1999, 510, L149)

The phase difference between velocity and intensity is also linked to the excitation

of p modes. Ground-based observations and analysis carried out by Deubner and

Fleck (1989), Deubner et al. (1992) and space-based observations from MDI that

were analyzed by Straus et al. (1998) revealed a velocity intensity a phase difference

that is below 90 degrees along modal lines of the solar p mode spectra. Above

the acoustic cutoff a non-zero phase difference is observed. But a simple adiabatic

theory of solar oscillations predicts a phase difference of 90 degrees for modes below

the acoustic cutoff frequency (bound states) and zero for modes above the acoustic

cutoff frequency (scattered states). To explain this disagreement between theory and

observations they suggested that continuous partial reflection of the waves in the solar

atmosphere was responsible for the observed phase difference. A number of authors

have studied this problem theoretically (Marmolino and Severino, 1991); (Wang et al.,

1995). However, their models could not explain the unusual phase difference between

velocity and intensity along modal lines. More recently, it was seen in the MDI data

that at low frequencies the velocity has a higher power contrast than intensity, relative

to the uncorrelated background. While at high frequencies above the acoustic cutoff,

the continuum intensity shows higher power contrast relative to the uncorrelated

background compared to the Doppler velocity, see Fig. 2.1 and Fig. 1 of Nigam et al.

(1998). In addition, a puzzling shift between the maxima in the velocity and intensity

40
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high-frequency power spectra is observed in Fig. 2.6 (Nigam et al., 1998).

The phase difference between the intensity maximum and the radius minimum

was discovered in Cepheid pulsation many decades ago. Subsequently, this difference

(called the phase lag) has been determined for a large number of pulsating stars of

different types. In these cases the phase lag is interpreted in terms of nonadiabatic

effects and it is closely linked to the driving mechanism. Recently, Houdek et al.

(1995) presented an attempt to explain the phase lag in the solar oscillations as a

result of the nonadiabatic effects. In the solar case, this theory is far less reliable than

in the case of Cepheids.

We propose that the phase difference and variation of power in the velocity and

intensity spectra can be explained in the adiabatic approximation by the interaction

of the p modes and part of the background noise that is correlated to the source

responsible for exciting the waves. The correlated noise is also responsible for the

reversal of asymmetry between velocity and intensity (Nigam et al., 1998). This

result has been recently confirmed by Rast (1999) and Kumar and Basu (1999).

The solar intensity and velocity oscillations are usually observed from variations in

an absorption line. The intensity variations consist of two parts: solar oscillation

modes and granulation noise. Since the oscillation modes are excited by granulation,

the granulation signal (noise) is partially correlated with the oscillations. Thus, the

observed intensity and to some extent, velocity variations, have a noise component

which is caused directly by granulation and correlated to the oscillations.

3.1 Theoretical model

The Green’s function for the potential well model described in section (2.2.3) given

by equation (2.5) is (see Appendix A.3 for derivation)

GΨ(ω1) =
−c sin(ω1rs/c)

ω1cos(ω1a/c) + ω2sin(ω1a/c)
e−ω2(r−a)/c (3.1)

For modes below the acoustic cutoff frequency the above equation can be simpli-

fied; and, taking into account the time dependence eiωt, the pressure perturbation δp,
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that is taken as a proxy for the intensity fluctuations in the observations which are

caused by the oscillations, is

δp ∝ −αc

ωc

eiωte−ωc(r−a)/c (3.2)

where α is a complex analytical function of ω, a, rs, c and the damping. Using the

equation of continuity, the velocity perturbation is

δv =
δp ω

cρωc

eiπ/2 (3.3)

where ρ is the density which has been assumed to be constant in this simple model

(see Appendix B for details). Without loss of generality both the pressure and velocity

perturbations are evaluated at the upper turning point r = a.

The cross spectrum (see Appendix B, equation (B.13) for its definition) between

the velocity and pressure perturbations is calculated after adding correlated noise,

and is,

Svp = (δv + Nv,cor)(δp + Np,cor)
∗ + Nv,uncorN

∗
p,uncor (3.4)

where * refers to the complex conjugate. Np,cor and Nv,cor are the complex correlated

noise that are added to the pressure and velocity perturbations in equations (3.2) and

(3.3) respectively, and Np,uncor and Nv,uncor are the complex uncorrelated noise.

The phase of the cross spectra Svp gives the phase difference between velocity and

pressure, and is given by

θv−p = arctan
Ni +

ω|δp|2
cρωc

Nr

(3.5)

where Nr and Ni are the real and imaginary parts of the terms in the cross spectra in

equation (3.4) that contain the correlated noise, (N∗
p,corδv + Nv,corδp

∗ + Nv,corN
∗
p,cor +

Nv,uncorN
∗
p,uncor). They have dimensions of velocity times pressure.

From equation (3.5) it is evident that the phase difference θv−p is related to the

power |δp|2. Since tan is a monotonic function in (-π/2, π/2), the phase difference

rises and falls whenever the power jumps and falls, which happens whenever a mode
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is present in the vicinity of an eigenfrequency. Thus, the interaction of the correlated

noise with the mode explains the unusual phase difference along modal lines. In

between the modes the phase difference is due to the presence of both correlated and

uncorrelated noise. In the absence of noise the phase difference θv−p is 90 degrees

everywhere, both along and in between modal lines, which follows from equation

(3.5).

For modes above the acoustic cutoff frequency, equation (3.1) is simplified for the

pressure perturbation,

δp ∝ − c

ω
sin(ωrs/c)e

iωte−iωr/c (3.6)

and the velocity perturbation is given by,

δv =
δp

cρ
(3.7)

The phase difference between velocity and intensity for the scattered states is

given by,

θv−p = arctan
Ni

Nr + |δp|2
cρ

(3.8)

In the absence of noise in equation (3.8) the phase difference is zero. The bound

states show a 90 degrees phase difference, which is the case for standing waves. On

the other hand, scattered states show a 0 degree phase difference, which is true for

propagating waves.

The power contrast of the power of quantity ψ (p or v), Pψ, relative to the power

of the uncorrelated background Pψ,uncor, is Cψ and is given by (see Appendix B)

Cψ = |δψ|2/Pψ,uncor + βψ[1 + 2Re(δψ/Nψ,cor)] (3.9)

where ψ can be p or v, βψ = |Nψ,cor|2/Pψ,uncor is the ratio of the power of correlated,

|Nψ,cor|2, to uncorrelated noise, and Cψ = Pψ/Pψ,uncor.

In Figure 3.1 the power spectra for velocity and pressure is computed for the

potential well model. By adding both correlated and uncorrelated noise to both
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velocity and pressure, we see that the power contrast in the velocity power spectrum

is higher at low frequencies and falls off rapidly at higher frequencies in comparison

to the pressure power spectrum. To see this we assume that the correlated noise

in the velocity is negligible and set βv = 0 in equation (3.9), therefore the power

contrast for the velocity is proportional to |δv|2/Pv,uncor, which rapidly decreases at

higher frequencies, as the waves are no longer trapped. In the case of the pressure

perturbation from equation (3.9) the power contrast has additional terms involving

βp. Due to the presence of these additional terms the pressure power contrast does

not fall off rapidly as compared to the velocity power contrast. It is also seen that

the presence of correlated noise is responsible for the reversal of asymmetry and also

the high frequency shift between velocity and pressure (Nigam et al., 1998).

3.2 Comparison of the Numerical Model and Ob-

servations

Velocity and pressure perturbations are generated numerically from the Green’s func-

tion for the reduced wave equation as described in Chapter 2, (see also Appendix A.2)

using a standard solar model (Christensen-Dalsgaard et al., 1996). In order to com-

pare with the MDI observations, noise is added to the computed perturbations. We

took an example of angular degree l = 200 and angular order m = 81. Other modes

in the MDI data behave similarly. From this the cross spectrum between velocity

and pressure for the bound states is computed. The amplitude (absolute value) and

phase of the cross spectra are plotted in Figure 3.2. A similar plot is made for the

cross spectrum after smoothing the MDI data in Figure 3.3. By adjusting the noise

the observed phase jump in Figure 3.3b between velocity and intensity along modal

lines is reproduced in the theoretical plot in Figure 3.2b (black curve). The correlated

noise is close to zero in the velocity perturbation. We find that the phase difference

is below 90 degrees. While the unusual behavior of the phase along modal lines has

been explained in the discussion of equation (3.5), from which we see that in the

vicinity of an eigenfrequency the power rises and falls, and hence the phase rises and
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Figure 3.1: Normalized (with respect to its maximum) (a) velocity and (b) pressure
power spectra computed for the potential well model as a function of the dimensionless
angular frequency, ωa/c.

falls. The scattered states show a non-zero phase difference. Without noise, no such

jumps in the phase are seen, and the phase is constant at 90 degrees.

The effect of the correlated noise is modeled by adding a complex function whose

real and imaginary parts depend on the characteristics of granulation, convection and

time delay between exciting the waves and observing the disturbance caused by the

oscillations on the surface (Rast, 1999). Complex uncorrelated noise is also added.

From Figure 3.2a we find that increasing the absolute level of the correlated noise,

the modulus of the cross spectrum increases. Where as from Figure 3.2b we observe

that the phase difference is sensitive to the imaginary part of the correlated noise. If
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Figure 3.2: (a) Normalized (with respect to its maximum) absolute value and (b)
phase of the theoretical cross spectrum between velocity and pressure for the bound
states computed for a standard solar model for l = 200, showing two modal lines
n = 2 and 3 (corresponding eigenfrequencies ≈ 2.392 and 2.766 mHz respectively).
The black curve, which matches the data best corresponds to Np,cor = −0.3 − i 0.2,
Np,uncor = 0.3 + i 0.7, Nv,uncor = 0.016 + i 0.016; the brown curve is for Np,uncor =
0.03 + i 0.07, the uncorrelated noise for the velocity and correlated noise for pressure
are the same as the black curve. The green curve is for Np,cor = −0.4− i 0.2 and no
uncorrelated noise; red and blue curves correspond to purely real values of correlated
noise -0.3 and -0.4 respectively for pressure and no uncorrelated noise. The level
of correlated noise is negligible in velocity in the above curves. All the values have
been normalized with respect to the maximum value of the real part of the respective
perturbations in this frequency range.
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Figure 3.3: (a) Normalized (with respect to its maximum) absolute value and (b)
phase of the cross spectrum between velocity and intensity for the smoothed SOI/MDI
data for l = 200, m = 81 showing two modal lines n = 2 and 3 as in Fig. 3.2. The
phase difference is below 90 degrees.

the imaginary part is set equal to zero, the phase difference is not sensitive to changes

in the real part, as seen by the blue and red curves, which coincide.

3.3 Summary

We have explained the unusual phase difference that is below 90 degrees between

velocity and intensity spectra. By adding correlated and uncorrelated noise we are
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able to reproduce the phase jump along modal lines. The deviation of the phase dif-

ference from 90 degrees, that is predicted by simple adiabatic solar oscillation theory

was puzzling for many years. The phase difference depends on the power spectrum,

which jumps whenever an eigenfrequency is approached. The high frequency modes

show a non-zero phase difference which is different from the zero phase difference pre-

dicted theoretically. Taking into account the correlated noise whose level happens to

be higher in the pressure spectrum compared to the velocity, we are able to explain

the high power contrast in the velocity power spectrum at low frequencies and its

rapid drop off at frequencies above the cutoff frequency, in comparison to the inten-

sity. Studying the asymmetry, the high-frequency shift, the amplitude and the phase

difference between velocity and intensity is a useful diagnostic to measure the level

and phase of the correlated noise in the data, and also understand the mechanism of

mode excitation of solar oscillations.



Chapter 4

Asymmetric Fitting Formula
(Part of this chapter is published in ApJ 1998, 505, L51 and ApJ 1998,

506, L147)

An asymmetric fitting formula is derived to measure the eigenfrequencies. The prin-

cipal goal of helioseismology is to infer the internal structure and rotation of the

Sun from the observed eigenfrequencies of the normal modes of oscillation. Solar

eigenfrequencies are generally determined by assuming that the power spectrum is

symmetric and can be fitted by a Lorentzian. This is clearly not the case. Recent

studies (Duvall et al., 1993); (Gabriel, 1993); (Abrams and Kumar, 1996); (Roxburgh

and Vorontsov, 1997); (Nigam et al., 1998); (Rosenthal, 1998) have shown that the

peaks in the power spectra are asymmetric. The asymmetry may be caused by in-

terference between an outward-directed wave from the source and a corresponding

inward-directed wave that passes through the region of wave propagation. Also im-

portant is the interaction between the wave and part of the background noise that is

correlated to the source responsible for exciting the waves. The solar intensity and

velocity oscillations are usually observed from variations in an absorption line. These

variations consist of two parts: solar oscillation modes and granulation noise. Be-

cause the oscillation modes are excited by granulation, the granulation signal (noise)

is partially correlated with the oscillations. According to Goode et al. (1998) the

solar oscillations are excited in the intergranular dark lanes. Thus, the observed in-

tensity and velocity variations have a noise component which is caused directly by
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the dark lanes and correlated to the amplitude of the oscillations. The absorption

line is affected by the p mode oscillations and the solar granulation, (due to intensity

fluctuations and overshoot) which modulate and shift the line. More specifically, the

intensity fluctuations form the correlated component of the noise that is responsible

for the reversal of asymmetry in the intensity power spectrum.

Line asymmetry in the solar power spectra alters the frequencies which are ob-

tained under the assumption that the lines are symmetric. It has been observed

(Rhodes et al., 1997) that when asymmetric line profiles of the velocity data are

fitted with a symmetric formula, the resulting frequency is shifted by a significant

amount. The affect of asymmetry was first observed by Toutain (1993) and later he

observed frequency differences of the order of 0.1 µHz (Toutain et al., 1997) between

intensity and velocity, for modes of low angular degree when Lorentzian fits are per-

formed. This suggests that an asymmetric fitting formula should be used to measure

solar eigenfrequencies instead of the usual Lorentzian fits.

In §4.2 we describe an asymmetric fitting formula that was derived from a phys-

ical understanding of asymmetry. The derivation takes into account the reversal of

asymmetry between velocity and intensity when correlated noise is present in the data

(Nigam and Kosovichev, 1998). The correlated noise is above a certain threshold to

reverse the asymmetry in the intensity power spectrum but is small in the velocity

spectrum so as to preserve its asymmetry. We use a simple model to derive an an-

alytical fitting formula, as the full solar model is complicated and has to be dealt

with numerically. In §4.3 we use our formula to fit both the theoretical velocity and

pressure (intensity) spectra. This is compared with a symmetric Lorentzian fit, and

deviations from the computed theoretical eigenfrequencies are discussed. In §4.4 we

repeat the fits for the medium l MDI data and in §4.5 they are applied to the low l

data from MDI and VIRGO instruments.

4.1 Derivation of the Formula

The Green’s function for the potential well model from equation (2.5) in chapter 2 is
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GΨ(ω1) =
−c sin(ω1rs/c)

ω1cos(ω1a/c) + ω2sin(ω1a/c)
e−ω2(r−a)/c (4.1)

A new formula to fit the bound states (modes with frequencies less than the

acoustic cutoff frequency) is derived from equation (4.1). In the derivation it is

assumed that the damping is much smaller than the frequency, which is true of

the solar p modes. We next substitute the expressions for ω1 and ω2 into equation

(4.1), and expand for small Γ. Making use of the eigenvalue condition at ω = ω0:

ω cos(ωa/c) + w sin(ωa/c) = 0, (where w2 = ω2
c − ω2) (see Appendix A.4) we get

the complex amplitude of the pressure perturbation AΨ (see Appendix C.1, equation

(C.25))

AΨ(X) = −Aw

sin(βX − pw) + i
2
β cos(βX − pw)

sin(βX) + i
2
β cos(βX)

(4.2)

Here X = (ω − ω0)/Γ, β = aΓ/c, Aw = A0c/ωc, A0 is the mode amplitude that

has been multiplied by the Green’s function, pw = p0 +φc, p0 = ω0ds/c, sin φc ≈ ω/ωc

and ds = a− rs is the depth of the source below the upper turning point. To explain

the reversal of asymmetry between velocity and intensity (equivalent to the pressure

perturbation), correlated noise Ncor which is due to the granulation is added to the

amplitude signal AΨ (Nigam and Kosovichev, 1998). The power is then given by

P = |Ncor + AΨ|2. This gives a trigonometric expression for the power, that can be

used to fit the peaks and troughs (minimum points in the power spectra) in the power

spectra (see Appendix C.1, equation (C.28)) and is

P (x) ≈ A
[U cos(Ux) + B sin(Ux)]2 + B2U2 cos2(Ux)

U2 cos2(Ux) + sin2(Ux)
(4.3)

Where x = 2(ν − ν0)/γ, cyclic frequency ν = ω/2π, γ = Γ/2π,A = 4A2
w(1− q2

w)β−2,

B = 0.5β(Ncor − Awqw)A−1
w (1− q2

w)−1/2, qw = cos pw and U = β/2 is a dimensionless

quantity. Here β is the product of the damping Γ (mode line width) and the travel

time a/c of the p modes between the upper and lower turning points. U is generally

small for the solar case. The trigonometric formula in equation (4.3) can be used to

fit multiple peaks, in this case the travel time can be written in terms of the mode
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spacing ∆ν between radial orders of constant angular degree l. The expression for U

is πγ/2∆ν.

This expression for the power can be expanded for small Ux to give a more prac-

tical polynomial formula,

P (x) ≈ A
(1 + Bx)2 + B2

1 + x2
+ Bl (4.4)

Here Bl is the uncorrelated linear background and Ncor is the correlated noise. In

using equation (4.4) as a fitting formula for the line profile the fit parameters are A,B,

the damping γ (which is related to the mode linewidth), and the eigenfrequency ν0.

The parameter B controls the asymmetry. It is positive for positive asymmetry (more

power on the higher frequency end of the peak) and negative for negative asymmetry

(more power on the lower frequency end of the peak). It contains the effects of

correlated noise and the source, the two factors that are responsible for asymmetry.

The sign of B changes when Ncor changes sign. When B = 0 (absence of asymmetry)

the first term in equation (4.4) reduces to the usual Lorentzian profile. Without

correlated noise the frequencies of the troughs in the power spectra are determined

by the source characteristics and the solar structure. Adding correlated noise shifts

these frequencies.

Other workers have derived fitting formulae (Duvall et al., 1993); (Gabriel, 1995);

(Appourchaux et al., 1995b); (Abrams and Kumar, 1996); (Rhodes et al., 1997);

(Rosenthal, 1998), but their models do not explain the reversal of asymmetry between

velocity and intensity. For instance, the polynomial line fitting formula derived by

Rosenthal (1998), equation (45), is different from our formula in equation (4.4), as

his formula does not contain correlated noise, which is responsible for the reversal of

asymmetry between intensity and velocity. Other important features of our profile,

equation (4.4) are that it is always positive and as shown below matches the theoretical

power spectra from a standard solar model and the MDI observations quite well.
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4.2 Fitting of Velocity and Pressure Theoretical

Power Spectra

A simultaneous fit of the velocity and pressure spectra of angular degree l = 200

is performed using the above formula. The fitting is carried out using a standard

nonlinear minimization algorithm. We minimize the chi-square error, defined as the

square of the difference between the power estimated by the above formula and that

from the theoretical power spectra, summed over a suitable frequency range so as to

isolate the mode (see Appendix C.2). The theoretical power spectra are generated

from the Green’s function for the reduced wave equation as described in Nigam et al.

(1998). For modes of medium angular degree l, the effects of spherical geometry can

be neglected. In the plane parallel approximation, the reduced wave equation can be

written using equations (1.30) and (1.43)

d2Ψ

dr2
+

ω2
1 − ω2

+

c2
Ψ = S[f , q], (4.5)

where Ψ is proportional to the Lagrangian pressure perturbation δp, r is the radius, ω

is the frequency and c is the equilibrium sound speed. In equation (4.5) ω2
+ plays the

role of the acoustic potential (Gough, 1993) and is calculated from a solar model using

equation (1.38). For the acoustic modes we neglect ω2
− in equation (1.37), as it is very

small compared to ω2
+. Both ω+ and c are functions of radius. S is a combination

of source terms that include the fluctuating Reynolds stress force, f , and the mass

source, q. The Green’s function GΨ(r, rs) of equation (4.5), for a delta-function source

at r = rs is found numerically using a standard solar model (Christensen-Dalsgaard

et al., 1996). We use reflecting boundary conditions at the lower and upper turning

points. To the Green’s function we add the noise Ncor(ν), which is correlated with the

source function s(ν), and uncorrelated noise Bl(ν). One then obtains for the pressure

perturbation, which serves as a proxy for the intensity observations.

p(ν) = s(ν)[Ncor(ν) + Gp(ν)] + Bl(ν) (4.6)
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Figure 4.1: Asymmetrical fit for the l = 200, n = 5 theoretical power spectra (log
scale) that has been normalized with respect to its maximum value: (a) Velocity
spectrum and (b) Pressure spectrum. The dashed lines show the computed eigen-
frequency. The fitted profile is indistinguishable from the theoretical profile, with a
maximum deviation of 0.003%.
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Figure 4.2: (a) Squares denote the deviation (in nHz) of the asymmetrical fitted
frequencies from the computed eigenfrequencies, triangles are the deviation of the
Lorentzian fitted frequencies of the theoretical pressure power spectrum for l = 200
and the diamonds are the deviation of the Lorentzian fitted frequencies of the ve-
locity power spectrum from the computed eigenfrequencies. (b) Triangles represent
the dimensionless asymmetry parameter B for the pressure power spectrum and the
diamonds for the velocity power spectrum.
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where Gp is proportional to GΨ. The power spectrum for the pressure perturbation

is calculated from the function p(ν), see Fig. 2.5b. This equation is same as equation

(2.3) in chapter 2 with Bl(ν) = np(ν). The velocity power spectrum is found in a

similar manner, from the complex velocity amplitude (Appendix D, equation (D.25)).

The eigenfrequencies ω0 of the solar model are determined numerically from equa-

tion (4.5) with no source term (see Appendix C.3).

The first five modes (bound states with frequencies less than the acoustic cutoff

frequency) of the two spectra are fitted using both the asymmetrical formula and

the Lorentzian profile. The fitting algorithm converges rapidly to the same fitted fre-

quency for both the velocity and pressure power spectra when the asymmetric formula

is used. This is not the case for the Lorentzian fits, where the convergence is slow.

The asymmetrical fit for n = 5 is shown, along with the computed eigenfrequency, in

Figure 4.1. The fits are indistinguishable from the theoretical spectra, with a max-

imum deviation of 0.003%. The resulting fitted frequencies are then compared with

the computed eigenfrequencies in Figure 4.2a. We see the deviation from the true

eigenfrequencies is more pronounced for the Lorentzian fit than for the asymmetrical

formula, which yields values very close to the eigenfrequencies.

In Figure 4.2b we show the asymmetry parameter B for the five modes. The

asymmetry parameter is negative for the velocity and positive for the pressure power

spectra. This difference in asymmetry is also observed in real solar power spectra.

The good agreement obtained using equation (4.4) as a fitting formula means

that the formula although derived for a simple potential, is sufficiently accurate for a

realistic solar model.

4.3 Fitting of Velocity and Intensity MDI Power

Spectra

To carry out a simultaneous fit of the m-averaged velocity and intensity spectra we

compute spherical harmonic transforms (SHTs) of full disk velocity and intensity

images from the MDI instrument (Scherrer et al., 1995). After filling gaps in the
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Figure 4.3: Asymmetrical fit for the l = 75, n = 3 MDI power spectra (log scale)
that has been normalized with respect to its maximum value. Solid curve is the
MDI spectra and the dashed one is the fit. (a) Doppler velocity and (b) Continuum
intensity. The dotted lines show the fitted eigenfrequency, which is the average of the
velocity and intensity fits. It can be seen that the fits are reasonably good, with a
maximum deviation of 10%.
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Figure 4.4: (a) Squares denote the difference (in nHz) between the asymmetrical
fitted frequencies of intensity with velocity, while the diamonds are the deviation of
the corresponding Lorentzian fitted frequencies of the MDI power spectra for l = 75.
(b) Triangles represent the dimensionless asymmetry parameter B for the intensity
power spectrum and the diamonds for the velocity power spectrum.
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SHTs, they are Fourier transformed to make power spectra, shifted in frequency

according to a solar rotation law, and averaged over the angular order m. To simplify

the comparison we choose the 60 days from April 14 to June 12, 1997 for which

simultaneous velocity and intensity images were available.

A fit of these power spectra for angular degree l = 75 and order n from 3 to 8 is

done using the asymmetrical formula. The technique is similar to that described in

the previous section. Here we do not present the fits for l = 200 because the peaks are

not properly resolved and the fits get corrupted by the l-leakage. In Figure 4.3 we see

that the asymmetric formula fits the data reasonably well with a maximum deviation

of 10%. From the fits we get a small difference in the frequency between velocity

and intensity, which is much smaller than that obtained by fitting a Lorentzian as

seen in Figure 4.4a. In Figure 4.4b the asymmetry parameter B for both velocity

and intensity is shown. This parameter, which controls the asymmetry, is found to

decrease with frequency and reaches a minimum around 3 mHz. This is consistent

with the low l fits of Toutain et al. (1998) using the same asymmetrical formula.

4.4 Application of the formula to low degree modes

An accurate determination of frequencies of solar acoustic (p) modes of low angular

degree l is necessary to infer the structure and rotation of the solar core. Since the

work of Duvall et al. (1993) based on oscillation spectra averaged over the azimuthal

order, m, the line shape of medium-l p modes have been considered to be possibly

asymmetric. Moreover, this asymmetry showed up with opposite sign for modes

observed in intensity and in velocity. In standard techniques of measuring solar

frequencies (Anderson et al., 1990) the asymmetry is not taken into account, and the

line shape is assumed to be a Lorentzian. This leads to systematic errors in frequency

measurements, and thus to errors in helioseismic inferences of the structure of the

Sun. Recently, Toutain et al. (1997) have observed frequency differences of the order

of 0.1 µHz between intensity and velocity low-degree p mode lines when a Lorentzian

fit was done. In this chapter we show that these frequency differences can significantly

be reduced using our model of an asymmetrical line profile.
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The first successful attempt to detect the asymmetry of low-l modes was made by

Toutain (1993) using the intensity data from the IPHIR space experiment (Frohlich

et al., 1990). However, the IPHIR data being the longest intensity time series avail-

able at that time, had a poor resolution and signal-to-noise ratio to make reliable

conclusions about the asymmetry and corresponding frequency corrections.

The oscillations of the Sun have been observed continuously for about 2 years with

three experiments on board SOHO. Two of these experiments are VIRGO (Frohlich

et al., 1995) which is measuring oscillations of the solar irradiance with a triple Sun-

photometer (SPM) and a 16-pixel imager LOI, (Appourchaux et al., 1995a) and the

MDI which is measuring with a CCD detector velocity oscillations in the Ni 6768

line (Scherrer et al., 1995). We have used the longest available time series from both

experiments consisting of 610 days of integrated velocity and spectral irradiance (at

400, 500 and 862 nm) to accurately measure the parameters of the p modes for degrees

l=0,1 and 2 in a frequency domain ranging from 2000 to 4000 µHz.

We discuss the fact that the shape of low-degree p mode lines significantly depart

from a Lorentzian profile. We use a theoretical model by Nigam and Kosovichev

(1998) to fit the asymmetrical shape found in the data. We fit both intensity and

velocity lines to determine the frequency dependence of the asymmetry and present

new estimates of eigenfrequencies of low-degree modes (Toutain et al., 1998) which are

particularly important for determining the structure of the Sun’s energy-generating

core.

4.4.1 Integrated velocity and intensity power spectra

The power spectra of the 610-day time series are plotted in Figure 4.5 in a frequency

range spanning from 1000 to 5000 µHz. Below 2000 µHz we hardly see p mode

lines in the intensity data because of granulation noise which steeply increases, and

above 4000 µHz, mode linewidths are such that modes of degrees 0 and 2 overlap. We

therefore restrict ourselves to work in this frequency range to compare the results from

the velocity and intensity data. Because of the stochastic nature of solar oscillations,

the power in each frequency bin of a line is distributed with a large variance around its
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Figure 4.5: Oscillation power spectra of low angular degree solar p modes obtained
from 610-day time series of a) MDI integrated velocity, and b) VIRGO/SPM intensity
(red channel) measurements.

expectation value (Woodard, 1984). A smoothing of the line is therefore necessary to

reveal its fine structure. Line asymmetry is mainly visible on the edges of the power

spectra. As an example, we have plotted in Figure 4.6 the l=0, n=12 line both for

MDI and SPM (red) spectra. The lines are smoothed with a 1 µHz box-car average

in order to enhance the asymmetry of the profiles. On top of the profiles are plotted

results of fitting using a model of the asymmetrical line shape as described in the

next section. The line asymmetry which is reversed between velocity and intensity

power spectra is apparent.
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Figure 4.6: Smoothed l=0 n=12 line for MDI (a) and SPM (b) with a box-car average
of 1 µHz.

4.4.2 Physical model for p mode line asymmetry and fitting

formula

Physically, asymmetry is a result of an interaction between an outward-directed wave

from the source and a corresponding inward-directed wave that passes through the re-

gion of wave propagation (Duvall et al., 1993). As illustrated in Figure 4.6, the veloc-

ity power spectrum exhibits negative asymmetry (more power on the lower frequency

end of the peak) whereas the intensity power spectrum shows positive asymmetry

(more power on the higher frequency end of the peak). This reversal of asymmetry

can be explained if correlated noise is added to the amplitude spectra (Nigam et al.,

1998).

The asymmetry in velocity and intensity power spectra is of opposite sense because

a component of the solar noise that is correlated with the source is present in the

observed signal. The correlated component of the noise is below a certain threshold
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to preserve the asymmetry obtained by the model (Nigam et al., 1998) in the velocity

power spectrum but that it is large enough (the correlated component is above a

certain threshold) to reverse the asymmetry in the intensity spectrum. This is due

to the fact that the correlated noise shifts the zero points in the amplitude spectra

of the pressure perturbation. The uncorrelated noise plays no role in the reversal of

asymmetry because it adds to the power not to the amplitude spectrum.

The solar intensity and velocity oscillations are observed from variations in an

absorption (Fraunhofer) line or, as in the case of the SPM, from intensity variations

in relatively broad bands of the solar spectrum. These variations consist of two

parts: solar oscillation modes and granulation noise. Because the oscillation modes

are excited by granulation the granulation signal (noise) is partially correlated with

the oscillations. According to Goode et al. (1998) the solar oscillations are excited

in the intergranular dark lanes. Thus, the observed intensity variations have a noise

component which is caused directly by the dark lanes and correlated to the amplitude

of the oscillations. It has been suggested by Roxburgh and Vorontsov (1997) that the

granulation overshoot forms the correlated component of the noise to the velocity

signal. However, the observations show higher level of noise in the intensity data,

and support the idea by Nigam et al. (1998) that the line asymmetry in the intensity

power spectra is reversed due to the correlated noise in the intensity observations.

To measure the properties of solar oscillations we employed an asymmetric fitting

formula of Nigam and Kosovichev (1998) for the power, P from equation (4.4):

4.4.3 Line asymmetry

According to the line shape model described in the previous section we have fitted

l=0-2 doublets and the l=1 lines between 2000 and 4000 µHz. The technique of fitting

is a standard maximum likelihood technique. Usually for a disk-averaged spectrum

we fit simultaneously the line for l=0 and 2 because they overlap. We therefore

give a mean asymmetry for these degrees. The modes of l=1 are fitted assuming

2-component rotationally split multiplets of m=1 and -1, both components having

the same asymmetry coefficient. The asymmetry coefficient is plotted in Figure 4.7
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Figure 4.7: Asymmetry coefficient B for l = 0 (squares), l = 1 (crosses) and l = 2
(diamonds) modes as a function of mode frequency for a) MDI, b) SPM data, and c)
IPHIR data.
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as a function of frequency for the MDI (a) and SPM (b) data. It is clear from these

results that, according to the definition of asymmetry we have, velocity lines exhibit

negative asymmetry whereas intensity lines exhibit positive asymmetry. Moreover the

frequency dependence of the asymmetry is similar in both cases. Asymmetry seems

to have a minimum around 3000 µHz and appears to be smaller for the velocity than

for the intensity at least for low and high frequencies. Both effects can easily be

explained if correlation with noise along with the source exciting the modes is the

factor of asymmetry (Nigam et al., 1998). In this case for a given correlation the

asymmetry is a function of the square root of the inverse of the signal-to-noise ratio,

which is largest around 3000 µHz and is bigger in general for the velocity spectra

compared to the intensity spectra, we expect the above behavior of the asymmetry

with frequency and data type. These arguments also explain why lines in the red

spectrum have slightly larger asymmetries compared to those from the SPM green

channel spectrum. This is because the signal-to-noise ratio in the red is about 10%

lower than in the green. On the other hand, blue and green signals are very well

correlated and have the same signal-to-noise ratios leading to the same asymmetry.

It is interesting to compare these asymmetries with those obtained with IPHIR

(Frohlich et al., 1990), which is an instrument similar to the SPM/VIRGO instrument.

IPHIR lines were fitted with an empirical line shape formula (Toutain, 1993) which

has the property to describe well the asymmetrical profile shown by Duvall et al.

(1993). Compared to SPM, IPHIR data have a signal-to-noise ratio in power which

is 3 times smaller. If the noise were to be solar noise and according to our model of

noise-source correlation we would expect the asymmetries with IPHIR to be 2 times

larger than with SPM, and that is what they are. It is interesting to note that an

increase in solar noise for a fixed line amplitude should mask the line asymmetry, but

it turns out to be opposite with IPHIR. The asymmetries from the IPHIR data are

generally larger than the SPM asymmetries. It is therefore consistent to think that

IPHIR noise in the 5-minute range is solar noise and that the p mode amplitudes are

correlated with the noise.
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Figure 4.8: Frequency differences between SPM and MDI frequencies for l = 0
(squares), l = 1 (crosses) and l = 2 (diamonds) modes estimated using a) a sym-
metrical Lorentzian profile, and b) the asymmetrical line profile (Eq. 4.4). The
errorbars are the 1-σ errors.
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4.4.4 Frequency differences

The frequency differences from our symmetrical (Lorentzian) fits to the MDI and

SPM red channel data are plotted in Figure 4.8a. There is a systematic shift both for

l=0-2 and l=1 frequencies. The frequencies inferred from the SPM intensity spectrum

are systematically higher than the frequencies from the MDI velocity spectrum, as

one would expect due to the reversal of line asymmetry. These differences are of the

order of 0.1 µHz.

Using the asymmetrical formula given in equation (4.4) we have recomputed the

mode frequencies. The results are plotted in Figure 4.8b. Obviously, the differences

are significantly reduced when an asymmetrical profile is used. We have tested the

statistical significance of the asymmetry using the likelihood ratio-test (Appourchaux

et al., 1995a) and find that it is highly significant in most cases. Table 1 in Toutain

et al. (1998) shows mean frequency differences between intensity and velocity data

obtained with both symmetrical and asymmetrical fits. The close agreement between

frequencies from the asymmetrical fits means that these frequencies provide more

accurate approximation to the solar mode eigenfrequencies than the frequencies pre-

viously measured with a symmetrical Lorentzian profile. In Table 2 of Toutain et

al. (1998), a list of the frequencies obtained from the asymmetrical fits to the MDI

velocity spectra in the range from 1000 to 4000 µHz are provided.

4.4.5 Implications for solar core structure

To determine the hydrostatic structure of the Sun we combined the frequencies of

the low-degree modes with the frequencies of l = 3 − 300 obtained by Rhodes et al.

(1997) from the MDI medium-l data. The medium-l frequencies which constrain the

structure outside the solar core have not been corrected for the asymmetry effect.

The spherically symmetric structure of the Sun was determined by using a version of

the optimally localized averaging inversion method of Gough and Kosovichev (1988).

Figure 4.9 shows the relative difference between the square of the sound speed in the

Sun and the standard solar model (Christensen-Dalsgaard et al., 1996) In the central

core, the sound speed determined using the frequencies from the asymmetrical fits
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Figure 4.9: The differences in the squared sound speed between the Sun and the solar
model S inferred from the frequencies of l = 0−2 modes and the medium-l frequencies
of Rhodes et al. (1997). The solid curve with the crosses shows the results obtained
with the asymmetrically fitted low-degree modes; the triangles represent the result of
the symmetrical (Lorentzian) fits to the mode lines of the oscillation power spectrum.
The vertical error bars show the formal error estimates, and the horizontal bars show
the characteristic width of the localized averages.

(solid curve with errorbars) is approximately 0.1-0.2% higher than that inferred from

the symmetrical frequency fits. This shift does not result in any dramatic changes

in our knowledge of the solar core structure. However, it may be important for

understanding the difference between the Sun and the standard model.

It has been noted that the sound-speed perturbation profile in the central core is

consistent with partial mixing (Gough and Kosovichev, 1988). The change of slope at

0.2 R may indicate the boundary of mixing. Of course, at this stage, other possible

explanations, e.g. variations of opacity and nuclear reaction rates, are not ruled out.

Also, we note that our inversion results are not fully consistent with the recent results

from GOLF (Turck-Chièze et al., 1997), in which, however, the asymmetry effect was
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not taken into account.

4.5 Summary

We have investigated the shape of spectral lines of solar oscillation modes using both

theoretical models and observational data from SOHO/MDI. A new fitting formula

for the power spectra of solar velocity and intensity oscillations has been derived. It

has been shown that the formula provides an accurate estimate of the eigenfrequencies

when applied to simulated and MDI velocity and intensity power spectra.

We have studied p mode frequency differences between velocity and intensity data

using 610 days of MDI integrated velocity and VIRGO/SPM intensity. Fitting l=0-2

p mode lines with commonly used Lorentzian profiles leads to systematic frequency

differences of the order of 0.1 µHz between intensity and velocity and also to a smaller

extent between different wavelengths in intensity. Using instead a model of an asym-

metrical line profile based on excitation of solar oscillations by a localized source

and its correlation with the solar noise in the observed velocity and intensity sig-

nals gives frequency differences which are significantly smaller than the differences

resulting from Lorentzian fits. The asymmetrical line profile provides more accurate

estimates of the eigenfrequencies of solar oscillations. The asymmetry effect results

in small (0.1-0.2%) but significant changes in the inferred sound-speed inversion in

the energy-generating core, which may be important for understanding the physical

processes in the core.



Chapter 5

Source of Solar Acoustic Modes
(Part of this chapter is published in ApJ 1999, 514, L53)

Solar oscillations are thought to be excited stochastically by turbulent convection.

It was Lighthill (1952) who for the first time laid down a mathematical theory of

excitation of sound waves by sources of different multipoles. Since then, several

authors (Goldreich and Kumar, 1990); (Balmforth, 1992) have applied his theory to

the excitation of solar p modes. Recently, Goldreich et al. (1994) and Stein and

Nordlund (1998) argue that entropy fluctuations, which correspond to a monopole

source, drive the solar p modes.

Only recently has it been realized that the observed difference in asymmetry be-

tween velocity and intensity power spectra of the solar acoustic modes is a consequence

of the excitation mechanism of the solar oscillations. The relation of the observed

asymmetry and the excitation mechanism (Roxburgh and Vorontsov, 1997); (Nigam

et al., 1998); (Nigam and Kosovichev, 1999b); (Rast, 1999) and (Kumar and Basu,

1999) throws light on the nature of the correlated noise that is responsible for the op-

posite asymmetry between velocity and intensity. The correlation is expected because

the main source of noise is the turbulent convection which also drives the oscillations.

The same correlated noise also explains the unusual phase difference between veloc-

ity and intensity oscillations (Nigam and Kosovichev, 1999a) and the high-frequency

shift above the acoustic cutoff frequency between velocity and intensity (Nigam et al.,

1998).

70
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In this chapter we investigate the power spectra of velocity and pressure perturba-

tions obtained for different source depths and types. In order to explain the reversal

of asymmetry between velocity and intensity, correlated noise is added to the ampli-

tude spectrum of the pressure perturbation following Nigam et al. (1998). Previously

Kumar and Lu (1991) proposed that the source depth can be determined solely by

matching the high frequency spectra (above the acoustic cutoff frequency) with the

observed spectra. Clearly this is not the case and has been pointed out in Abrams and

Kumar (1996), Nigam et al. (1998) and Kumar and Basu (1999). In this paper the

source depth and type are determined by studying both the low and high frequency

part of the spectra. The interaction of the correlated noise and the p modes support

the observations of Goode et al. (1998), that the solar oscillations are excited in the

intergranular dark lanes.

In §2 we compute the power spectra for different source depths and for different

multipoles using a standard solar model (Christensen-Dalsgaard et al., 1996). In §3
we discuss the origin and role of the correlated noise and propose a mechanism for

the excitation of solar oscillations that is consistent with the MDI observations.

5.1 Theoretical Model

We assume that solar acoustic waves are generated by turbulence in the convection

zone, and apply Lighthill’s (1952) method to calculate the velocity and pressure

perturbations. We also assume that the intensity variations recorded by the MDI

instrument correspond to the pressure perturbations together with the correlated

noise.

From equation (2.1)

d2Ψ

dr2
+

[
ω2 − ω2

c

c2
− L2

r2

(
1− N2

ω2

)]
Ψ = S[f , q], (5.1)

where Ψ is proportional to the Lagrangian pressure perturbation δp, r is radius, ω is

frequency, ωc is the acoustic cutoff frequency, c is the equilibrium sound speed, N is

the buoyancy frequency, L =
√

l(l + 1), S is a combination of the source terms given
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by equation (2.2), that include the turbulent fluctuating Reynolds stress force, f =

∂(ρu′u′j)/∂xj and the mass source, q = ∇ · (ρ′u′) where ρ is the equilibrium density,

and p′, ρ′ and u′ are fluctuating parts of pressure, density and velocity respectively.

In order to understand the properties of the solution it is important to note that

the source is proportional to f and ∇ · f ≡ ∂2(ρu′iu
′
j)/∂xi∂xj. This means that a

localized force gives rise to acoustic radiation of dipole type, Reynolds stresses ρu′iu
′
j

generate quadrupole type of radiation, and mass sources q are of monopole type. The

exact contributions of the sources to different multipoles depends on the model of

turbulence.

The Green’s function, GΨ(r, rs) for equation (5.1) is calculated numerically as was

done in section 2.2.1. Then, integrating by parts, we express the pressure and velocity

perturbations of the acoustic waves in terms of the Green’s function for the localized

sources of different types (see Appendix D). For instance, for a point source force f ,

the pressure perturbation, δp(robs), at an observing location, r = robs, is proportional

to GΨ(r, rs) and the derivative of GΨ(r, rs) with respect to the source location rs since

S is proportional to f and ∇f . On the other hand, the pressure perturbation is

proportional to GΨ(r, rs) for both the composite source S and the monopole source.

Where as for a quadrupole source, it is proportional to the first and second derivatives

of the Green’s function with respect to the source location. The pressure and velocity

perturbations for sources extended over a range of depth can then be calculated from

the respective Green’s function by linear superposition.

The pressure perturbations for monopole, dipole and quadrupole sources are given

below (see Appendix D):

δpmon(robs) ∝ c5(rs)GΨ(robs, rs), (5.2)

δpdip(robs) ∝ c6(rs)GΨ − d

drs

(
GΨ

c7(rs)

)
, (5.3)

δpqud(robs) ∝ d2

dr2
s

(
GΨ

c7(rs)

)
− d

drs

(
GΨ

c8(rs)

)
(5.4)
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where c5, c6, c7 and c8 are calculated from the solar model. The velocity perturbations

can be calculated similarly (see Appendix D, equation (D.25)).

Using a standard solar model (Christensen-Dalsgaard et al., 1996), we have calcu-

lated the theoretical Green’s functions of angular degree l = 200 for both the velocity

and pressure perturbations for different types of acoustic sources located at various

depths, d, beneath the photospheric level of the model. Figures 5.1 and 5.2 show the

results at robs = 300 km above the photosphere, where the observed spectral line is

formed, for a monopole source and a dipole source due to the Reynolds stress force

respectively at four depths, 50 km, 75 km, 100 km, and 200 km.

For the velocity (or pressure) power spectra (Fig. 5.1) corresponding to the

monopole source, the bound state modes below the acoustic cutoff frequency (≈ 5.2

mHz) show marked asymmetry which decreases with increasing frequency. The peaks

of the bound states are close to the eigenfrequencies if damping is small as is the case

for p modes. The scattered states (those above the acoustic cutoff frequency) are

almost symmetrical and their peaks are mainly determined by the source position.

They convey little information about the solar cavity as compared to the bound states.

For the spectra for depths, d=50 km, 75 km and 100 km, the sense of asymmetry

of the bound states and the peaks of the scattered states are in agreement with the

MDI observations. However, for larger depths, there is a clear mismatch with the

MDI data of Fig. 2.1a, because the scattered states show asymmetry not found in

the observation. For example, at a depth of 200 km there is a peak around 5.3 mHz

that has become asymmetrical, and moreover at this depth the peaks of the scattered

states do not match the observed maxima. The quadrupole source produces a power

spectra similar to that in Figure 5.1 that is produced by a monopole source.

It is interesting to note that the velocity (or pressure) power spectra (Fig. 5.2) for

a dipole source are more sensitive to the depth of the source. Since the asymmetry

in Figure 5.2 does not match the observations, the dipole source is ruled out. Also,

changing the type of the source (e.g. dipole to quadrupole) changes the sense of the

asymmetry in the power spectra.

It is important to note that the narrow range of the acoustic source depth found

by comparing the theoretical and observed power spectra coincides with the region
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Figure 5.1: Normalized (with respect to its maximum) theoretical velocity power
spectra of solar oscillations of angular degree l = 200 produced by a monopole source
located at four depths beneath the photospheric level at d = 50 km, 75 km, 100 km
and 200 km. Vertical dotted lines show the location of the maxima in the observed
MDI velocity power spectrum (Fig. 2.1a) We have applied a threshold (at 10−6) to
remove the numerical noise. The pressure spectra look similar.
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Figure 5.2: Normalized (with respect to its maximum) theoretical pressure power
spectra of solar oscillations of angular degree l = 200 produced by a dipole source
(point force) located at four depths beneath the photospheric level at d = 50 km, 75
km, 100 km and 200 km. Vertical dotted lines show the locations of the maxima in
the observed intensity power spectrum (Fig. 2.1b). The velocity spectra look similar.
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of superadiabatic convection in the solar model. This region represents the highly

unstable upper boundary layer of the convection zone where convective motions are

most violent. Figure 5.3 shows the properties of the upper convection zone as de-

scribed in the standard solar model based on a mixing length theory of convection.

In the superadiabatic layer, Reynolds stresses show a sharp gradient around 75 km

below the photosphere. Also from Kumar (1994), the quadrupole source due to the

Reynolds stresses peaks in the superadiabatic layer. It is therefore probable that the

p modes get excited in this region.

It is remarkable that the sharp variation of the equilibrium solar model in the su-

peradiabatic layer effects the pressure and velocity perturbations of the low-frequency

modes in such a way that the asymmetry of these modes corresponds to the observa-

tions only when the acoustic source is placed within the layer, thus pinning down the

location and the nature of the source. Of course, in the real Sun the superadiabatic

layer is likely to be extended over a larger region, which may also vary from the pole

to the equator.

In the above formulation we found that a monopole source reproduced the veloc-

ity power spectrum rather well. The quadrupole source due the turbulent fluctuating

Reynolds stresses behaves more like the monopole source as seen in Figure 5.1 and it

matches the velocity observations. On the other hand, the force due to the Reynolds

stress is a source of dipole type and it does not match the observations as well as

the monopole and quadrupole sources match the observed velocity power spectrum.

Moreover, past models of mode excitation were unable to explain the reversal of asym-

metry between velocity and intensity. Recently, Nigam et al. (1998) have proposed

that the correlated noise, which is due to the turbulent convection (granulation), is

responsible for the reversal of asymmetry between velocity and intensity. The role of

the correlated noise on mode excitation is discussed in the next section.

5.2 The Role of Correlated Noise

The role of the correlated noise is two-fold. Firstly, by incorporating it into the

model we are able to explain the observed reversal of asymmetry, high frequency
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Figure 5.3: Turbulent force (solid curve) and pressure (dotted curve) due to Reynolds
stresses as a function of depth in a standard solar model based on a mixing length
theory. Dashed curve shows parameter of convective stability A∗ ≡ 1

γ
log p
log r

− log ρ
log r

.

shift above the acoustic cutoff frequency and the unusual phase difference between

intensity and velocity (Nigam and Kosovichev, 1999a). Secondly, it sheds some light

into the excitation mechanism for p modes. It was discussed in chapter 2, section

2.2.2 that the pressure and velocity perturbations can be calculated from the Green’s

function after the addition of correlated noise, in order to match the observed power

spectra.

From Figure 5.1 it is found that both monopole and quadrupole sources match the

asymmetry and high frequency peaks of the observed velocity power spectrum, when

the source is placed at a depth of 75 km. However, the dipole source does not match

the velocity power spectrum, hence it can be ruled out. In order to match the observed

intensity power spectrum correlated noise is added to the pressure perturbation for

a source located at 75 km. Pressure perturbation with correlated noise for a source

depth of 75 km is shown in Figure 5.4 for monopole, dipole and quadrupole sources.
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Figure 5.4: Normalized (with respect to its maximum) theoretical pressure power
spectra of solar oscillations of angular degree l = 200 produced by a source located
at a depth of 75 km beneath the photospheric level. Three different types of sources
are considered, to which real correlated noise is added. a) Monopole, relative level of
correlated noise = −0.02, (b) Dipole, relative level = −4.0×10−5 and (c) Quadrupole,
relative level = −0.03. These values have been normalized by the maximum value
of the real part of the pressure perturbation. There is no uncorrelated noise in the
above cases. We have applied a threshold (at 10−6) to remove the numerical noise.
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For different types of sources the level of the correlated noise was adjusted to get

the best possible agreement with the data. The sources happen to be negatively

correlated as also shown by Nigam and Kosovichev (1999a). This is consistent to

the photospheric darkening in the intensity fluctuations prior to the acoustic event as

observed by Goode et al. (1998) and seen in the simulations of Stein and Nordlund

(1998). By adding correlated noise we are able to match the intensity data best with

the help of a monopole source, as compared to the other source types. We are also

able to reverse the asymmetry for the dipole and quadrupole sources too, but they do

not match the asymmetry and high frequency peaks in the observed intensity power

spectrum as well as the monopole source.

The source of the oscillations were located by Goode et al. (1992) close to where

we find in the present paper. They used models and data about the height variation

of the velocity signal in the photosphere to pin down the depth of the source. Also,

Goode et al. (1998) showed a linear dependence on the local convective velocity of the

magnitude of the local excitation of oscillations implying a monopole source, which

is consistent with our finding.

5.3 Summary

Simulating the MDI observations of medium angular degree we find that a source

is located at a depth of 75 ± 50 km below the photosphere, in the superadiabatic

layer. The source appears to be of composite form, consisting of monopole and

quadrupole types. A monopole source provides a best match with the observations in

comparison to the quadrupole source; hence, it may be the dominant term exciting

the p modes. Studying the interaction of the correlated noise with the p modes one

finds that the noise is negatively correlated to the source, which leads to photospheric

darkening prior to the acoustic emission. Therefore, it is possible that the solar p

modes are excited by a combination of mass or entropy fluctuations due to radiative

cooling at the solar surface, which constitute a monopole source and quadrupolar

Reynolds stresses. Studying the phase relation between the correlated noise and the

perturbations could provide an insight into the physics of excitation of solar p modes.
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Conclusions

In this thesis I have discussed the excitation of solar p modes. The main contributions

to the field are an explanation for the reversal in asymmetry between velocity and

intensity power spectra. This then led to the derivation of an asymmetrical fitting

formula to determine the eigenfrequencies of oscillation by fitting both the velocity

and intensity power spectra. I also gave an explanation for the observed phase differ-

ence between velocity and intensity helioseismic spectra. To explain these observed

characteristics a model of excitation for solar p modes is proposed.

The cause of the reversal of asymmetry and the observed phase difference is due

to the presence of correlated noise in the oscillation spectra. This noise happens to

be higher in the intensity observations and can perhaps be attributed to the granu-

lation (Nigam et al., 1998). Solar p modes are believed to be excited by turbulent

convection in the superadiabatic layer, by a combination of mass or entropy fluctua-

tions, which constitute a monopole source and quadrupolar Reynolds stresses (Nigam

and Kosovichev, 1999b). The excitation of p modes could proceed in the following

way: Radiative cooling at the solar surface results in monopolar emission of sound

due to entropy fluctuations, followed by convective downdrafts in the dark narrow

intergrannular lanes. Such mass fluctuations are linked to changes in volume, which

in a gravitationally stratified medium such as the Sun produce dipolar emission via

buoyant acceleration in the cool intergrannular lanes. Finally, the Reynolds stresses

resulting from horizontal flow into the evacuated region left behind by the downflow
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are responsible for quadrupolar acoustic emission. In the observations of Goode et al.

(1998) and simulations of Nordlund (1985), Stein and Nordlund (1989) the strength

of the acoustic event is correlated to the photospheric darkening that is observed prior

to the occurrence of the event. This supports the notion of the correlated noise that

is introduced in the thesis. Several groups have verified our findings independently

(Kumar and Basu, 1999); (Rast, 1999) . The phase difference between velocity and

intensity that was studied in chapter 3 has been recently confirmed by Oliviero et

al. (1999) and Straus et al. (1999), who attribute the unusual behavior of the phase

to the correlated background. Moreover, the asymmetrical fitting formula is now

being used by the helioseismology community to determine the eigenfrequencies of

oscillation of the solar p and f modes (Antia and Basu, 1999); (Thiery et al., 1999);

(Bertello et al., 1999).

6.1 Directions for Future Work

It would be interesting to verify the above results using numerical simulations of

Stein and Nordlund. The reversal of asymmetry in the intensity power spectra could

then be explained by solving the equations that include radiative transfer in the

optically thin outer layers. Using the model proposed here and the observations

from the different instruments (MDI, GOLF and VIRGO) onboard SOHO, it should

be possible to estimate the correlated noise and study its physics. This would be

very useful in understanding the interaction of oscillations with turbulence. Also

changes in asymmetry and phase difference with solar cycle would be worth studying.

This would be useful in studying the effect that the magnetic field has on the p

mode frequencies. It would be challenging to fit the splittings and take rotation into

account. Ridge fitting could be done using this formula. It would be interesting to see

if the whole spectrum could be fit all at once. Since the correlated noise is much less in

the velocity spectrum compared to the intensity, whether fitting the velocity power

spectrum to determine the eigenfrequencies sufficient? These are a few important

related problems to keep the helioseismologists occupied into the next century.
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The effect of asymmetry on the frequencies of p modes will be important in cor-

recting the solar models, in order to match the corrected observed frequencies. This

would in turn have an impact on the celebrated solar neutrino problem (Bahcall and

Davis, 1976).

High spatial and temporal resolution observations would be useful to resolve in-

dividual acoustic sources and study their distribution. This would be invaluable in

studying the physics of excitation of solar p modes. A few years back Brown (1991)

has proposed that these sources are likely to be localized and discrete. Therefore, a

technique using wavelets (Milford and Nigam, 1995) could be applied to the data in

order to study these acoustic events.

A similar study for the f mode could be undertaken. This would then shed light

on its excitation.

The formalism developed in this thesis can be used to theoretically study the

excitation characteristics of g modes. When, if ever, g modes are detected in the Sun,

they can be used to test the predictions of the theory.

The millennium has seen several interesting discoveries. Solar p modes with a

period of about five minutes (Leighton et al., 1962) were discovered only four decades

ago, and the story of mode excitation has been revisited several times by many

authors. There is a long way to go, but we hope to learn more about these acoustic

modes and the Sun in the next century.



Appendix A

Mode Excitation

A derivation of the equations discussed in chapter 2 is carried out here. In §A.1

the basic equation in terms of the Lagrangian pressure perturbation is derived. In

§A.2 the algorithm for the numerical computation of the Green’s function is outlined.

Finally, in §A.3 and §A.4 the Green’s function and the eigenvalue condition for the

simple potential well problem are calculated analytically.

A.1 Linearized equations in terms of Lagrangian

perturbations

The equations (1.22) and (1.23) are rewritten as

dξ

dr
+ A11ξ + A12δp = S1 (A.1)

dδp

dr
+ A21ξ + A22δp = S2 (A.2)

where

A11 =
2

r
− L2g

ω2r2
(A.3)
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A12 =

(
1− L2c2

ω2r2

)
1

ρc2
(A.4)

A21 = −gρf

r
(A.5)

A22 =
L2g

ω2r2
(A.6)

where f is defined in equation (1.24)

The equations (A.1) and (A.2) are transformed to (see equations (1.30) and (1.31))

d2Ψ

dr2
+ K2Ψ = S (A.7)

where Ψ is proportional to the Lagrangian pressure perturbation δp and K is is given

by equations (1.32) or (1.37)

For p modes this equation is simplified as

K2(r) ≈ ω2
1 − ω2

+

c2
(A.8)

where, ω2
1 = ω2 + iωΓ, and Γ is the damping coefficient.

The composite source corresponding to the Lagrangian pressure perturbation is

S(r, ω) =

[
c1

dS2

dr
+ c2S2

]
+

[
c3

dS1

dr
+ c4S1

]
, (A.9)

where c1, c2, c3 and c4 depend on the solar model and are given by:

c1 = 1/u (A.10)

where u is defined by equation

c2 = z/u (A.11)

and z is given by

z = A11 − A
′
21

A21

= A11 − d(ln A21)

dr
(A.12)
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c3 = −ρg

u
(A.13)

c4 = −
[
zρg + A21 + d(ρg)

dr

]

u
(A.14)

A.2 Numerical solution to the Green’s function

The defining equation for the Green’s function is

d2Ψ

dr2
+

ω2
1 − ω2

+

c2
Ψ = δ(r − rs), (A.15)

where, ω2
1 = ω2 + iωΓ

The above equation is discretized using a non-uniform mesh, by finited differ-

ence approximation of the derivative. The following notation is used Ψj = Ψ(rj),

cj = c(rj) and for other variables. The radial variable r has been discretized as

r1, r2, . . . rj, . . . rN.

This is subject to the following boundary conditions: At r = 0

Ψ = 0 (A.16)

At r = R, the radiation condition is applied to ensure outgoing waves. A harmonic

time dependence of eiωt is used.

dΨ

dr
+ ikRΨ = 0 (A.17)

where,

k2(r) =
ω2

1 − ω2
+(r)

c2(r)
(A.18)

Evaluating equation (A.18) at r = R leads to
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k2
R = k2(R) =

ω2
1 − ω2

+R

c2
R

(A.19)

If on the other hand a harmonic time dependence of e−iωt is used instead, the

radiation condition is modified to

dΨ

dr
− ikRΨ = 0 (A.20)

At the source location r = rs, the solution is continuous, but there is a jump in

the first derivative. There are two solutions Ψ< for 0 < r < rs and Ψ> for rs < r < R.

They are matched at r = rs.

The problem of computing the Green’s function can be formulated as solving the

following differential equations subject to the boundary and matching conditions.

d2Ψ<

dr2
+

ω2
1 − ω2

+

c2
Ψ< = 0 (A.21)

d2Ψ>

dr2
+

ω2
1 − ω2

+

c2
Ψ> = 0 (A.22)

Ψ<(r) = 0, at r = 0 (A.23)

Ψ<(rs) = Ψ>(rs) (A.24)

dΨ>

dr
− dΨ<

dr
= 1, at r = rs (A.25)

dΨ>

dr
+ ikRΨ> = 0, at r = R (A.26)

The first derivatives are approximated by the following backward difference ap-

proximation

dΨ

dr
≈ Ψj −Ψj−1

hj−1

(A.27)
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and the following forward difference approximation

dΨ

dr
≈ Ψj+1 −Ψj

hj

(A.28)

where, hj−1 is the mesh spacing

hj−1 = rj − rj−1 (A.29)

The second derivative is approximated as

d2Ψ

dr2
≈ Ψj+1

havgj
hj

− 2Ψj

hj−1hj

+
Ψj−1

hj−1havgj

(A.30)

where,

havgj
=

hj + hj−1

2
(A.31)

The differential equations, the boundary and matching conditions can be dis-

cretized using finite differences. They are then combined and this leads to a tridiag-

onal system of equations.

ajΨj−1 + bjΨj + EjΨj+1 = 0 (A.32)

where j = 1,2, . . . p-1,p+1, . . . ,N-1 and, the boundary condition Ψ0 = 0 is used in

the equation (A.32).

At the source position r = rs, j = s

wsΨs−1 + vsΨs + usΨs+1 = 1 (A.33)

At j = N, the radiation condition is applied

βNΨN−1 + αNΨN = 0 (A.34)

where,
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aj =
1

hj−1havgj

(A.35)

bj = k2
j − Fj (A.36)

Fj =
2

hj−1hj

(A.37)

Ej =
1

hjhavgj

(A.38)

ws =
1

hs−1

(A.39)

us =
1

hs

(A.40)

vs = −(us + ws) (A.41)

βN = − 1

hN−1

(A.42)

αN = −βN + ikN (A.43)

Equations (A.32), (A.33) & (A.34) can be rewritten as a matrix equation

AωXΨ = bs (A.44)

Where Aω is a N X N tridiagonal matrix. XΨ = (Ψ1, . . . , ΨN)T is the unknown

Green’s function that needs to be computed by solving equation (A.44) for each

frequency ω. The right hand side vector bs = (0, . . . , 1, . . . , 0)T , contains a 1 at

location j = s in the array corresponding to the source location r = rs.
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Aω =




b1 E1 0 0 0 0 . . . 0

a2 b2 E2 0 0 0 . . . 0

0 a3 b3 E3 0 0 . . . 0
...

...
. . . . . . . . .

...
...

... 0 0 ws vs us . . . 0

...
...

...
...

. . . . . . . . .
...

0 . . . 0 0 0 aN−1 bN−1 EN−1

0 . . . 0 0 0 0 βN αN




(A.45)

A.3 Green’s function for the potential well

From chapter 2, equation (2.4) we have

d2Ψ

dr2
+

ω2
1 − V (r)

c2
Ψ = δ(r − rs) (A.46)

where Ψ is proportional to the pressure perturbation.

ω2
1 = (ω2 + iωΓ) (A.47)

The source is placed inside the well, 0 < rs < a. Without loss of generality

consider frequencies ω < ωc. The solution Ψ = 0 at r = 0 and the radiation condition

is applied far away from the upper turning point r = a. This ensures propagating

waves for frequencies ω > ωc and exponential decay for waves with ω < ωc.

The above equation with the boundary conditions needs to be solved in the three

regions:

i) 0 ≤ r < rs: satisfied by Ψ1, with Ψ1 = 0 at r = 0.

ii) rs < r < a: satisfied by Ψ2.

iii) r ≥ a: satisfied by an exponentially decaying solution Ψ3.

These three solutions satisfy three different differential equations in each of the three

regions.

d2Ψ1

dr2
+ W 2

1 Ψ1 = 0 (A.48)
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d2Ψ2

dr2
+ W 2

1 Ψ2 = 0 (A.49)

d2Ψ3

dr2
−W 2

2 Ψ2 = 0 (A.50)

where,

W1 =
ω1

c
(A.51)

W2 =
ω2

c
(A.52)

ω2
2 = (ω2

c − ω2
1) (A.53)

The solutions to the differential equations with the boundary conditions are:

Ψ1(r) = c1 sin(W1r) (A.54)

Ψ2(r) = c2 sin(W1r) + c3 cos(W1r) (A.55)

Ψ3(r) = c4e
−W2r (A.56)

The constants c1, c2, c3 and c4 are obtained by applying matching conditions at r = rs

and r = a.

At r = rs due to the delta function, the solution is continuous, but there is a jump

in the first derivative.

Ψ1(rs) = Ψ2(rs) (A.57)

dΨ2

dr
− dΨ1

dr
= 1, at r = rs (A.58)
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At r = a, both the function and its first derivative are continuous.

Ψ2(a) = Ψ3(a) (A.59)

dΨ2

dr
=

dΨ3

dr
, at r = a (A.60)

Applying these matching conditions and carrying out the algebra, the constant c4 is

c4 = − sin(W1rs)

W1 cos(W1a) + W2 sin(W1a)
eW2a (A.61)

The Green’s function at r ≥ a is GΨ(r, rs) = Ψ3(r) = c4e
−W2r

GΨ(r, rs) =
−c sin(ω1rs/c)

ω1cos(ω1a/c) + ω2sin(ω1a/c)
e−ω2(r−a)/c (A.62)

For frequencies ω > ωc, ω2 becomes imaginary. Replacing ω2 by ik in the above

expression (A.62), we get the corresponding Green’s function. Where k is

k2 = (ω2
1 − ω2

c ) (A.63)

A.4 Eigenfrequencies for the potential well

The governing equation for the eigenfrequency ω0 is

d2Ψ

dr2
+

ω2
0 − V (r)

c2
Ψ = 0 (A.64)

where Ψ is proportional to the pressure perturbation.

Without loss of generality consider eigenfrequencies ω0 < ωc. The solution Ψ = 0

at r = 0 and the radiation condition is applied far away from the upper turning point

r = a. This ensures propagating waves for eigenfrequencies ω0 > ωc and exponential

decay for waves with ω0 < ωc.

The above equation (A.64) with the boundary conditions needs to be solved in

the two regions:
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i) 0 ≤ r < a: satisfied by Ψ1, with Ψ1 = 0 at r = 0.

ii) r ≥ a: satisfied by an exponentially decaying solution Ψ2.

These two solutions satisfy two different differential equations in each of the two

regions.

d2Ψ1

dr2
+ W 2

0 Ψ1 = 0 (A.65)

d2Ψ2

dr2
−W 2

0cΨ2 = 0 (A.66)

where,

W0 =
ω0

c
(A.67)

W0c =
ω0c

c
(A.68)

ω2
0c = (ω2

c − ω2
0) (A.69)

The solutions to the differential equations with the boundary conditions are:

Ψ1(r) = c1 sin(W0r) (A.70)

Ψ2(r) = c4e
−W0cr (A.71)

Applying the matching condition at r = a:

Ψ1(a) = Ψ2(a) (A.72)

dΨ1

dr
=

dΨ2

dr
, at r = a (A.73)

This gives the equation for the eigenfrequency ω0
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ω0c sin(W0a) + W0 cos(W0a) = 0 (A.74)

The equation (A.74) also holds for eigenfrequencies ω0 > ωc, in which case ω0c becomes

imaginary.



Appendix B

Phase and Amplitude differences

In this appendix the equations used in chapter 3 are derived.

The Green’s function is given by (from equation (A.62))

GΨ(ω1) =
−c sin(ω1rs/c)

ω1cos(ω1a/c) + ω2sin(ω1a/c)
e−ω2(r−a)/c (B.1)

where ω1 and ω2 are given by:

ω2
1 = (ω2 + iωΓ) (B.2)

ω2
2 = (ω2

c − ω2
1) (B.3)

For solar p modes the damping coefficient Γ ¿ ω, using the binomial expansion,

equation (B.2) becomes

ω1 = ω + iΓ/2 (B.4)

The denominator D of equation (B.1) is

D = ω1 cos(ω1a/c) + ω2 sin(ω1a/c) (B.5)

The above equation (B.5) can be rewritten as

D = ωc sin(ω1a/c + φc) (B.6)
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where

sin φc =
ω1

ωc

≈ ω

ωc

(B.7)

From equation (1.29) δp = uΨ and since the Green’s function is proportional to

Ψ, therefore δp ∝ GΨ. Taking into account the time dependence eiωt, for modes below

the acoustic cutoff frequency ωc

δp ∝ −αc

ωc

eiωte−ωc(r−a)/c (B.8)

where α is a complex analytical function of ω, a, rs, c and the damping, and is given

by

α =
sin(ω1rs/c)

sin(ω1a/c + φc)
(B.9)

Using the equation of continuity, and the adiabatic relation,

dδρ

dt
+ ρ

dδv

dr
= 0 (B.10)

δρ =
δp

c2
(B.11)

the velocity perturbation is given by

δv =
δp ω

cρωc

eiπ/2 (B.12)

where ρ is the density which has been assumed to be constant in this simple model.

Without loss of generality both the pressure and velocity perturbations can be eval-

uated at the upper turning point r = a.

The cross spectrum Sxy between two complex numbers x = rxe
iθx and y = rye

iθy

is defined as

Sxy = xy∗ = rxrye
i(θx−θy) (B.13)

The modulus of Sxy is rxry and its phase is θx − θy.

The power contrast of the power of quantity ψ (p or v), Pψ, relative to the power
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of the uncorrelated background Pψ,uncor, is Cψ and is given by

Cψ =
(δψ + Nψ,cor)(δψ + Nψ,cor)

∗

Pψ,uncor

(B.14)

where ψ can be p or v, and Cψ = Pψ/Pψ,uncor.

Cψ =
|δψ|2

Pψ,uncor

+ βψ

[
1 +

δψN∗
ψ,cor + δψ∗Nψ,cor

|Nψ,cor|2
]

(B.15)

where βψ = |Nψ,cor|2/Pψ,uncor is the ratio of the power of correlated, |Nψ,cor|2, to

uncorrelated noise.

The above equation (B.15) can be rewritten, using the fact |Nψ,cor|2 = Nψ,corN
∗
ψ,cor,

as

Cψ =
|δψ|2

Pψ,uncor

+ βψ

[
1 +

(
δψ

Nψ,cor

+
δψ∗

N∗
ψ,cor

)]
(B.16)

Further, by considering that

δψ

Nψ,cor

+
δψ∗

N∗
ψ,cor

= 2Re

(
δψ

Nψ,cor

)
(B.17)

The expression of the power contrast in equation (B.16) is then (see also Eq. (3.9))

Cψ =
|δψ|2

Pψ,uncor

+ βψ

[
1 + 2Re

(
δψ

Nψ,cor

)]
(B.18)



Appendix C

Fitting formula

Derivations of the various equations in chapter 4 of the thesis are carried out here.

In §C.1 the asymmetrical fitting formula is derived. In §C.2 the basic idea of fitting

is explained. Finally, in §C.3 the eigenfrequencies of the solar model are computed

numerically, for both reflecting and radiation boundary conditions.

C.1 Derivation of the fitting formula

The Green’s function is

GΨ(ω1) =
−c sin(ω1rs/c)

ω1cos(ω1a/c) + ω2sin(ω1a/c)
e−ω2(r−a)/c (C.1)

where ω1 and ω2 are given by:

ω2
1 = (ω2 + iωΓ) (C.2)

ω2
2 = (ω2

c − ω2
1) (C.3)

For solar p modes the damping coefficient Γ ¿ ω, using the binomial expansion

equation (C.2) becomes

ω1 = ω + iΓ/2 (C.4)
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Without loss of generality the Green’s function can be evaluated at the observing

location r = a. The denominator D of equation (C.1) is

D = ω1 cos(ω1a/c) + ω2 sin(ω1a/c) (C.5)

The above equation (C.5) can be rewritten as

D = ωc sin(ω1a/c + φc) (C.6)

where

sin φc =
ω1

ωc

≈ ω

ωc

(C.7)

Substituting the expression for ω1 from equation (C.4) in equation (C.6) for D one

gets

D = ωc

[
sin

(
ωa

c
+ φc

)
cos

(
iΓa

2c

)
+ cos

(
ωa

c
+ φc

)
sin

(
iΓa

2c

)]
(C.8)

Define a dimensionless parameter β = Γa/c and expanding the above equation for

small β one gets

D ≈ ωc

[
sin

(
ωa

c
+ φc

)
+

iβ

2
cos

(
ωa

c
+ φc

)]
(C.9)

Next, we define a dimensionless line profile parameter X = ω−ω0

Γ
and substitute for

ω in terms of X and ω0, the sin and cos terms become

sin
(

ωa

c
+ φc

)
= sin

(
ω0a

c
+ φc

)
cos(βX) + cos

(
ω0a

c
+ φc

)
sin(βX) (C.10)

cos
(

ωa

c
+ φc

)
= cos

(
ω0a

c
+ φc

)
cos(βX)− sin

(
ω0a

c
+ φc

)
sin(βX) (C.11)

The above follow from the fact that
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ωa

c
+ φc =

(
ω0a

c
+ φc

)
+ βX (C.12)

At the eigenfrequency ω = ω0 (see Appendix A.4):

sin
(

ω0a

c
+ φc

)
= 0 (C.13)

cos
(

ω0a

c
+ φc

)
= 1 (C.14)

Using the above equations (C.9) through (C.14) the expression for D becomes

D = ωc

[
sin(βX) +

iβ

2
cos(βX)

]
(C.15)

This can then be expanded for small βX to yield

D = ωcβ
(
X +

i

2

)
(C.16)

Now returning to the numerator N of the Green’s function

N = −c sin(ω1rs/c) (C.17)

We define the depth of the source from the upper turning point r = a as ds = a−rs.

Substituting the expression for rs in terms of ds into the argument of the sin in

equation (C.17)

sin(ω1rs/c) = sin

(
ω1a

c
− ω1ds

c

)
(C.18)

The right hand side can be expanded using the standard trigonometric identity

sin(ω1rs/c) = sin
(

ω1a

c

)
cos

(
ω1ds

c

)
− cos

(
ω1a

c

)
sin

(
ω1ds

c

)
(C.19)

Using the expression for ω1 the above equation (C.19) becomes
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sin(ω1rs/c) = sin

(
ωa

c
+

iβ

2

)
cos

(
ωds

c
+

iΓds

2c

)
− cos

(
ωa

c
+

iβ

2

)
sin

(
ωds

c
+

iΓds

2c

)

(C.20)

The above equation (C.20) can be simplified for small β and Γds

c

S ≈
[
sin

(
ωa

c

)
+

iβ

2
cos

(
ωa

c

)]
cos

(
ωds

c

)
−

[
cos

(
ωa

c

)
− iβ

2
sin

(
ωa

c

)]
sin

(
ωds

c

)

(C.21)

Where we have used the fact that cos(y) ≈ 1 and sin(y) ≈ y for small y and S =

sin(ω1rs/c). Substituting ω = ω0 + XΓ into the above equation (C.21) and using the

eigenvalue condition ω0a
c

= nπ − φc, where n = 0, 1, ... Without loss of generality

consider n = 0. With this substitution and approximating for small Γds

c
the equation

(C.21) becomes

S ≈
[
sin(βX − φc) +

iβ

2
cos(βX − φc)

]
cos p0−

[
cos(βX − φc)− iβ

2
sin(βX − φc)

]
sin p0

(C.22)

where p0 = ω0ds

c
. The above equation (C.22) can be simplified to

S = sin(βX − pw) +
iβ

2
cos(βX − pw) (C.23)

where pw = p0 + φc.

The Green’s function then becomes

GΨ ≈
−c

[
sin(βX − pw) + iβ

2
cos(βX − pw)

]

ωc

[
sin(βX) + iβ

2
cos(βX)

] (C.24)

We get the complex amplitude of the pressure perturbation AΨ from the Green’s

function

AΨ(X) = −Aw

sin(βX − pw) + i
2
β cos(βX − pw)

sin(βX) + i
2
β cos(βX)

(C.25)
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Here Aw = A0c/ωc, A0 is the mode amplitude that has been multiplied by the

Green’s function. Correlated noise Ncor is added to the amplitude. The power is then

given by P = |Ncor + AΨ|2. This gives a trigonometric expression for the power and

is,

P (X) = F 2 +
(Gβ)2

[
cos2(βX) + β2

4
sin2(βX)

]

sin2(βX) + β2

4
cos2(βX)

+
FGβ sin(2βX)(1− β2

4
)

sin2(βX) + β2

4
cos2(βX)

(C.26)

where F = Ncor − Awqw and G = Aw(1−q2
w)1/2

β
and qw = cos pw.

Neglecting the small terms β2

4
sin2(βX) incomparison with cos2(βX) and β2

4
com-

pared to 1, and making use of the transformation x = 2X the above expression (C.26)

can be written as

P (x) ≈ AB2 + AU2

[
cos2(Ux) + U2 sin2(Ux)

]

sin2(Ux) + U2 cos2(Ux)
+

ABU sin(2Ux)

sin2(Ux) + U2 cos2(Ux)
(C.27)

where x = 2(ν − ν0)/γ, cyclic frequency ν = ω/2π, γ = Γ/2π A = 4A2
w(1 − q2

w)β−2,

B = 0.5β(Ncor − Awqw)A−1
w (1 − q2

w)−1/2, U = β/2, pw = p0 + φc, p0 = ω0ds/c,

sin φc ≈ ω/ωc and ds = a− rs

This trigonometric expression (C.27) can be written in compact form after ne-

glecting U2 sin2(Ux) in comparison to cos2(Ux)

P (x) ≈ A
[U cos(Ux) + B sin(Ux)]2 + B2U2 cos2(Ux)

U2 cos2(Ux) + sin2(Ux)
(C.28)

This expression can be used to fit multiple peaks. The ratio a/c is the travel time of

the p modes between the upper and lower turning points, and is a/c = 1/2∆ν, where

∆ν is the mode spacing. Using this fact the dimensionless parameter U = πγ/2∆ν.

The equation (C.28) is then simplified to a more practical polynomial expression

which is obtained by expanding equation for small Ux, with the U canceling out:

P (x) ≈ A
(1 + Bx)2 + B2

1 + x2
+ Bl (C.29)
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To this one can add the linear uncorrelated background Bl = c1+c2ν, where c1 and c2

are fitting parameters, which results in equation (4.4) in chapter 4 of the main text.

C.2 Fitting power spectra by the formula

Given a target power spectrum Pt(ν), fitting is carried out by minimizing the square

of the difference between the power estimated by the above formula P (ν) and Pt(ν),

summed over a suitable range so as to isolate the mode.

∆ =
N∑

j=1

[Pt(νj)− P (νj)]
2 (C.30)

where, ν1, ν2, . . . , νN are the N frequency mesh points.

The nonlinear minimization of ∆ is done with respect to a set of six parameters

S = {A,B, γ, ν0, c1, c2} using Powell’s algorithm from the IDL library.

min
S

∆ (C.31)

C.3 Numerical solution of the eigenvalue problem

C.3.1 Reflecting boundary conditions

The eigenfrequencies ω0 of the solar model are computed from the following equation

d2Ψ

dr2
+

ω2
0 − ω2

+

c2
Ψ = 0, (C.32)

For computing just the bound states, reflecting boundary conditions Ψ = 0 at r = 0

and r = R is applied. The above equation (C.32) is discretized using a non-uniform

mesh, by using finite difference approximation to the derivative. The following nota-

tion is used Ψj = Ψ(rj), cj = c(rj) and similarly for the other variables.

The second derivative is approximated as
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d2Ψ

dr2
≈ Ψj+1

havgj
hj

− 2Ψj

hj−1hj

+
Ψj−1

hj−1havgj

(C.33)

This leads to a tridiagonal system of equations for j = 1, . . . ,N-1 with boundary

conditions Ψ0 = ΨN = 0.

ajΨj−1 + (bj − ω2
0)Ψj + EjΨj+1 = 0 (C.34)

where

aj = − c2
j

hj−1havgj

(C.35)

bj = Fj + ω2
+j (C.36)

Ej = − c2
j

hjhavgj

(C.37)

Fj =
2c2

j

hj−1hj

(C.38)

havgj
=

hj + hj−1

2
(C.39)

hj−1 = rj − rj−1 (C.40)

Equation (C.34) can be rewritten as a matrix eigenvalue problem

AωXΨ = 0 (C.41)

Where Aω = A0 − ω2
0I. The eigenvalues of the (N-1)X(N-1) tridiagonal matrix A0

are nothing but ω2
0, I is the (N-1)X(N-1) identity matrix, XΨ = (Ψ1, . . . , ΨN−1)

T is

the eigenvector corresponding to the eigenvalue and 0 = (0, . . . , 0)T .
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A0 =




b1 E1 0 0 0 . . . 0

a2 b2 E2 0 0 . . . 0

0 a3 b3 E3 0 . . . 0
...

...
. . . . . . . . .

...

0 . . . aN−2 bN−2 EN−2

0 . . . 0 0 aN−1 bN−1




(C.42)

C.3.2 Radiation condition

The eigenfrequencies for the solar model can also be computed when the Sommerfeld

radiation condition is applied far away from the upper turning point. The problem

is formulated as follows:

Equation (C.32) can be rewritten as,

c2d2Ψ

dr2
+ ω2

0Ψ− ω2
+Ψ = 0, (C.43)

This is subject to the following boundary conditions: At r = 0

Ψ = 0 (C.44)

At r = R, the radiation condition is applied to ensure outgoing waves. A harmonic

time dependence of eiωt is used.

dΨ

dr
+ ikRΨ = 0 (C.45)

where,

k2(r) =
ω2

0 − ω2
+(r)

c2(r)
(C.46)

Evaluating equation (C.46) at r = R leads to

k2
R = k2(R) =

ω2
0 − ω2

+R

c2
R

(C.47)
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From equations (C.43) and (C.47) one obtains

c2

c2
R

d2Ψ

dr2
+

ω2
+R − ω2

+

c2
R

Ψ + k2
RΨ = 0 (C.48)

Defining a new variable Φ = kRΨ, one obtains the following set of equations

c2

c2
R

d2Ψ

dr2
+

ω2
+R − ω2

+

c2
R

Ψ + kRΦ = 0 (C.49)

kRΨ− Φ = 0 (C.50)

These equations (C.49) and (C.50) are to be solved subject to the following bound-

ary conditions Ψ = Φ = 0 at r = 0.

At r = R the radiation condition is applied on Ψ and Φ

dΨ

dr
+ ikRΨ = 0 (C.51)

dΦ

dr
+ ikRΦ = 0 (C.52)

The first derivatives are approximated by the following backward difference approxi-

mation

dΨ

dr
≈ Ψj −Ψj−1

hj−1

(C.53)

The boundary conditions and the equations can be discretized by using finite differ-

ences and are

Ψ0 = 0 (C.54)

Φ0 = 0 (C.55)

The following equations are written at the interior mesh points j = 1, . . . ,N-1
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−kNΨj + Φj = 0 (C.56)

−Ej−1Ψj−1 −BjΨj − kNΦj − AjΨj+1 = 0 (C.57)

The radiation condition is applied at j = N.

−dN−1ΨN−1 + (dN−1 − kN)ΨN = 0 (C.58)

−dN−1ΦN−1 + (dN−1 − kN)ΦN = 0 (C.59)

where

Ej−1 =
c2
j

c2
Nhj−1havgj

(C.60)

Aj =
c2
j

c2
Nhjhavgj

(C.61)

Bj =
ω2

+N − ω2
+j

c2
N

− 2c2
j

c2
Nhj−1hj

(C.62)

dN−1 =
i

hN−1

(C.63)

The equations (C.56) through (C.59) can be written compactly in matrix form.

AkY = 0 (C.64)

The matrix Ak is a pentadiagonal matrix. Where Ak = F − kNI. The eigenvalues

of the 2N X 2N pentadiagonal matrix F are kN, which contain the eigenfrequencies

ω2
0, I is the 2N X 2N identity matrix, Y = (Ψ1, Φ1, . . . , ΨN, ΦN)T is the eigenvector

corresponding to the eigenvalue and 0 = (0, . . . , 0)T . From this computation the

eigenvalues corresponding to the variables Ψj are sorted out before the eigenfrequen-

cies are computed.
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F =




0 1 0 0 0 0 0 0 . . . 0

−B1 0 −A1 0 0 0 0 0 . . . 0

0 0 0 1 0 0 0 0 . . . 0

−E1 0 −B2 0 −A2 0 0 0 . . . 0

0 0 0 0 0 1 0 0 . . . 0
...

...
. . . . . . . . . . . . . . .

...
...

...

0 0 0 0 0 0 0 1 . . . 0

0 0 0 0 −EN−2 0 −BN−1 0 −AN−1 0

0 0 0 0 0 0 −dN−1 0 dN−1 0

0 0 0 0 0 0 0 −dN−1 0 dN−1






Appendix D

The Source of p modes

The equations relating the excitation of p modes by different source types in Chapter

5 are derived here.

The composite source corresponding to the Lagrangian pressure perturbation is

S(r, ω) =

[
c1

dS2

dr
+ c2S2

]
+

[
c3

dS1

dr
+ c4S1

]
, (D.1)

where c1, c2, c3 and c4 depend on the solar model and are given by:

c1 = 1/u (D.2)

where u is defined by equation (1.29)

c2 = z/u (D.3)

and z is given by

z = A11 − A
′
21

A21

= A11 − d(ln A21)

dr
(D.4)

c3 = −ρg

u
(D.5)

108
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c4 = −
[
zρg + A21 + d(ρg)

dr

]

u
(D.6)

A11 and A21 are given by

A11 =
2

r
− L2g

ω2r2
(D.7)

A21 = −gρf

r
(D.8)

where L2 = l(l + 1) and f has been defined by equation (1.24).

The above source can be broken up into monopole Smon, dipole Sdip and quadrupole

Squd sources respectively, which are given by

Smon = c4S1 (D.9)

Sdip−mon = c3
dS1

dr
(D.10)

where Sdip−mon is the dipole source due to monopole

Sdip = c1
dS2

dr
+ c2S2 (D.11)

The pressure perturbation δp for these source types can be computed by linear

superposition from the Green’s function.

Ψ(R) =
∫ R

0
GΨ(r, rs)S(rs)drs (D.12)

where δp(r) = u(r)Ψ(r).

For a monopole source

Ψmon(R) =
∫ R

0
GΨ(r, rs)c4(rs)S1(rs)drs (D.13)

Considering a single source location rs one gets for a monopole source,
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δpmon(robs) ∝ c5(rs)GΨ(robs, rs), (D.14)

where c5(rs) is

c5(rs) = c4(rs)u(robs) (D.15)

For, the dipole source produced by the monopole source Sdip−mon, the pressure

perturbation is proportional to the Green’s function as in equation (D.14) above.

For a dipole source,

Ψdip(R) =
∫ R

0
GΨ(r, rs)

[
c1

dS2

drs

+ c2S2(rs)

]
drs (D.16)

The derivative in the S2 term can be transferred to the Green’s function by an inte-

gration by parts

∫ R

0
GΨ(r, rs)

dS2

drs

drs = −
∫ R

0

dGΨ(r, rs)

drs

S2drs (D.17)

The other term in the integration by parts GΨS2 vanishes at the two limits because

the source S2 is localized and is zero at those limits.

Ψdip(R) =
∫ R

0

[
c2(rs)GΨ − d (c1(rs)GΨ)

drs

]
S2(rs)drs (D.18)

Now, considering a single source location rs one gets for a dipole source,

δpdip(robs) ∝ c6(rs)GΨ − d

drs

(
GΨ

c7(rs)

)
, (D.19)

where c6 and c7 are

c6(rs) = c2(rs)u(robs) (D.20)

c7(rs) =
1

c1(rs)u(robs)
(D.21)

Finally, consider the quadrupole source Squd
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S2 ≈ dSqud

dr
(D.22)

where Squd is equal to the Reynolds stress ρvv. Substituting S2 in equation

Ψqud(R) =
∫ R

0

([
c2(rs)GΨ − d (c1(rs)GΨ)

drs

]
dSqud

drs

)
drs (D.23)

and carrying out a similar integration by parts as was done for the dipole source one

gets

δpqud(robs) ∝ d2

dr2
s

(
GΨ

c7(rs)

)
− d

drs

(
GΨ

c8(rs)

)
(D.24)

where c8 = 1/c6

The radial component of the displacement ξ is computed from δp using the equa-

tion below

dδp

dr
+

L2g

ω2r2
δp− gρf

r
ξ = 0 (D.25)

The velocity perturbation δv = iωξ is then computed for the different source types.
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